Supplemental Material

Environmental Cadmium and Lead Exposures and Hearing Loss in US Adults: the National Health and Nutrition Examination Survey, 1999 to 2004

Yoon-Hyeong Choi,1 Howard Hu,1,2 Bhramar Mukherjee,3 Josef Miller,4 Sung Kyun Park1,2

1Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
2Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
3Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
4Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, MI, USA
Table of Contents

Supplemental Material, Table S1. General characteristics of study participants and non-participants

Supplemental Material, Table S2. Participant characteristics by hearing loss status

Supplemental Material, Table S3. Percent change (95% CIs) of hearing thresholds (dB) by contribution of different variables in a multiple linear regression

Supplemental Material, Figure S1. Graphical distribution of blood cadmium and lead with log-transformed hearing thresholds

Supplemental Material, Figure S2. Percent change (%) of hearing thresholds (dB) by blood cadmium and lead quintiles at each frequency from 0.5 kHz to 8 kHz
Supplemental Material, Table S1. General characteristics of study participants and non-participants (N=5263)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Participants (N=3698)</th>
<th>Non-Participants (N=1565)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupation noise exposure (O*NET score)</td>
<td>3.06 (± 0.02)</td>
<td>3.12 (± 0.02)</td>
<td>0.052</td>
</tr>
<tr>
<td>Age (y)</td>
<td>42.06 (± 0.28)</td>
<td>42.09 (± 0.43)</td>
<td>0.956</td>
</tr>
<tr>
<td>Body mass index (wtkg/htm)</td>
<td>28.04 (± 0.15)</td>
<td>28.47 (± 0.31)</td>
<td>0.212</td>
</tr>
<tr>
<td>PTA Hearing Thresholds (dB)</td>
<td>12.78 (± 0.24)</td>
<td>16.95 (± 0.40)</td>
<td><.001</td>
</tr>
<tr>
<td>Hearing Loss (PTA>25dB, %)</td>
<td>11.9</td>
<td>28.7</td>
<td><.001</td>
</tr>
<tr>
<td>Noise notch (%):</td>
<td>17.7</td>
<td>17.0</td>
<td>0.592</td>
</tr>
<tr>
<td>Sex (Male %)</td>
<td>48.6</td>
<td>50.3</td>
<td>0.275</td>
</tr>
<tr>
<td>Race ethnicity (%)</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>72.5</td>
<td>65.7</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>10.5</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>Mexican American</td>
<td>6.6</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>10.4</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td>Education (%)</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>< High School</td>
<td>16.6</td>
<td>21.8</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>25.1</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>> High School</td>
<td>58.3</td>
<td>53.7</td>
<td></td>
</tr>
<tr>
<td>Ototoxic medication (Current use %)</td>
<td>15.9</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td>Cumulative cigarette pack-years (%)</td>
<td></td>
<td></td>
<td>0.273</td>
</tr>
<tr>
<td>Never</td>
<td>53.7</td>
<td>54.3</td>
<td></td>
</tr>
<tr>
<td><20</td>
<td>33.7</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>≥20</td>
<td>12.5</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>23.2</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>4.1</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Firearm noise exposure (Exposed %)</td>
<td>7.5</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>Recreation noise exposure (Exposed %)</td>
<td>26.0</td>
<td>28.5</td>
<td></td>
</tr>
</tbody>
</table>

Continuous variables: survey t-test, age-adjusted
Categorical variables: 2*2 table or 2*C table : survey X_square (Rao-Scott Chi-Square Test)

Subjects (N=5263) are eligible for the audiometric data
Participants (N=3698) are the individuals having all interest variables in this study: hearing thresholds, hearing loss, age, BMI, sex, race ethnicity, ototoxic medication, cumulative cigarette packyears, hypertension, diabetes mellitus, occupational noise score, and firearm and recreation noise exposure
Occupation noise (1 < O*NET noise scale < 5)
PTA at speech frequencies (Pure tone means at 0.5, 1, 2, 4 KHz)
Hearing loss was defined as PTA at speech frequencies > 25 dB
Noise Notch (Hearing threshold at 3, 4, and/or 6 kHz is at least 10 dB greater than at 1 or 2 kHz and at least 10 dB greater than at 6 or 8 kHz.)

Non-Participants (N=1137, 1492, 1563, 1559, 1119, 1343, 1563, 1560, 1557, and 1565 for the others) are the individuals having the variable to be compared
Supplemental Material, Table S2. Participant characteristics by hearing loss status (N=3698a).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All participants (N=3698)</th>
<th>Not Hearing Loss (N=3257)</th>
<th>Hearing Loss (N=441)</th>
<th>P-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Lead (ug/dL)</td>
<td>1.94 (±0.04)</td>
<td>1.91 (±0.04)</td>
<td>2.17 (±0.09)</td>
<td>0.006</td>
</tr>
<tr>
<td>Blood Cadmium (ug/L)</td>
<td>0.56 (±0.01)</td>
<td>0.55 (±0.01)</td>
<td>0.67 (±0.04)</td>
<td>0.003</td>
</tr>
<tr>
<td>Age (y)</td>
<td>42.06 (±0.28)</td>
<td>40.45 (±0.29)</td>
<td>54.81 (±0.66)</td>
<td><.001</td>
</tr>
<tr>
<td>Body mass index (wtkg/htm)</td>
<td>28.04 (±0.15)</td>
<td>28.03 (±0.15)</td>
<td>28.06 (±0.36)</td>
<td>0.941</td>
</tr>
<tr>
<td>Pure tone average hearing thresholds (dB)c</td>
<td>12.78 (±0.24)</td>
<td>10.98 (±0.16)</td>
<td>27.03 (±0.68)</td>
<td><.001</td>
</tr>
<tr>
<td>Occupation noise exposure (O*NET score)d</td>
<td>3.06 (±0.02)</td>
<td>3.04 (±0.02)</td>
<td>3.25 (±0.04)</td>
<td><.001</td>
</tr>
<tr>
<td>Sex (Male %)</td>
<td>48.6</td>
<td>46.4</td>
<td>66.3</td>
<td><.001</td>
</tr>
<tr>
<td>Race ethnicity (%)</td>
<td></td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>72.5</td>
<td>71.5</td>
<td>80.6</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>10.5</td>
<td>11.2</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Mexican American</td>
<td>6.6</td>
<td>7.1</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>10.4</td>
<td>10.2</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>Education (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>< High School</td>
<td>16.6</td>
<td>15.1</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>25.1</td>
<td>24.7</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>> High School</td>
<td>58.3</td>
<td>60.2</td>
<td>43.4</td>
<td></td>
</tr>
<tr>
<td>Ototoxic medication (Current use %)</td>
<td>15.9</td>
<td>14.8</td>
<td>24.3</td>
<td>0.002</td>
</tr>
<tr>
<td>Cumulative cigarette pack-years (%)</td>
<td></td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Never</td>
<td>53.7</td>
<td>55.4</td>
<td>40.8</td>
<td></td>
</tr>
<tr>
<td><20</td>
<td>33.7</td>
<td>34.6</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td>≥20</td>
<td>12.5</td>
<td>10.1</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>23.2</td>
<td>20.6</td>
<td>43.7</td>
<td><.001</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>4.1</td>
<td>3.2</td>
<td>11.4</td>
<td><.001</td>
</tr>
<tr>
<td>Firearm noise exposure (Exposed %)</td>
<td>7.5</td>
<td>6.8</td>
<td>13.3</td>
<td>0.001</td>
</tr>
<tr>
<td>Recreation noise exposure (Exposed %)</td>
<td>26.0</td>
<td>25.6</td>
<td>29.3</td>
<td>0.203</td>
</tr>
</tbody>
</table>

aHearing loss was defined as pure tone average at speech frequencies > 25 dB.
bSurvey t-test (age-adjusted) for continuous variables and survey (Rao-Scott) Chi-square test for categorical variables were used.
cPure tone average at speech frequencies at 0.5, 1, 2, and 4 kHz.
dOccupation noise (1 < O*NET noise scale < 5).
Supplemental Material, Table S3. Percent change (95% CIs) of hearing thresholds (dB) by contribution of different variables in a multiple linear regression

<table>
<thead>
<tr>
<th>Variables</th>
<th>No.</th>
<th>Regression model<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium Quintile (µg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quintile 1 (0.10-0.20)</td>
<td>1013</td>
<td>0 (Reference)</td>
</tr>
<tr>
<td>Quintile 2 (0.30-0.30)</td>
<td>553</td>
<td>-1.22 (-8.86, 7.07)</td>
</tr>
<tr>
<td>Quintile 3 (0.40-0.40)</td>
<td>581</td>
<td>1.68 (-5.60, 9.53)</td>
</tr>
<tr>
<td>Quintile 4 (0.50-0.70)</td>
<td>785</td>
<td>6.69 (-1.48, 15.53)</td>
</tr>
<tr>
<td>Quintile 5 (0.80-8.50)</td>
<td>690</td>
<td>13.78 (4.55, 23.82)</td>
</tr>
<tr>
<td>Lead Quintile (µg/dL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quintile 1 (0.20-0.80)</td>
<td>629</td>
<td>0 (Reference)</td>
</tr>
<tr>
<td>Quintile 2 (0.90-1.30)</td>
<td>842</td>
<td>-0.5 (-9.94, 9.93)</td>
</tr>
<tr>
<td>Quintile 3 (1.40-1.80)</td>
<td>679</td>
<td>6.51 (-3.76, 17.89)</td>
</tr>
<tr>
<td>Quintile 4 (1.90-2.70)</td>
<td>734</td>
<td>10.22 (-0.40, 21.97)</td>
</tr>
<tr>
<td>Quintile 5 (2.80-54.00)</td>
<td>738</td>
<td>18.63 (7.35, 31.09)</td>
</tr>
<tr>
<td>O*NET Noise at longest job (unit score change)</td>
<td></td>
<td>7.15 (1.48, 13.13)</td>
</tr>
<tr>
<td>Age (unit year change)</td>
<td>6</td>
<td>1.38 (0.05, 2.73)</td>
</tr>
<tr>
<td>Age<sup>2</sup> (unit year change)</td>
<td>6</td>
<td>0.01 (0.00, 0.03)</td>
</tr>
<tr>
<td>Body mass index (10 wtkg/htm change)</td>
<td></td>
<td>1.23 (0.85, 1.61)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1729</td>
<td>0 (Reference)</td>
</tr>
<tr>
<td>Female</td>
<td>1969</td>
<td>-18.35 (-22.54, -13.94)</td>
</tr>
<tr>
<td>Race ethnics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>1827</td>
<td>0 (Reference)</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>750</td>
<td>-11.88 (-17.96, -5.36)</td>
</tr>
<tr>
<td>Mexican American</td>
<td>805</td>
<td>-6.20 (-14.25, 2.60)</td>
</tr>
<tr>
<td>Other</td>
<td>316</td>
<td>0.78 (-8.49, 11.00)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< High School</td>
<td>974</td>
<td>0 (Reference)</td>
</tr>
<tr>
<td>High School</td>
<td>849</td>
<td>-9.78 (-16.99, -1.95)</td>
</tr>
<tr>
<td>> High School</td>
<td>1875</td>
<td>-19.81 (-24.20, -15.16)</td>
</tr>
<tr>
<td>Ototoxic medication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3132</td>
<td>0 (Reference)</td>
</tr>
<tr>
<td>Yes</td>
<td>566</td>
<td>2.53 (-4.88, 10.52)</td>
</tr>
<tr>
<td>Cumulative cigarette packyears</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>2105</td>
<td>0 (Reference)</td>
</tr>
<tr>
<td><20</td>
<td>1183</td>
<td>-1.80 (-8.96, 5.92)</td>
</tr>
<tr>
<td>≥20</td>
<td>410</td>
<td>4.46 (-4.45, 14.30)</td>
</tr>
<tr>
<td>Current dx of hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2713</td>
<td>0 (Reference)</td>
</tr>
<tr>
<td>Yes</td>
<td>985</td>
<td>-1.01 (-5.92, 4.16)</td>
</tr>
<tr>
<td>Current dx of diabetes mellitus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3485</td>
<td>0 (Reference)</td>
</tr>
<tr>
<td>Yes</td>
<td>213</td>
<td>19.87 (8.93, 31.91)</td>
</tr>
<tr>
<td>Noise Exposure at firearm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3468</td>
<td>0 (Reference)</td>
</tr>
<tr>
<td>Yes</td>
<td>230</td>
<td>10.19 (-0.52, 22.05)</td>
</tr>
<tr>
<td>Noise Exposure at recreation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2844</td>
<td>0 (Reference)</td>
</tr>
<tr>
<td>Yes</td>
<td>854</td>
<td>3.43 (-4.01, 11.46)</td>
</tr>
</tbody>
</table>

^aRegression model was adjusted for age, age², bmi, sex, race/ethnicity, ototoxic medication, cumulative cigarette packyears, current dx of hypertension, current dx of diabetes, and ocupation, recreation, and firearm noise. Cadmium models were further adjusted for lead; lead models were further adjusted for cadmium.
Supplemental Material, Figure S1. Graphical distribution of blood cadmium and lead with log-transformed hearing thresholds at speech frequencies (the average of thresholds at 0.5, 1, 2, and 4 kHz)

(a) Association with Cd(µg/L) levels

(b) Association with log-Cd(µg/L) levels

(c) Association with Pb(µg/dL) levels

(d) Association with log-Pb(µg/dL) levels

Smoothing models were adjusted for age, age², body mass index, sex, race/ethnicity, education, ototoxic medication, cumulative cigarette pack-years, hypertension, diabetes, occupation noise, recreation noise, firearm noise (d.f.=4, 3 for Cd, Pb; 5, 4 for log-Cd, log-Pb). Cadmium models were further adjusted for lead; lead models were further adjusted for cadmium.
Supplemental Material, Figure S2. Percent change (%) of hearing thresholds (dB) by blood cadmium and lead quintiles at each frequency from 0.5 kHz to 8 kHz

(a) 0.5 kHz

(b) 1 kHz

(c) 2 kHz

(d) 3 kHz

Blood Cadmium Quintiles

Blood Lead Quintiles

P-Trend=0.870

P-Trend=0.238

P-Trend=0.073

P-Trend=0.043

P-Trend=0.136

P-Trend=0.641

P-Trend=0.198

P-Trend=0.259
Regression models were adjusted for age, age^2, body mass index, sex, race/ethnicity, education, ototoxic medication, cumulative cigarette pack-years, hypertension, diabetes, occupation noise, recreation noise, firearm noise. Cadmium models were further adjusted for lead; lead models were further adjusted for cadmium.