Adaptations are often made to evidence-based practices (EBPs) by systems, organizations, and/or service providers in the implementation process. The degree to which core elements of an EBP can be maintained while allowing for local adaptation is unclear. In addition, adaptations may also be needed at the system, policy, or organizational levels to facilitate EBP implementation and sustainment. This paper describes a study of the feasibility and acceptability of an implementation approach, the Dynamic Adaptation Process (DAP), designed to allow for EBP adaptation and system and organizational adaptations in a planned and considered, rather than
This project examines the feasibility, acceptability, and utility of the DAP; tests the degree to which fidelity can be maintained using the DAP compared to implementation as usual (IAU); and examines the feasibility of using automated phone or internet-enabled, computer-based technology to assess intervention fidelity and client satisfaction. The study design incorporates mixed methods in order to describe processes and factors associated with variations in both how the DAP itself is implemented and how the DAP impacts fidelity, drift, and adaptation. The DAP model is to be examined by assigning six regions in California (USA) to either the DAP (n = 3) or IAU (n = 3) to implement an EBP to prevent child neglect.
The DAP represents a data-informed, collaborative, multiple stakeholder approach to maintain intervention fidelity during the implementation of EBPs in the field by providing support for intervention, system, and organizational adaptation and intervention fidelity to meet local needs. This study is designed to address the real-world implications of EBP implementation in public sector service systems and is relevant for national, state, and local service systems and organizations.
Despite empirical support for evidence-based practices (EBPs) [
One of the critical challenges in large-scale implementations of EBPs is the tension between adaptation (
The interplay of characteristics of an intervention with service system and organizational characteristics (system, organization, provider, and client levels) can be complex [
The need for treatment or intervention adaptation has been highlighted in a wide range of EBPs, including for child maltreatment interventions [
Intervention adaptation at its best is a cautious process designed to allow an EBP to be delivered faithfully in situations where it otherwise might not fit. Some typical examples include reordering components, forestalling or delaying certain components, de-emphasis and emphasis, augmentation (adding materials or interventions) of components, and language and cultural adaptations [
In contrast,
EBP implementation with fidelity may also require adaptations to service system and organization policies, processes, and structure as the social and organizational context can influence the process of implementation [
Conceptual model guiding the Dynamic Adaptation Process to support effective evidence-based practice implementation representing the four phases (Exploration, Preparation, Implementation, Sustainment) of the EPIS implementation conceptual model [13].
A second, related concern addressed by this study is the development of practical and cost-effective fidelity assessment methods. Such methods are needed in order to move EBPs into usual care settings and monitor variations in fidelity to be utilized in the DAP. Behavioral and psychosocial EBPs implemented in research contexts often use
The current study contributes to implementation science by addressing the issue of adaptation in a large, diverse state context by experimentally manipulating the implementation approach. The study context consists of multiple regions in the state of California implementing SafeCare© (SC), a behavioral and psychosocial EBP developed to prevent child neglect [
In applying the DAP model to SC implementation, the investigative team works along with child-welfare system directors and staff, program leaders, clinicians, and model developers to use the DAP to guide and provide appropriate adaptation of the EBP and the service context. Up to 12 counties across six regions will be randomly assigned to be trained in SC implementation as usual (IAU) versus the DAP approach. Although process and implementation evaluations have traditionally relied upon the use of qualitative methods, [
The specific aims of this study are as follows:
· Aim 1: Use the DAP to modify SC training and ongoing SC coaching to support adaptation of SC in practice.
· Aim 2: Use qualitative methods to examine the process, feasibility, acceptability, and utility of the DAP.
· Aim 3: Test whether DAP implementation results in (a) fidelity to SC core elements equal to IAU, (b) greater provider engagement with the implementation, or (c) improved client satisfaction compared to IAU.
· Aim 4: Examine organizational and provider factors likely to impact adaptation and implementation outcomes.
· Aim 5: Test the utility of technological solutions for collecting client fidelity assessment and satisfaction data.
The context for this study includes multiple counties in the state of California, USA. As such, SC implementation will occur at the county level, since it is at this level that child-welfare and home-visitation service systems in California are administered. Each year, two counties (or a consortia of counties) blocked on similar characteristics (
As shown in Figure
Consistent with the need to consider the multilevel nature of the service context [
To assess
This phase involves making information gathered in the Exploration phase available to the entire IRT. The IRT examines exploration phase results, descriptions of service contexts, data reports, and other materials pertinent to adaptation in the proposed service context to determine what adaptations may be needed in the service context and how such adaptations are to be accomplished.
Based on the outcome of the Adoption Decision/Preparation phase, training with adaptation support begins in the Implementation phase. In contrast to the IAU condition in which the curriculum is set, the DAP training supports changes deemed necessary by the IRT. One prominent difference between IAU and DAP conditions is the explicit inclusion and discussion of adaptation during provider training, including why one might adapt, what one might adapt, what one might not adapt, when to seek guidance on adaptation, and how to use the ongoing coaches and IRT for tailoring SC. In addition to intervention adaptation, the need for adaptation at the system and/organizational levels is also an ongoing target for change. In addition, the research team in conjunction with intervention developers will refine assessment of fidelity. Departures from fidelity to core elements will be considered drift.
The Sustainment phase involves ongoing use of client and system data to provide feedback to the coaches and the IRT who can use that information to better understand home-visitor fidelity, client satisfaction with services, and client satisfaction with SC. This information is collected in both the DAP and IAU conditions but is only fed back to DAP coaches on a monthly basis. One of the main benefits of this information is that DAP coaches will have access to data from all of the SC clients rather than only the one or two per month who are observed during
This qualitative portion of the study will involve recruiting a total of 30 home visitors and all team leaders/clinical supervisors (n = 6; one from each team) from each agency implementing SC. All county child-welfare directors and all agency directors (
The qualitative analysis of the DAP will include three interrelated methods of collecting data: (1)
The primary direct participants are agency staff who will be delivering SC (n = 72). Because the main quantitative aims of the study involve provider fidelity and factors related to fidelity, agency staff will be the main subjects of study. Clients also will be involved as participants but to a far lesser extent, via de-identified administrative data, and as a source for fidelity ratings of provider staff. All clients receiving SC from a provider enrolled in the study will be eligible for inclusion. Clients will be selected by the agencies and child welfare to receive SC based on two criteria: (a) a child-welfare referral or concern about child neglect and (b) at least one child in the family under age eight who is considered at risk for neglect. Clients will be excluded only if they are unable to comprehend or provide data. The minimum number of eligible client participants is estimated to be 720.
We will use two sources of fidelity data: direct observation methods and client report. One has the advantage of expertise and objectivity, and the other has the advantage of high frequency availability and relevance to client perspectives. SC sessions will be observed and will be coded by coaches for each observed session using the SC Fidelity Checklist Tool (two to four sessions monthly). For client report, we are using a parallel version of the SC Fidelity Checklist Tool. The multisource measurement occasions will provide the opportunity for detailed comparisons between fidelity information gathered from clients and from observers. The more detailed client-report data gathered on a weekly basis will provide opportunities to examine patterns of change in fidelity over time and provide data to the coach and adaptation team.
Client satisfaction with SC is assessed using the model developers’ client satisfaction scales that assess satisfaction with each of the SC modules.
Client retention and recidivism data will also be compared between the IAU and DAP using data obtained from county child welfare databases.
Equivalence testing [
To examine aim 4, agency staff (n = 72) delivering SC are administered biannual web surveys regarding individual and organizational level factors hypothesized to impact implementation outcomes.
In order to test differences between DAP and IAU on work satisfaction and turnover intentions, separate hierarchical linear regression models addressing clustering at the team level, with a dummy-coded grouping variable and relevant covariates, will be evaluated. Exploratory analyses will involve examining the Pearson product moment correlations among personal dispositional innovativeness, provider satisfaction with SC, and attitudes towards adopting EBP, with a series of the correlation coefficients both within and across conditions (DAP vs. IAU). The direction and magnitude of these correlations, as well as their associated confidence intervals, will be used to judge effect size magnitude.
The primary direct participants are agency staff who will be delivering SC (n = 72). All clients receiving SC from a provider enrolled in the study will be eligible for inclusion. The minimum number of eligible client participants is estimated to be 720.
Fidelity data will be collected via direct observation methods or client phone or computer report using the SC Fidelity Checklist Tool as described under aim 3. Client data regarding their provider visits are collected on a weekly basis and direct observation data of providers are collected two to four times per month. At the end of each SC visit, home visitors provide clients with either an auditory survey administered using automated telephone technology or an online form administered through a wireless-enabled netbook. Use of these technological approaches will replace the need for the home visitor to prepare a paper-based fidelity form for each home visit, reducing the fidelity-monitoring burden for the home visitor and client and decreasing demand characteristics of having the home visitor give clients the fidelity measure that is to be returned to the home visitor. The multisource measurement occasions will provide the opportunity for detailed comparisons between fidelity information gathered from clients and observers.
A weighted kappa statistic [
The degree to which core elements of EBPs can be maintained while allowing for local adaptation is unclear, and concern is reflected in prevention and intervention literatures. In this project, we develop and evaluate the DAP, an implementation approach that uses data collection and feedback processes to prepare and support systems, organizations, and service staff to inform appropriate adaptations to both the EBP and the service context. The DAP involves identifying and distinguishing core elements and adaptable characteristics of an EBP, then supporting implementation of the adapted model. It also identifies system and organizational characteristics requiring adaptation for effective implementation. By using a mixed-method approach to examine each of the specific aims outlined in this study protocol, we aim to advance implementation science by addressing the tension between adaptation and fidelity and examine mechanisms and methods to improve fidelity assessment. The work described here should serve to advance the relatively nascent science of adaptation during implementation. If successful, the approach described here may be of value in other efforts to scale-up EBPs in order to improve public health outcomes.
The DAP model presented here also builds synergistically with our work on implementation in public sector service systems and organizations. By combining our phased, multilevel conceptual model, we have developed a general model of implementation. As shown in Figure
GAA is an Associate Editor of
GAA is the principal investigator for the described study. GAA conceptualized and designed the study, drafted the manuscript, and approved the final version. AEG contributed to the conceptualization and design of the study, drafted the manuscript, and approved the final version. LAP, SSB, DJW, JRL, JFS, DBH, and MJC contributed to the conceptualization and design of the study, revised the manuscript, and approved the final version.
This study was supported by Center for Disease Control Grant R01CE001556 (Principal investigator: Gregory A Aarons) and National Institute of Mental Health grants P30MH074678 (Principal investigator: John Landsverk) and R01MH092950 (Principal Investigators: Gregory A. Aarons and Michael Hurlburt).