Supplemental Material

Winter Temperature Inversions and Emergency Department Visits for Asthma in Salt Lake County, Utah, 2003-2008

John D. Beard ${ }^{1}$, Celeste Beck ${ }^{2}$, Randall Graham ${ }^{3}$, Steven C. Packham ${ }^{4}$, Monica Traphagan ${ }^{3}$, Rebecca T. Giles ${ }^{2}$, John G. Morgan ${ }^{5}$
${ }^{1}$ Environmental Epidemiology Program, Utah Department of Health, Salt Lake City, Utah, USA;
${ }^{2}$ Asthma Program, Utah Department of Health, Salt Lake City, Utah, USA; ${ }^{3}$ National Weather Service, Salt Lake City, Utah, USA; ${ }^{4}$ Division of Air Quality, Utah Department of Environmental Quality, Salt Lake City, Utah, USA; ${ }^{5}$ Office of Health Care Statistics, Utah Department of Health, Salt Lake City, Utah, USA

Address correspondence to J. Beard, Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, CB \# 7435, 2101 McGavran-Greenberg, Chapel Hill, NC 2799-7435 USA. Telephone: (919) 797-1987. Fax: (919) 966-2089. E-mail:
jdbeard@email.unc.edu

Table of Contents

Section Page Number
Supplemental Material, Table S1 S3
Supplemental Material, Table S2. S4
Supplemental Material, Table S3 S5
References S7

Supplemental Material, Table S1. Distributions of daily ambient air quality and weather for Salt Lake County, Utah, December-February, 2003-2004 to 2007-2008.

		Percentiles						
Variable $^{\mathrm{a}}$	Mean \pm SD	Min	5 th	25 th	50 th	75 th	95 th	Max
$\mathrm{CO}(\mathrm{ppm})$	1.35 ± 0.70	0.30	0.40	0.90	1.20	1.70	2.70	5.20
$\mathrm{NO}_{2}(\mathrm{ppb})$	49.08 ± 12.88	2.00	32.00	41.00	47.00	55.00	75.00	100.00
$\mathrm{O}_{3}{ }^{\mathrm{b}}(\mathrm{ppb})$	23.09 ± 10.14	2.00	6.00	15.00	25.00	31.00	38.00	43.00
$\mathrm{PM}_{2.5}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	21.04 ± 18.21	0.80	2.60	7.40	14.25	31.10	60.50	94.20
$\mathrm{PM}_{10}\left(\mathrm{\mu g} / \mathrm{m}^{3}\right)$	36.02 ± 24.31	2.00	7.00	16.00	30.00	52.00	82.00	122.00
$\mathrm{SO}_{2}(\mathrm{ppb})$	5.72 ± 5.35	0.00	1.00	2.00	4.00	8.00	16.00	40.00
${\text { Dew point temperature }\left({ }^{\circ} \mathrm{C}\right)}^{-5.33 \pm 4.12}$	-17.56	-12.72	-8.28	-5.00	-1.89	0.56	3.61	
${\text { Maximum temperature }\left({ }^{\circ} \mathrm{C}\right)}^{-3.28 \pm 5.26}$	-7.78	-4.00	0.00	3.89	8.28	12.78	19.00	
Mean temperature $\left({ }^{\circ} \mathrm{C}\right)$	-0.93 ± 4.65	-12.89	-8.56	-4.28	-0.72	2.39	6.56	14.72
Relative humidity ${ }^{\mathrm{c}}(\%)$	73.05 ± 10.81	20.26	54.74	66.68	73.28	80.66	89.35	96.41

Min = minimum; $\operatorname{Max}=$ maximum .
a The daily 1-hour maximum was used for $\mathrm{CO}, \mathrm{NO}_{2}, \mathrm{O}_{3}, \mathrm{SO}_{2}$, and maximum temperature and the 24-hour average was used for $\mathrm{PM}_{2.5}$, PM_{10}, dew point temperature, and mean temperature. b Data on O_{3} were available only for January 1, 2006, and later. c Relative humidity was derived from dew point temperature and mean temperature using Magnus' formula (equation (8) in Lawrence 2005), but solved for relative humidity, with the constants suggested by Alduchov and Eskridge (1996): $\mathrm{a}=17.625, \mathrm{~b}=243.04$.

Supplemental Material, Table S2. ORs and 95\% CIs from unconstrained distributed lag and moving average models for Salt Lake County, Utah, December-February, 2003-2004 to 2007-2008.

Variable	Model 1 OR $^{\text {a,b }}$ (95\% CI)	Model 2 OR ${ }^{\text {a, } \text { c }}$ (95\% CI)	Model $1 \mathrm{OR}^{\text {a,b,d }}$ (95\% CI)	Model $3 \mathrm{OR}^{\text {a,e,f }}(95 \% \mathrm{CI})$
Inversions				
Unconstrained distributed lag models				
Lag 0				
No	Reference	Reference	Reference	Reference
Yes	1.09 (0.98, 1.21)	1.08 (0.97, 1.21)	1.14 (0.97, 1.33)	1.21 (1.03, 1.43)
Lag 1				
No	Reference	Reference	Reference	Reference
Yes	0.95 (0.84, 1.07)	0.95 (0.84, 1.07)	0.96 (0.80, 1.15)	1.00 (0.83, 1.20)
Lag 2				
No	Reference	Reference	Reference	Reference
Yes	1.09 (0.97, 1.23)	1.09 (0.96, 1.23)	1.12 (0.94, 1.34)	1.15 (0.96, 1.38)
Lag 3 (${ }^{\text {a }}$				
No	Reference	Reference	Reference	Reference
Yes	1.01 (0.91, 1.12)	1.00 (0.90, 1.12)	1.00 (0.86, 1.17)	1.02 (0.87, 1.18)
Overall				
No	Reference	Reference	Reference	Reference
Yes	1.14 (1.00, 1.30)	1.12 (0.93, 1.33)	1.23 (1.01, 1.49)	1.42 (1.12, 1.80)
Moving average: lags 0-3	1.13 (0.99, 1.29)	1.11 (0.93, 1.32)	1.22 (1.00, 1.47)	1.37 (1.09, 1.73)

a The daily 1-hour maximum was used for O_{3} and the 24-hour average was used for $\mathrm{PM}_{2.5}$, dew point temperature, and mean temperature. b Adjusted for dew point temperature and mean temperature. c Adjusted for dew point temperature, mean temperature, and $\mathrm{PM}_{2.5}$. d Restricted to January 1, 2006, and later. e Adjusted for dew point temperature, mean temperature, and O_{3}. f Data on O_{3} were available only for January 1, 2006, and later.

Supplemental Material, Table S3. ORs and 95\% CIs for ED visits for asthma and inversions for Salt Lake County, Utah, January-February 2006 and December-February, 2006-2007 to 2007-2008.
Variable $\quad \operatorname{Model} 1$ OR $^{\mathrm{a}, \mathrm{b}}$ (95\% CI) $\quad \operatorname{Model} 2$ OR $^{\mathrm{a}, \mathrm{c}}$ (95\% CI)

Constrained quadratic polynomial distributed lag models
Inversion
Lag 0

No
Yes
Lag 1
No
Yes
Lag 2
No
Yes
Lag 3
No
Yes
Overall
No
Yes
No. of inversion days during lag 0-3

2
3
4
Trend ${ }^{\text {d }}$
Day of inversion
Not an inversion
$1^{\text {st }}-3^{\text {rd }}$
$4^{\text {th }}-6^{\text {th }}$
$7^{\text {th }}-12^{\text {th }}$
$>12^{\text {th }}$
Trend ${ }^{f}$

Reference
$1.09(0.95,1.26)$

Reference
$1.05(0.95,1.15)$
Reference
1.03 (0.93, 1.13)

Reference
1.04 (0.91, 1.19)

Reference
1.23 (1.01, 1.49)

Reference
1.17 (1.00, 1.36)

Reference
$1.09(0.98,1.21)$

Reference
1.05 (0.95, 1.16)

Reference
1.06 (0.92, 1.21)

Reference
1.42 (1.12, 1.80)

Reference Reference
$1.11(0.94,1.31) \quad 1.14(0.97,1.35)$
$0.91(0.77,1.08) \quad 0.97(0.80,1.18)$
$1.13(0.92,1.40) \quad 1.22(0.97,1.54)$
$1.38(1.11,1.71) \quad 1.50(1.17,1.92)$
$1.05(1.00,1.10)$
1.08 (1.02, 1.15)

Reference Reference
1.05 (0.91, 1.23)
1.13 (0.96, 1.34)
1.59 (1.25, 2.02)
$1.04(0.66,1.66)$ NA^{e}
1.06 (1.02, 1.10)

Supplemental Material, Table S3. cont.

Variable	Model 1 OR ${ }^{\mathrm{a}, \mathrm{b}}(95 \% \mathrm{CI})$	Model 2 OR $^{\mathrm{a}, \mathrm{c}}(95 \% \mathrm{CI})$
Inversion length (days)		
Not an inversion	Reference	Reference
$1-3$	$1.08(0.91,1.29)$	$1.16(0.95,1.41)$
$4-6$	$1.10(0.89,1.36)$	$1.16(0.93,1.45)$
$7-8$	$1.26(1.02,1.56)$	$1.34(1.07,1.67)$
>8	NA^{e}	NA^{e}
Trend $^{\mathrm{g}}$	$1.03(1.00,1.05)$	$1.03(1.01,1.06)$

a The daily 1-hour maximum was used for O_{3} and the 24-hour average was used for dew point temperature, and mean temperature. b Adjusted for dew point temperature and mean temperature. c Adjusted for dew point temperature, mean temperature, and O_{3}.d OR for ordinal variable coded as $0,1,2,3$, 4. e No inversion occurring after January 1, 2006 (when data on O_{3} were available), lasted longer than 8 days. f OR for ordinal variable coded using median category scores: $0,2,5$, 8,15 . g OR for ordinal variable coded using median category scores: $0,2,5,8,18$.

References

Alduchov OA, Eskridge RE. 1996. Improved Magnus' form approximation of saturation vapor pressure. J Appl Meteor 35:601-609.

Lawrence MG. 2005. The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. Bull Am Meteor Soc 86:225-233.

