
ABSTRACT   

Duke, Kelly Scott.  Productivity and Ergonomic Investigation of Bent-Handle Pliers.  
(Under the direction of Dr. Gary A. Mirka.)   

Musculoskeletal disorders (MSDs) cost industry billions of dollars in workers’ 

compensation costs each year.  Ergonomics is concerned with understanding the causes 

of MSDs and developing solutions to reduce these costs. Awkward postures have been 

implicated as a risk factor for the development of some MSDs, and a design principle to 

“bend the tool, not the wrist” has been advocated in many ergonomic textbooks.  

However, despite numerous laboratory investigations showing positive outcomes of 

application of this design principle to various hand tools, there is indication of lack of 

acceptance in industry for these bent-handle tools.  In an attempt to understand the lack of 

industry acceptance, this investigation sought to determine if this design principle 

imposed constraints on users and/or negatively affected productivity, which may explain 

why they are not being widely used in industry. 

The experiment used two different tasks (a computer-jumper installation task, and 

a spring assembly task) to compare the use of bent-handle pliers versus straight-handle 

pliers.  Additionally, the effect of work surface orientation (vertical versus slanted at 45º) 

was evaluated, as was the effect of constraining the user’s coupling of the tool. The 

dependent variables in the experiment were productivity and postural outcomes (arm 

elevation, wrist deviation in the radial/ulnar plane, and wrist deviation in 

flexion/extension). 

An important point that must be made is that overall the results clearly suggested 

that the expected outcomes (both productivity and postural) are very task specific. This in 



itself says a lot about the general recommendation to “bend the tool”, that being that the 

recommendation cannot be made without clearly understanding the other task 

characteristics involved, and that it should therefore not be proposed as a general design 

recommendation.  

For the computer-jumper task the bent-handle pliers resulted in 5.3% faster task 

performance compared to the straight-handle pliers, while for the spring assembly task 

the performance was 4.9% faster with the straight-handle pliers.  The explanation 

provided is that the bent-handle pliers seem to be preferable for tasks that require 

minimal or no tool rotation out of the sagittal plane, losing their advantage when multi-

plane rotation is required. When subjects were constrained to holding the pliers with a 

power grip or oblique grip (modified power grip) arm elevation was reduced 50% and 

ulnar deviation was reduced by 12% when using the bent-handle pliers on the computer-

jumper task, while on the spring assembly task ulnar deviation was reduced 22%.  These 

results suggest that there are postural advantages to the bent-handle pliers (for the tasks 

used in this experiment) when the pliers-coupling is restricted to these grips.  In the test 

of constrained versus unconstrained grip the results showed that for the computer-jumper 

task the postural advantage of the bent-handle pliers over the straight-handle pliers was 

lost when the method of gripping was left to the subjects.  In addition to showing that 

postural benefits may only be seen when the pliers are held in a specific way, these 

results (along with others discussed in the paper) illustrate that expectations associated 

with this design concept are very task-specific.  Finally, removal of the coupling 

constraint also showed that subjects were more likely to grip straight-handle pliers in 

alternative ways compared to the bent-handle pliers, which were more likely to be held 



with a power or oblique grip, even when not constrained. In summary, it appears that the 

specificity of the bent-handle tool design, may make it better in specific circumstances, 

but if the use requires increasing degrees of manipulation, it is less likely to be superior to 

a simpler design.  



 

by  

Kelly Scott Duke    

A thesis submitted to the Graduate Faculty of North Carolina State 
University in partial fulfillment of the requirements for the Degree 

of Master’s of Science.  

INDUSTRIAL ENGINEERING 
Raleigh, North Carolina  

June 2002    

Approved by:         

Chairperson of Advisory Committee 

  



ii 

BIOGRAPHY  

Kelly Scott Duke was born in Calgary Canada in 1970 to Paul and Carol Duke.  

He has three older brothers, Steven, Marty, and Robert.  He lived, and loved living, in 

Calgary throughout his childhood, adolescence, and into adulthood - leaving in 1993 to 

move to Vancouver, British Columbia to attend Simon Fraser University.  At SFU he 

attained a Bachelor’s of Science degree in Kinesiology in 1996. 

Travel and adventure have played an important role in Kelly’s life.  Before 

attending SFU, Kelly backpacked around the South Pacific, going to the Cook Islands, 

Fiji, New Zealand, and Australia.  After SFU, Kelly backpacked around Central America, 

going to Costa Rica, Panama, Nicaragua, Honduras, Guatemala, and Mexico.   

Kelly moved to “the South” in 2000 to attain a Master’s of Science in Industrial 

Engineering.  At North Carolina State University he worked as a Research Assistant to 

Dr. Mirka, while taking classes in Industrial Engineering (Ergonomics) and Psychology 

(Human Factors).    



iii 

TABLE OF CONTENTS  

LIST OF TABLES……………………………………………………………………. vi

 
LIST OF FIGURES…………………………………………………………………... vii

 
1.0 INTRODUCTION………………………………………………………………... 1

 

1.1 Cost to Business…………………………………………………………...… 1

 

1.2 Causes of Musculoskeletal Disorders……………………………………….. 1

 

1.2.1 Posture as a Physical Risk Factor…………………………………….

 

3

 

1.3 Implications for Hand-Tool Design…………………………………………. 5

 

1.3.1 “Bend the Tool”……………………………………………………... 5

 

1.3.2 Previous Research on Bent-Handle Tools……………………………

 

5

 

1.3.2.1 Hammers…………………………………………………... 5

 

1.3.2.2 Files………………………………………………………... 8

 

1.3.2.3 Knives………………………………………………………

 

9

 

1.3.2.4 Pliers………………………………………………………..

 

10

 

2.0 BENT-HANDLE TOOLS IN INDUSTRY………………………………………. 14

 

2.1 Proposed Rationale for Lack of Acceptance………………………………… 14

 

2.2 Hypotheses…………………………………………………………………... 15

 

3.0 MATERIALS AND METHODS………………………………………………….

 

16

 

3.1 Experimental Tasks………………………………………………………….. 16

 

3.1.1 Jumper Task…………………………………………………………. 16

 

3.1.2 Spring Task………………………………………………………….. 17

 

3.2 Apparatus……………………………………………………………………. 19

 

3.3 Independent Variables………………………………………………………..

 

20

 

3.3.1 Pliers………………………………………………………………….

 

20

 

3.3.2 Constraint……………………………………………………………. 21

 

3.3.3 Work Surface Orientation…………………………………………… 21

 

3.4 Dependent Variables………………………………………………………… 22

 

3.4.1 Productivity………………………………………………………….. 22

 

3.4.2 Posture……………………………………………………………….. 22

 

3.4.2.1 Wrist……………………………………………………….. 22

 



iv 

3.4.2.2 Shoulder…………………………………………………… 22

 
3.5 Working Height………………………………………………………………

 
23

 
3.6 Subjects……………………………………………………………………… 24

 
3.7 Protocol……………………………………………………………………… 25

 
3.7.1 Anthropometry………………………………………………………. 25

 
3.7.2 Instrumentation……………………………………………………….

 
25

 

3.7.3 Neutral File Collection………………………………………………. 25

 

3.7.4 Trial Randomization………………………………………………….

 

27

 

3.7.5 Subject Instructions………………………………………………….. 27

 

3.7.6 Subject Practice……………………………………………………… 27

 

3.7.7 Trial Data Collection………………………………………………… 28

 

3.8 Data Analysis………………………………………………………………... 29

 

3.8.1 Data Processing……………………………………………………… 29

 

3.8.1.1 Productivity………………………………………………... 29

 

3.8.1.2 Wrist Posture………………………………………………. 29

 

3.8.1.3 Shoulder Posture…………………………………………... 30

 

3.8.2 Statistical Analysis…………………………………………………... 30

 

4.0 RESULTS………………………………………………………………………… 32

 

4.1 Tests of Assumptions………………………………………………………... 32

 

4.1.1 Test for Assumption of Normal Distribution of Residuals………….. 32

 

4.1.1.1 Jumper Task……………………………………………….. 32

 

4.1.1.2 Spring Task………………………………………………... 37

 

4.1.2 Test for Assumption of Equal Variance……………………………... 41

 

4.1.2.1 Jumper Task……………………………………………….. 41

 

4.1.2.2 Spring Task………………………………………………... 45

 

4.2 ANOVA Results……………………………………………………………...

 

50

 

4.2.1 Jumper Task…………………………………………………………. 50

 

4.2.2 Spring Task………………………………………………………….. 59

 

5.0 DISCUSSION…………………………………………………………………….. 65

 

5.1 Results Directly Addressing Hypotheses……………………………………. 65

 

5.2 Other Significant Results……………………………………………………. 68

 



v 

5.2.1 Flexion/Extension…………………………………………………….

 
68

 
5.2.2 Productivity………………………………………………………….. 68

 
5.2.3 Arm Elevation (Shoulder Posture)…………………………………... 69

 
5.2.4 Radial/Ulnar Deviation……………………………………………… 70

 
5.3 Further Discussion Regarding Tool Coupling………………………………. 70

 
5.4 Relating This Study to Previous Works……………………………………... 74

 

5.5 Future Research………………………………………………………………

 

76

 

5.6 Limitations…………………………………………………………………... 77

 

6.0 CONCLUSION…………………………………………………………………… 79

 

REFERENCES………………………………………………………………………...

 

80

 

7.0 APPENDICES……………………………………………………………………. 83

 

7.1 Work Surface Height Determination Data…………………………………... 83

 

7.2 Sample Data Collection………………………………………………………

 

85

 

7.3 Informed Consent Form……………………………………………………... 86

  



vi 

LIST OF TABLES  

Table 3.1: Work Surface Heights for both Tasks by Orientation…………………….. 24

 
Table 3.2: Anthropometric Data for Subjects………………………………………… 24

 
Table 4.1: Productivity Results (Jumper)…………………………………………….. 50

 

Table 4.2: Arm Elevation Results (Jumper)…………………………………………...

 

50

 

Table 4.3: Wrist Flexion/Extension Results (Jumper)………………………………... 51

 

Table 4.4: Wrist Radial/Ulnar Deviation Results (Jumper)………………………… 51

 

Table 4.5: Productivity Results (Spring)………………………………………………

 

59

 

Table 4.6: Arm Elevation Results (Spring)……………………………………………

 

59

 

Table 4.7: Wrist Flexion/Extension Results (Spring)………………………………… 60

 

Table 4.8: Wrist Radial/Ulnar Deviation Results (Spring)…………………………… 60

 

Table 5.1: Breakdown of alternative couplings during unconstrained conditions (data 
from both tasks combined)………………………………………………...

 

72

 

Table 5.2: Number of trials for which a different coupling was used during the 
unconstrained condition on the two orientations (data from both tasks 
combined)………………………………………………………………….

 

72

 

Table 7.1: Pilot Subject Anthropometry Data…………………………………………

 

83

 

Table 7.2: Pilot Subject Preferred Work Heights and Averages for Jumper Task…… 83

 

Table 7.3: Pilot Subject Preferred Work Heights and Averages for Spring Task……..

 

83

 

Table 7.4: Differences Between Task/Orientations Average Height (Havg) and Three 
Body Landmarks for each pilot subject…………………………………... 83

 

Table 7.5: Differences between subjects (body landmark – Havg) and rank by least 
difference between subjects………………………………………………. 84

 

Table 7.6: Example of major steps for a subject data-collection period……………… 85

  



vii 

LIST OF FIGURES  

Figure 1.1: Sagittal view of straight-handle pliers and bent-handle pliers…………… 10

 
Figure 3.1: Initial starting arrangement for Jumpers Task……………………………. 17

 
Figure 3.2: Spring Task with first four springs connected as required……………….. 18

 
Figure 3.3: Wrist goniometers………………………………………………………... 19

 

Figure 3.4: Subject instrumented with wrist goniometers and magnetic sensors…….. 19

 

Figure 3.5: Straight-handle pliers and bent-handle pliers…………………………….. 20

 

Figure 3.6: Vertical and 45º slanted work surface orientations used in experiment…..

 

21

 

Figure 3.7: Neutral-wrist data file collection posture………………………………… 26

 

Figure 4.1: Plot of Residuals for Variable = Productivity (Jumper)………………….. 33

 

Figure 4.2: Normal Probability Plot for Variable = Productivity (Jumper)…………...

 

33

 

Figure 4.3: Plot of Residuals for Variable = Arm Elevation (Jumper)……………….. 34

 

Figure 4.4: Normal Probability Plot for Variable = Arm Elevation (Jumper)………... 34

 

Figure 4.5: Plot of Residuals for Variable = Wrist Flexion/Extension (Jumper)…….. 35

 

Figure 4.6: Normal Probability Plot for Variable = Wrist Flexion/Extension 
(Jumper)…………………………………………………………………... 35

 

Figure 4.7: Plot of Residuals for Variable = Wrist Radial/Ulnar Deviation (Jumper).. 36

 

Figure 4.8: Normal Probability Plot for Variable = Wrist Radial/Ulnar Deviation 
(Jumper)…………………………………………………………………... 36

 

Figure 4.9: Plot of Residuals for Variable = Productivity (Spring)…………………... 37

 

Figure 4.10: Normal Probability Plot for Variable = Productivity (Spring)…………..

 

37

 

Figure 4.11: Plot of Residuals for Variable = Arm Elevation (Spring)………………. 38

 

Figure 4.12: Normal Probability Plot for Variable = Arm Elevation (Spring)……….. 38

 

Figure 4.13: Plot of Residuals for Variable = Wrist Flexion/Extension (Spring)……..

 

39

 

Figure 4.14: Normal Probability Plot for Variable = Wrist Flexion/Extension 
(Spring)…………………………………………………………………. 39

 

Figure 4.15: Plot of Residuals for Variable = Wrist Radial/Ulnar Deviation (Spring). 40

 

Figure 4.16: Normal Probability Plot for Variable = Wrist Radial/Ulnar Deviation 
(Spring)…………………………………………………………………. 40

 

Figure 4.17: Time Order Plot for Productivity Residuals (Jumper)………………….. 41

 

Figure 4.18: Time Order Plot for Arm Elevation (Jumper)…………………………... 42

 

Figure 4.19: Time Order Plot for Flexion/Extension Residuals (Jumper)……………. 43

 



viii 

Figure 4.20: Time Order Plot for Radial/Ulnar Deviation Residuals (Jumper)………. 44

 
Figure 4.21: Time Order Plot for Productivity Residuals (Spring)……………………

 
45

 
Figure 4.22: Time Order Plot for Arm Elevation (Spring)…………………………… 46

 
Figure 4.23: Time Order Plot for Flexion/Extension Residuals (Spring)…………….. 47

 
Figure 4.24: Time Order Plot for Radial/Ulnar Deviation Residuals (Spring)……….. 48

 
Figure 4.25: Interaction Effect of Pliers x Orientation on Arm Elevation (Jumper)…. 52

 

Figure 4.26: Interaction Effect of Pliers x Constraint on Arm Elevation (Jumper)…... 52

 

Figure 4.27: Interaction Effect of Orientation x Constraint on Arm Elevation 
(Jumper)………………………………………………………………… 53

 

Figure 4.28: Interaction Effect of Pliers x Orientation on Wrist Extension (Jumper)... 53

 

Figure 4.29: Interaction Effect of Pliers x Constraint on Wrist Extension (Jumper)….

 

54

 

Figure 4.30: Interaction Effect of Orientation x Constraint on Wrist Extension 
(Jumper)………………………………………………………………… 54

 

Figure 4.31: Interaction Effect of Pliers x Orientation on Ulnar Deviation (Jumper)... 55

 

Figure 4.32: Interaction Effect of Pliers x Constraint on Ulnar Deviation (Jumper)….

 

55

 

Figure 4.33: Interaction Effect of Orientation x Constraint on Ulnar Deviation 
(Jumper)………………………………………………………………… 56

 

Figure 4.34: Main Effect of Pliers on Productivity (Jumper)………………………… 57

 

Figure 4.35: Main Effect of Orientation on Productivity (Jumper)…………………... 57

 

Figure 4.36: Main Effect of Constraint on Productivity (Jumper)…………………….

 

58

 

Figure 4.36: Main Effect of Constraint on Wrist Extension (Jumper)………………...

 

58

 

Figure 4.38: Interaction Effect of Pliers x Orientation on Productivity (Spring)…….. 61

 

Figure 4.39: Interaction Effect of Orientation x Constraint on Ulnar Deviation 
(Spring)…………………………………………………………………. 61

 

Figure 4.40: Main Effect of Pliers on Productivity (Spring)…………………………. 62

 

Figure 4.41: Main Effect of Orientation on Productivity (Spring)…………………… 62

 

Figure 4.42: Main Effect of Constraint on Productivity (Spring)……………………..

 

63

 

Figure 4.43: Main Effect of Orientation on Arm Elevation (Spring)………………… 63

 

Figure 4.44: Main Effect of Orientation on Wrist Extension (Spring)……………….. 64

 

Figure 4.45: Main Effect of Pliers on Radial/Ulnar Deviation (Spring)…………….. 64

  



1 

1.0 INTRODUCTION 

1.1 Cost to Business 

Any business interested in controlling costs needs to consider those related to 

employee injury and illness.  Statistical data from the United States Bureau of Labor 

Statistics (BLS), show that for the year 2000 there were 1,664,018 injuries that lead to 

lost work time in this country (BLS, 2000).  Of these, 577,814 (34.7%) were categorized 

as musculoskeletal injuries (BLS, 2000).    

According to the National Institute for Occupational Safety and Health (NIOSH), 

musculoskeletal disorders (MSDs) refer to conditions that involve the nerves, tendons, 

muscles, and supporting structures of the body (NIOSH, 1997).  A 1999 report by the 

United States Department of Labor’s, Occupational Safety and Health Administration 

(OSHA) stated that in 1995 MSDs cost employers an estimated $15 to $20 billion in 

workers' compensation costs and $45 to $60 billion more in indirect costs (OSHA, 1999). 

Furthermore, while the median number of days missed for all lost-time injuries was six in 

2000, the number missed due to MSDs was seven (BLS, 2000).  These statistics clearly 

indicate that the impact of MSDs on industry is large, and that there is a great need for 

research into the underlying causes of these disorders, and the development of effective 

interventions to reduce the numbers. 

1.2 Causes of Musculoskeletal Disorders 

The scope of this problem has lead to intense interest in understanding the causes 

of MSDs and their associated solutions.  The development of a work-related MSD 

represents a complex interaction between three elements: an individual’s psychological 

characteristics, the individual’s physiological characteristics, and the mechanical/physical 
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factors of the job or task (National Research Council and Institute of Medicine, 2001).  

The mechanical/physical factors represent all of the job or task characteristics that affect 

the physical loads experienced by the various body tissues.  These may be obvious 

external loads, such as the weight of an object lifted or carried, or they may be less 

obvious internal stressors, such as a repetitive frictional force between a moving tendon 

and an underlying bone.  The physiological characteristics represent an individual’s 

unique biology, and how that relates to the imposed physical stressor.  For example, 

factors such as age, gender, medical history, congenital conditions, tissue-healing rates, 

etc. can all influence an individual’s physical state and how they respond to the physical 

demands of the job.  Lastly, the psychological element represents an individual’s 

psychological response to extrinsic stressors; this element is determined by such 

psychological characteristics as attitudes, values, and coping mechanisms 

A common classification scheme for physical risk factors categorizes them as 

those due to excessive force, those caused by repetition, and those resulting from 

awkward postures (other risk factors in this classification scheme include vibration, 

temperature extremes, and contact stress) (Pulat, 1997; Bridger, 1995).  Excessive force 

simply implies that the imposed load immediately exceeds tissue tolerance.  For example 

most people would be unable to lift a box weighing 200kg.  The role of repetition as a 

risk factor is explained in a model described by Marras (1999).  In this model injury 

prevention is achieved by keeping tissue loads lower than the particular tissue tolerance 

(when load exceeds tolerance injury occurs).  Repetition in this model is an exposure 

effect, whereby the imposed load may initially be lower than the tissue tolerance, but 

repetitive exposure of the same tissue with insufficient rest leads to lowering of the tissue 
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tolerance to the point where the imposed load is greater.  Lastly, awkward posture as a 

risk factor can be explained in a couple of different ways as outlined in the next section. 

1.2.1 Posture as a Physical Risk Factor 

All of these risk factors have been subject to empirical research (in isolation and 

in numerous combinations) concerning their contribution to work-related MSDs.  The 

1997 NIOSH publication extensively reviewed the epidemiological evidence for the 

causal relation between different physical risk factors and MSDs of the back, neck and 

upper extremities (NIOSH, 1997).  This review concluded that there is epidemiological 

evidence for an association between posture and some MSDs, including those of the low 

back, the neck and shoulder, and tendonitis of the hand/wrist; in many cases, the strength 

of association is higher when awkward posture is combined with other risks factors.  

Additionally, though there is insufficient evidence of posture alone being causally related 

to carpal tunnel syndrome, if combined with other risk factors (particularly repetition) 

there is evidence for this association as well.  (NIOSH, 1997) 

There are a number of proposed mechanisms by which non-neutral postures may 

cause MSDs.  For one, most muscles are at an optimal force-production length when the 

joint they span is in a neutral range (usually close to the mid-range of motion) (Konz, 

Johnson, 2000).  Deviations away from the neutral position can negatively affect the 

musculoskeletal geometry, placing the muscles at non-optimal lengths, where there is a 

higher metabolic cost for a given force requirement (Chaffin, Andersson, and Martin, 

1999; Wells, 1999).  As a result, fatigue may occur more quickly, and if the duration of 

work is long or recovery time short, an overexertion injury may result.   
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With more massive body segments, non-neutral work postures can have the 

simple effect of increasing the load due to gravity (Chaffin et al, 1999).  At the higher 

work load the muscle must work harder, leading to quicker fatigue and potential for 

injury, as described in the previous paragraph.  Additionally, at a higher work load an 

increase in intramuscular pressure can impair blood flow, leading to ischemic conditions 

and injury of nearby tissue (Viikari-Juntura, 1999).  The shoulder is one region that is 

particularly susceptible to this effect, with arm elevation as little as 30º (with no hand 

load) demonstrating higher intramuscular pressures and reduced blood flow (Herberts, 

Kadefors, Hogfors, Sigholm, 1984).   

Another potential source of injury is soft tissue impingement in non-neutral 

postures.  Under these circumstances soft tissues may be compressed against bone or 

other hard tissues (Chaffin et al, 1999; Marklin, 1999).  In the case of blood vessels this 

impingement can jeopardize blood flow, while with tendons it can result in increased 

internal force on the tendon (Chaffin et al, 1999).  The latter case is the foundation for a 

mechanism proposed by Armstrong and Chaffin (1979) for explaining the contribution of 

posture to carpal tunnel syndrome, whereby the flexor retinaculum and carpal bones act 

as pulleys for the tendons of the forearm flexors in flexion and extension.  As pulleys 

these structures exert a reaction force on the tendons as they curve around the structure, 

and the magnitude of the force is directly proportional to the angle of deviation of the 

joint. 

Another proposed relationship between posture and injury, specific to carpal 

tunnel syndrome, is the idea that deviations from neutral increase carpal tunnel pressure.  

Previous research has demonstrated that, in both CTS patients and healthy subjects, there 
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is an increased pressure within the carpal tunnel with flexion/extension and radial/ulnar 

deviations of the wrist (Noah, Weiss, Gordon, Bloom, Yuen So, Rempel, 1995; Keir, 

Bach, Engstrom, Rempel, 1996; Rempel, Bach, Gordon, Yuen So, 1998).  Currently there 

is not an adequately supported model explaining the rise in pressure with deviation, 

however, it has been demonstrated that with carpal tunnel pressures as little as 30mm Hg, 

subjects experience neurophysiological changes and symptoms of paresthesia (Lundborg, 

Gelberman, Minteer-Convery, Lee, 1982); suggesting this as a potential mode of injury.   

1.3 Implications for Hand-Tool Design 

1.3.1 “Bend the Tool” 

While it is important to remember that MSDs are a result of complex interaction 

among the elements described above, nevertheless, it is often convenient to provide 

general guidelines for the design of work.  A review of a number of textbooks that 

specifically address hand/wrist posture and the design of hand-tools leads to the 

ubiquitous recommendation to “bend the tool, not the wrist” (Kroemer, Kroemer, 

Kroemer-Elbert, 1994; Chaffin et al, 1999; Bridger, 1995; Pulat 1997).  The rationale 

behind this recommendation is that the conventional in-line design of tool handles can 

require users to adopt awkward postures under certain conditions of use, and that it is 

preferable to alter the tool design to maintain more neutral wrist (and often shoulder) 

posture. 

1.3.2 Previous Research on Bent-Handle Tools 

1.3.2.1 Hammers 

There have been a number of empirical studies that have explored the above tenet.  

Granada and Konz (1981) and Krohn and Konz (1982) performed subjective evaluation 
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studies of bent-handle hammers versus a conventional straight-handle hammer design.  In 

the 1981 study Granada and Konz found that users preferred two versions of a bent-

handle design (one design had a shorter handle) compared to the straight-handle hammer, 

which served as the reference.  In the 1982 study the authors constructed a number of 

hammers with varying degrees of bend in the handle (10º, 15º, 21º, 26º, and 32º).  

Subjects pounded in two nails using each of the five different bent-handle hammers and a 

straight handle hammer.  The hammers were ranked for preference and the top three were 

used to hammer one additional nail, after which the final three were re-ranked.  In this 

study it was found that the hammer with the 10º bend was preferred, followed by the 

straight-handle hammer, and then the 15º bend.   

In a 1984 study by Konz and Street the three highest ranked hammers (from the 

1982 study) were evaluated using performance measures and subjective evaluation again. 

In the study the subjects were required to use each of the three different hammers to set a 

nail (using a “tap”), followed by a single “pound” strike.  Each hammer was used on two 

practice nails and then two trials of five nails; these final ten nails provided the data for 

analysis of performance measure.  It was found that for the dependent variables, depth of 

penetration and nail deviation from vertical, there were no significant differences 

between the three hammers.  On the subjective evaluation the hammers were ranked in 

the same order as the earlier study.  In the discussion section these authors concluded 

that, at least in a short experimental run, subjects prefer a bent handle design and that for 

the variables they measured, there are no performance decrements.  They do state 

additionally that hammer handle design is more than just the angle of bend, and that other 
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factors such as work orientation, hand position, grip circumference, and balance point 

need to be considered. 

Similarly, Schoenmarklin and Marras (1989a, 1989b) evaluated the effect of 

bending the handle of a hammer on a number of outcomes, including dynamic wrist 

posture and range-of-motion (ROM), muscle fatigue, performance measures (driving 

force, accuracy, and number of misses), and subjective evaluation.  Their study had 

hammer handle design as an independent variable, with three types of hammer (straight, 

20º bend, and 40º bend), as well as work orientation with two levels (vertical and 

horizontal surfaces).  Their results indicated that although there were significant 

differences between the three hammers in mean ulnar deviation at time of impact (with 

the straight-handle having the greatest ulnar deviation, and the 40º bent-handle having the 

least), the total ROM in the radial /ulnar plane was not significantly different between the 

different hammer designs.  There was only one significant postural effect of work 

orientation, that being on wrist flexion.   

For the performance measures there were significant results for all variables due 

to work orientation, but there were no significant effects of hammer design.  In the 

companion article (1989b) the results indicated that hammer handle design had no 

significant effect on either muscle fatigue or subjective rating of body discomfort (work 

orientation did provide significant results for both of these measures).  These authors 

conclude that, “applying the established ergonomic principle of bending the tool and not 

the wrist to the hammer could produce less biomechanical stress on the wrist” – this due 

to the fact that there was approximately equal deviation in both the radial and ulnar 

directions with the bent-handle designs, while the straight-handle hammer had greater 



8 

ulnar deviation -  “while maintaining the performance of a straight hammer” (p. 410).  

But they also point out that, “changes in tool design should not be considered 

independently of the task” (p.411).   

1.3.2.2 Files 

Application of a bent handle design to files by Hsu and Chen (1999) also showed 

a number of favorable results.  Their study consisted of two tasks using five different 

files: one conventional straight file and four files constructed with varying degrees of 

bend between the filing surface and the handle (50º, 60º, 70º, and 90º).  For the first task 

subjects took 1,000 strokes on a standardized iron cube; the dependent variables in this 

case were radial/ulnar deviation of the right wrist, task efficiency (measured as the mass 

of material filed from the cube, fatigue (measured as the reduction in grip force after task 

performance), and subjective preference.  For the other task subjects were given 20 

minutes to make even an iron plate; the dependent variable was measured as the surface 

area of the plate that extended greater than 16µm from the plate surface (subjective 

preference was again evaluated for this task).  In both tasks all subjects used all five files, 

and a randomized complete block design was used with blocking on subject. 

For the postural outcome significant effects were found by file type.  The straight-

handle file had the highest mean ulnar deviation (23.2º), followed by the 50º bent-handle 

(6.9º), and then the 60º (3.9º) and 70º (4.0º) handle bend designs (the last two were not 

significantly different from each other).  Finally the 90º bent-handle file had a mean 

radial deviation of 9.2º.  For task efficiency the 90º bent-handle file was significantly less 

productive than the other four files, while all others were not significantly different from 

one another.  The measure of fatigue found no significant difference between the four 
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bent-handle designs, while use of the straight-handle file resulted in significantly reduced 

grip strength when compared to all bent-handle designs.  The test of precision did not 

find any significant differences between any of the five designs.  Finally, in both tasks 

there were significant differences in the subjective preference, with the 60º bent-handle 

design being most preferred in both cases, followed by the 50º and 70º designs.  The 

authors summarize their findings to conclude that the 60º bent-handle file demonstrates 

superior results compared to the straight-handle file, but they also identify that the 

modified handle design is inappropriate for working in constrained or limited spaces.  

They suggest that workers should have both a conventional file (for specifically 

constrained work) and a bent-handle file in their repertoire to reduce the risk of work-

related MSDs. 

1.3.2.3 Knives 

In an evaluation of poultry cutting Fogleman, Freivalds, and Goldberg (1993) 

analyzed video data of workers engaged in poultry cutting to create two bent-handle 

knives for evaluation; the two designs incorporated a bend of +30º and -30º (respectively) 

measured from the axis of the handle.  Subjects used these two knife designs, as well as a 

conventional straight-handle knife to perform two different types of cut: 1) a hanging cut 

(vertical work surface), and 2) table cut (horizontal work surface).  Note: when using the 

-30º bend-handle knife subjects used a dagger grip (blade exiting from the ulnar aspect of 

the hand).  

The investigators recorded a number of measures of posture (as well as other 

dependent variables of lesser interest here).  The results (limited to those most related to 

this investigation) revealed that for the hanging cut condition the knife with the +30º 
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angle minimized the flexion/extension ROM, ulnar/radial ROM, maximum wrist flexion, 

and maximum wrist extension.  For the table cut the -30º angle design (with dagger grip) 

minimized flexion/extension ROM, maximum extension, and maximum ulnar deviation.  

They concluded that for the two types of cuts tested, the straight knife was the worst in 

regards to posture, that the -30º bent-handle design (dagger grip) was best for the table 

cut, and that the +30º bent-handle design was best for the hanging cut. 

1.3.2.4 Pliers 

One of the most familiar (at least from the literature), and oft-cited examples of 

the “bend the tool” design principle is the bent-handle pliers (see Figure 1.1) and the 

work of Tichauer (1968, 1973, 1975, 1976, 1977).  In these numerous publications 

Tichauer provides a web of cross-references to his previous works; all of which appear to 

be based on two different experiments. 

Figure 1.1: Sagittal view of straight-handle pliers (left) and bent-handle pliers (right). 
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The Tichauer (1968) manuscript does not provide a detailed description of the 

experimental task, nor are any statistical results reported.  The experimental task is 

inferred from the document to be as follows:  Two groups of subjects performed a 

forearm rotation task under two different conditions.  In one case the subjects gripped a 

handle connected to a “kinematometer” with a T-handle, which kept the wrist straight, 

while in the other condition the subjects used “a straight screwdriver handle, which 

causes the wrist to be deviated towards the ulna” (Tichauer, 1968; p 156). 

Experimental data for only one subject are provided in Tichauer (these are not 

reproduced or discussed here due to lack of utility, but the interested reader is referred to 

Figure 7, p 158 in Tichauer, 1968); showing results for angular displacement, velocity, 

acceleration, and biceps myogram under the two conditions.  The author goes on to report 

the results as follows: 

“In the course of an experiment conducted with more than forty 
volunteers it was found that when the angle of ulnar deviation of the 
wrist exceeded thirty degrees the biomechanical parameters of 
performance efficiency: displacement, velocity, and acceleration of the 
shaft decreased suddenly while myoelectric activity was doubled.  
Thus, at the risk of some oversimplification, it may be stated that the 
subject had to labor twice as hard to produce half the output”. (p 157)    

Further, the results of subjective physical response are provided in a figure that 

shows four out of 40 subject complaints under the “wrist straight” condition compared 

with 25 out of 40 complaints under the “40º ulnar deviation” condition (Tichauer, 1968, p 

159).   

In his 1973 work Tichauer discusses the results of a field study.  In this study two 

groups of trainees in an electronics assembly job take part in a 12-week training program 

for a wire-twisting task.  One group of 40 trainees uses the conventional straight-handle 
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pliers, while another group of 40 uses the bent-handle pliers.  At the end of the 12-week 

period the author reports that of those participants using straight pliers, 25 out of 40 

suffered from injuries classified as either tenosynovitis, epicondylitis, or carpal tunnel 

syndrome, compared with only four (out of 40) employees who used pistol-grip pliers for 

the same task (1973).   

An x-ray image (similar to figure 1.1) that Tichauer used frequently (and 

sometimes the Tichauer results as well) often accompanies the “bend the tool, not the 

wrist” design recommendation in the ergonomics textbooks.  Furthermore, Tichauer’s 

results are frequently referenced within the other studies on hand-tool design.   

Considering the seemingly impressive results reported by Tichauer one would 

expect additional research supporting the bent-handle pliers, along with evidence of use 

of the tool in industry.  This investigator was unable to find any examples from industry 

for which the tool is currently being used, and a review of the ergonomics literature 

indicated that the only other empirical research done on bent-handled pliers was that of 

Dempsey and Leamon (1995).  (Lewis and Narayan (1993) did a review of handle design, 

but it lacked empirical research.)   

The Dempsey and Leamon (1995) investigation sought to further examine the 

theoretical advantages that the bent-handle pliers seem to provide.  They conducted a 

laboratory investigation designed to mimic the original wire-twisting task that Tichauer 

reported on in 1973.  In this experiment 14 subjects used both straight-handle and bent-

handle pliers to rotate a modified screw (milled to allow subjects to grasp the head with 

the jaws of the pliers) mounted on a vertical work surface.  These investigators wished to 

investigate the effect of height as well, and so the task was performed at five different 
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heights (elbow height (EH), EH +/- 5”, and EH +/- 10”).  At each combination of pliers 

by height, subjects performed five repetitions of a one-minute task during which they 

were instructed to rotate a screw as many times as possible.  The dependent variables in 

this study were productivity, measured as revolutions per minute, and subjective 

preference. 

There was a main effect of pliers in this study, with the bent-handle pliers 

resulting in a mean of 2.25 rotations per minute (8.25%) less than the straight-handle 

pliers.  These investigators also found a significant interaction between type of pliers and 

work height; these results showed that although there were performance decrements at all 

heights with the bent-handle pliers, the largest decrement in performance occurred at 

elbow height.   

For the subjective response (subjects were asked which pliers they would choose 

to use if the task performed was their full-time job) nine subjects stated a preference for 

the straight-handle pliers, while five chose the bent-handle pliers.  These authors also 

noted “several subjects reported that the bent pliers were more comfortable but were 

slower in use, and that they would (therefore) select the straight pliers.  Performance was 

never mentioned by the experimenter”.
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2.0 BENT-HANDLE TOOLS IN INDUSTRY 

2.1 Proposed Rationale for Lack of Acceptance 

A visual inspection of the two images in Figure 1.1 intuitively suggests that this 

design would allow work to be performed in more neutral postures.  However, there are 

potential problems with this assumption.  First, the image suggests that the tool is to be 

used with the jaws aligned with the long axis of the forearm; this may not be the case, 

and this assumption cannot be made without a thorough understanding of the particular 

task that the pliers will be used for.  If, for example, the task is going to require the 

worker to manipulate a piece or part in a number of different orientations and/or along 

different axes then the bent-handle design may lose its postural advantage.  Similarly, the 

specificity of the handle design may constrain the user’s coupling with the tool to a 

power grip or an oblique grip.  (With the power grip all four fingers are wrapped around 

the handle and are opposed by the thumb, and often the handle is perpendicular to the 

forearm axis.  An oblique grip is a modified power grip where the thumb is aligned with 

the axis of the tool - Konz & Johnson, 2000).  Additionally, the lack of symmetry along 

the long-axis of the tool may reduce the worker’s options for manipulating the pliers, 

leading to productivity decrements.   

If the constraints imposed by the tool design are not immediately outweighed by a 

productivity advantage, then potential users may be inclined to not use the bent-handle 

tool. This would seem particularly true considering the insidious nature musculoskeletal 

injuries. 
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2.2 Hypotheses 

This research seeks to explore the reason why the bent-handle (often called pistol-grip – 

Konz & Johnson, 2000) pliers are apparently unpopular in industry despite the 

conventional wisdom supporting their superior design.  This will be examined by testing 

the following hypotheses: 

1. It is hypothesized that there will be a significant productivity disadvantage with the 

bent-handle pliers due to the constraint of the tool design (lack of symmetry about the 

long axis). 

2. It is hypothesized that when the tool is held with a power grip or oblique grip, 

postural benefits (less radial/ulnar deviation and less arm elevation) of the bent-

handle pliers are task-specific.  In particular, it is expected that a task that can be 

performed with the pliers remaining in the sagittal plane and not requiring rotation 

out of this plane will have significantly less deviations with the bent-handle pliers.  

Conversely, tasks requiring manipulation out of this plane will favour the straight-

handle pliers. 

3. It is hypothesized that the specificity of the design of the bent-handle pliers will result 

in significant postural benefits (less radial/ulnar deviation and less arm elevation) 

over the straight-handle pliers when the pliers are held (constrained) to a power grip 

or oblique grip.  Conversely, when subjects are able to hold the pliers unconstrained 

the postural advantage will be lost. 
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3.0 MATERIALS AND METHODS 

3.1 Experimental Tasks 

The experiment consisted of two separate tasks that were designed to represent 

expected real-world applications for which bent-handle pliers may be recommended for 

neutral posture promotion.  Both tasks (described in detail below) involved parts 

manipulation in a relatively small work area directly in front of the subject.  One of the 

tasks (Jumpers) required small sagittal and lateral movements of the pliers, with 

essentially no tool rotation, while the other task (Springs) required similar sagittal and 

lateral movements, as well as rotational manipulation of the tool.   

3.1.1 Jumper Task 

The first task required subjects to move five (5) red computer jumpers laterally 

between two sets of computer connectors.  The connectors were standard 0.1” 

motherboard mounting pins organized in two columns of pins, separated by 0.1” 

(0.254cm), both between pin columns and pin rows.  For this experiment two 36-pin (18 

x 2) connectors were used.  The two connectors were mounted vertically parallel on a 

board, side by side, separated by 5.6cm (see Figure 3.1).  On both sets of connectors a 

black jumper was placed on the first (top) pair of pins and (counting down) on the 13th 

pair of pins, these four jumpers were not moved and served as boundary demarcations.  

Five red jumpers were placed on the intervening pairs of pins such that there was always 

an empty pair of pins above and below each red jumper; this was done to prevent 

interference between jumpers.   The jumpers themselves were insulated gold contacts 

enclosed in a plastic housing, described as standard 0.1” x 0.3” jumpers.  
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Figure 3.1: Initial starting arrangement for Jumpers Task. 

The initial starting condition had the five red jumpers in position on the left 

connector.  A cycle consisted of grasping the jumpers, one at a time, and moving them all 

from their initial pin positions on the left connector to the same pin positions on the right 

connector, followed by moving them all back to their initial starting position on the left 

connector. When moving the jumpers from one connector to the other, the subjects 

always started by moving the top jumper first and worked down.   

3.1.2 Spring Task 

The other task required subjects to sequentially connect to a post, the free end of 

springs mounted at the other end to a board.  Ten stainless steel extension springs (0.312” 

x 0.0286” x 2.50”; spring rate = 0.55 lb/in; max. deflection = 4.27”) were fastened at one 

end to a board, as shown in Figure 3.2.  A finishing nail (1.8mm shaft diameter; 2.8mm 

head diameter) was placed 7.7cm to the right of the mounting point; the nail was mounted 

leaving 12.5mm exposed to serve as the post.  Subjects were instructed to use the pliers to 

grasp the free-end loop of the spring and (pulling against the spring tension) attach it to 

5.6cm
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the post.  Subjects started at the top left spring, worked down the column of springs, and 

after attaching the bottom left spring, moved to the top right spring and again worked 

down the column.  Once all the springs were attached, the subjects reversed their work by 

individually removing the springs from the posts; when unfastening the springs, the 

subjects started at the bottom left spring, worked up, and then unfastened the right 

column starting at the bottom.  The subjects were required to grasp the loop with the 

pliers to detach it from the post.  Attaching all ten springs, followed by unfastening all ten 

springs constituted a complete cycle.  Note: because of the two different orientations of 

the work surface (vertical and slanted, described below under Independent Variables), the 

springs always hung down when unattached.  However, the orientation of the loop was 

variable, requiring subjects to variably manipulate the pliers in rotation to grab the loop. 

7.7cm 

3.2cm

 

3.2cm

 

1.9cm

 

Figure 3.2: Springs Task with first four springs connected as required.
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3.2 Apparatus 

Time to complete trials (productivity) was measured using a Sportline® Alpha 410 

hand-held stopwatch, measured to the hundredths of a second.  The wrist 

flexion/extension angle and angle of radial/ulnar deviation was measured with two wrist 

goniometers; these are a non-commercial product designed to independently collect angle 

data based on the angular displacement measured by a rotary potentiometer.  This 

apparatus is described in Marras and Schoenmarklin (1993); and is shown in Figures 3.3 

and 3.4.  The three-dimensional shoulder posture data (measured as arm elevation from 

the vertical) were captured by the Ascension Flock of Birds system (Ascension 

Technology©, VT, U.S.A.) magnetic tracking system, and were recorded with Innovative 

Sports Training Motion Monitor© software (version 4.10).  (Figure 3.4 displays the Flock 

of Birds magnetic sensors on a subject.)   

Figure 3.3: Wrist goniometers.

 

Figure 3.4: Subject instrumented with wrist 
goniometers and magnetic sensors. 
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3.3 Independent Variables 

3.3.1 Pliers 

 Two levels of pliers were applied, straight-handle (conventional) and bent-

handle (pistol grip) (see Figure 3.5).  The straight-handle pliers were Swanstrom model 

S325E.  The bent-handle pliers were Swanstrom model S325EPR.  Both pliers had the 

same jaw characteristics and dimensions: serrated jaw; jaw length = 27mm; tip width = 

1.50mm; tip thickness = 1.50mm.  The overall length of the straight pliers was 15.8cm; 

the overall length of the bent pliers was 19.2cm.    

Figure 3.5: Straight-handle pliers (top) and bent-handle pliers (bottom) used in experiment. 
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3.3.2 Constraint 

Subjects used the pliers under two different constraint conditions.  In the 

constrained condition subjects were required to hold the pliers within the palm of the 

hand using either a power grip or an oblique grip (described earlier in Section 2.1).  The 

constrained grip also required subjects to hold the pliers with the jaws (or active end) 

extending from the radial aspect of the hand.  In the unconstrained condition subjects 

were allowed to hold the pliers in any manner desired (including the manner described 

for the constrained condition).   

3.3.3 Work Surface Orientation 

Two different work surface orientations were used (Figure 3.6), vertical and 

slanted at a 45° angle. 

Figure 3.6: Vertical (left) and 45º slanted (right) work surface orientations used in experiment.

 



22 

3.4 Dependent Variables 

3.4.1 Productivity 

Productivity was measured as the time (measured to the hundredth of a second) 

taken to complete three cycles of a given condition.  

3.4.2 Posture 

Postural data were collected for the right wrist and right shoulder.   

3.4.2.1 Wrist 

Mean flexion/extension and radial/ulnar deviation postural data were determined 

for the third cycle of task completion for all conditions.  Data in the flexion/extension, 

and radial/ulnar planes were collected at 300 Hz using the wrist goniometers described 

above (refer to Figure 3.5 and 3.6).  These data were entered via an A/D board into Data 

Translation Inc.® Global Lab© (version 3.00), which was loaded on a Compaq® notebook 

computer. Exported data provided data files in ASCII format at the same rate of 300 Hz, 

with 0-4096 bits covering the range of angular displacement of the potentiometers. 

3.4.2.2 Shoulder 

Mean shoulder posture data were determined for the third cycle of task 

completion for all conditions.  Shoulder posture was measured as elevation of the upper 

arm from the vertical; in this way the calculated values represented a combination of 

shoulder flexion and abduction.  Three-dimensional positional data for two sensors 

secured to the right upper arm (see Figure 3.4) were collected at 60 Hz using the 

MotionMonitor© system; the raw data were low-pass filtered by a Butterworth filter with 

an effective cut-off frequency of 20 Hz.  The three-dimensional data were processed to 

produce arm elevation values at the same rate of 60 Hz. 
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3.5 Working Height 

An important consideration in this experiment was the working height for the 

different experimental conditions, since working height has a direct effect on the 

dependent variables (particularly posture).  A large source of variability would be 

introduced if subjects had been allowed to determine their own preferred working height 

(some preferring higher heights to promote visual acuity, while some preferring lower 

heights to promote neutral body postures); to overcome this, pilot work was done to 

determine a standardized working height for each of the four conditions of task (jumpers 

and springs) and work surface orientation (vertical and 45° slanted).   

Three subjects with ergonomics backgrounds (two PhD’s and one Master’s 

student) performed the two tasks at the two different orientations, using both pairs of 

pliers (a total of eight conditions).  In all cases, the pilot subjects were instructed to hold 

the pliers in the constrained manner.  For each of the eight conditions, these pilot subjects 

were asked to perform the task at any, and as many heights of their choosing in order to 

determine their preferred static working height for each of the eight different conditions.  

For a given combination of task and orientation the average of the two preferred heights 

(by type of pliers) was calculated.  This value (havg) was evaluated against three 

landmarks on the respective pilot subject: the acromion process, the lateral epicondyle of 

the elbow, and the mid-distance between these two landmarks (mid-arm).   

For the four conditions (two tasks x two orientation), the difference between havg 

and the mid-arm landmark resulted in minimization of the differences among the three 

subjects.  Finally, the average for the three subjects of (havg - mid-arm) was determined 

for the four different combinations of task and orientation; these average distances from 
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the mid-arm (rounded to the nearest centimeter) were set as the working heights at which 

all subjects would perform the various tasks.  Data from the pilot work is shown in the 

appendix in Tables 6.1-6.5, while the work heights determined from this work are shown 

in Table 3.1.  The heights shown in Table 3.1 were used for both the constrained and 

unconstrained conditions of the four different task by orientation combinations  

Table 3.1 Work Surface Heights for both Tasks by Orientation. 

Task by Orientation Combination 
Work Surface Height 
Relative to Mid-Arm Height 

Jumper x Slanted Work Surface -17cm 
Jumper x Vertical Work Surface 0cm 
Spring x Slanted Work Surface -10cm 
Spring x Vertical Work Surface 0cm 

 

3.6 Subjects 

Sixteen subjects (eight male, eight female) were recruited from the general 

university population.  Subjects ranged in age from 22 to 38 years, with mean age equal 

to 28.25.   All subjects were right-handed and had normal, or corrected-to-normal vision.  

Subject stature ranged from 155.6cm to 196.1cm, with a mean of 173.4cm.  The height to 

the acromion process of the right shoulder and to the lateral epicondyle of the right elbow 

was measured in the standing upright position; the mean values, ranges and standard 

deviations are shown in Table 3.2. 

Table 3.2: Anthropometric Data for Subjects  
Mean SD Minimum Maximum 

Age 28.25 4.753946 22 38 
Stature 173.3688 10.93586 155.6 196.1 

Acromion 142.8438 10.219 127.6 164.8 
Lateral epicondyle

 

110.475 7.344522 99.8 127.2 
Mid-Arm Height 126.6594 8.75426 113.7 146 
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3.7 Protocol 

3.7.1 Anthropometry 

Subjects were given a brief description of the purpose of the study and the 

protocol to be followed, after which the subject signed an informed consent form.  

Anthropometric data (stature, height to right acromion process and right lateral 

epicondyle of the humerus) were collected; the heights from the ground to the acromion 

process and from the ground to the lateral epicondyle of each subject were averaged to 

determine the subject’s mid-arm height (see Appendix, Table 6.6 for mean, standard 

deviation, and ranges); this height was used as the reference point for determining each 

subject’s working heights as described previously. 

3.7.2 Instrumentation 

The subject had two wrist goniometers (measuring flexion/extension and 

radial/ulnar deviation) applied to the right arm as described by Marras and 

Schoenmarklin (1993).  Two magnetic sensors were applied to the right arm with 

adhesive tape.  One sensor was positioned on the lateral aspect of the upper arm, near the 

elbow, with the other being positioned on the lateral aspect of the upper arm nearer the 

shoulder (see Figure 3.4).  The sensors were positioned so as to not interfere with arm 

motion. 

3.7.3 Neutral File Collection 

After application of instrumentation the subject was seated with her/his right 

elbow flexed to 90° and her/his shoulder abducted 90° to horizontal (see figure 3.7).  The 

arm was positioned on a supporting horizontal surface with the lateral epicondyle, the 

wrist center of rotation (in the coronal plane), and the third metacarpal inline.  
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Additionally, the arm was positioned so that the lateral epicondyle, the dorsum of the 

wrist and the third metacarpal-phalangeal joint were all in the same plane.  Once in this 

position, a five second wrist goniometer file was collected.  The subject then removed 

her/his arm from the support, dropped the arm to a vertical position, and returned it to the 

horizontal surface where it was again positioned in the manner just described.  Another 

five-second data collection was performed.  These two files served as “neutral” 

calibration files.  

Figure 3.7: Neutral-wrist data file collection posture.
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3.7.4 Trial Randomization 

All subjects performed all eight conditions (pliers by orientation by constraint) 

for the spring task followed by all conditions for the jumper task.  Within each task, the 

order of performance of the four conditions determined by orientation and pliers was 

randomized.  Within this randomization, all subjects first performed the task constrained 

followed by the unconstrained condition.   

3.7.5 Subject Instructions 

Prior to performance of the randomized trials, the particular task was explained to 

the subject.  The subject was told that she/he was free to position herself/himself in a 

standing position in front of the work surface however she/he felt comfortable, and that 

she/he was allowed to hold the work surface with her/his left hand, but that she/he could 

not use the left hand to assist the task performance in any other manner.  The investigator 

demonstrated task performance, and the subject was told that her/his objective was to 

perform the task as quickly as possible under all conditions. 

3.7.6 Subject Practice 

At this point all subjects performed a practice session during which they 

completed a minimum of two cycles of the task in the vertical orientation with both the 

straight pliers and the bent pliers (order of performance by pliers was alternated between 

subjects), followed by performance of one cycle of the task in the slanted condition with 

both types of pliers.  Pilot data had indicated that asymptotic performance would occur 

within this period.  All subjects were videotaped and a piece-by-piece timed analysis of 

the videotape was done to ensure that such was the case.  Refer to the appendix (Table 

6.7) for a summary of a sample subject data collection session. 
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3.7.7 Trial Data Collection 

During performance of the 16 conditions (two tasks x two pliers x two 

orientations x two constraints) data collection was performed in the following manner:  

Standing in front of the work surface, the subject was asked if she/he was ready, if so, 

she/he was instructed to begin completion of three cycles of the task.  The subject was 

periodically reminded to perform as quickly as possible at the beginning of trials.  The 

time to complete three cycles was measured for all trials.  Also, at the start of the third 

cycle for all trials, wrist goniometer and arm elevation data were collected.  At the end of 

the third cycle data collection was concluded.  After each constrained condition, subjects 

were asked to take some time to explore other manners for holding the pliers to determine 

if there was an alternate way that they would prefer to hold the pliers.  During this time 

the subject was able to try the task with any grip she/he wanted.  Once the subject 

determined the grip that she/he preferred, the unconstrained trial was conducted.  As 

noted previously, the unconstrained condition could be performed using the same grip as 

in the constrained condition, if that was the subject’s preference.  Any alternative grips 

used were noted in a lab notebook. 

After all 16 trials were completed another five second, neutral wrist goniometer 

trial was collected.  This concluded the subject’s involvement in the experiment. 
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3.8 Data Analysis 

3.8.1 Data Processing 

3.8.1.1 Productivity 

For each subject the time to complete three cycles of each of the conditions was 

recorded as a measure of productivity; no data processing was required. 

3.8.1.2 Wrist Posture 

All subjects had 19 data files: three neutral-wrist files (two taken prior to trial 

completion, and one taken after), and one file for each of the 16 trials.  Each file 

contained three channels of data: one for flexion/extension, one for radial/ulnar deviation, 

and one for a trigger (which was used to indicate the start and finish of the third cycle of 

trial completion).  The two initial neutral-wrist files provided a reference value for the 16 

trials, which were processed to provide a mean value for both flexion/extension and 

radial/ulnar deviation for the last cycle of each trial.    

All files were converted to ASCII output using the built-in StatPack software.  

The ASCII output files were in bits (0-4096).  A Basic program was created to compute 

the mean bit-value for both flexion/extension and radial/ulnar deviation for the two initial 

neutral-wrist files.  The mean values for both variables (flexion/extension and radial/ulnar 

deviation) from the two files were then averaged to provide an overall average neutral 

value for each variable.  These values in bits were then converted to voltages and 

ultimately angles (in degrees) using a linear calibration equation.  Within the same 

program, the mean bit-value was calculated for both channels of the two variables for 

each of the 16 trials, which were then converted to angles (in degrees) using the same 

linear calibration equation.  The average values from the neutral files (flexion/extension 
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and radial/ulnar deviation) were subtracted from the appropriate values for each of the 16 

trials, producing the mean wrist angle over the course of the third cycle of each trial, for 

both flexion/extension and radial/ulnar deviation.   

(Note: the data from the neutral file taken at the end of each subject’s data collection 

period was used to provide confirmation that the position of the wrist goniometers had 

not changed by more than 5º during data collection; this was done by comparing the final 

neutral values for each goniometer to the neutral trials collected at the start of the data 

collection period.)  

3.8.1.3 Shoulder Posture 

Each subject had 16 activity files from the MotionMonitor© system, which 

provided data to calculate the mean arm elevation.  These files were converted to export 

files using built-in conversion software.  The output from the exported files was 3-

dimensional positional data for the two points on the upper arm.  A Basic program was 

created to use trigonometry to convert these data into arm elevation (from vertical) values 

at the same rate of 60Hz.  The data for each trial was then averaged to provide one value 

for arm elevation over the course of the third cycle of each condition. 

3.8.2 Statistical Analysis 

A statistical model, based on the Randomized Complete Block described by 

Kolarik (1995) was developed for this investigation. An analysis of variance (ANOVA) 

was performed on this model to test the effects of the independent variables on the 

dependent variables and their interactions.   

Tests of Assumptions:  Model residuals were predicted and plotted and the 

Shapiro-Wilk’s test was conducted to determine whether the residuals were normally 
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distributed.  Testing for equality of the variance of the response variables was achieved 

through a time-order plot of each of the response variables, blocked by subject.  The 

assumption of an independent random sample was achieved through the subject 

recruitment process employed.  Since all the independent variables tested had only two 

levels, there was no need to perform a post-hoc Tukey’s test. 

In all cases of the dependent variable (productivity, wrist flexion/extension, wrist 

radial/ulnar deviation, and arm elevation) the same model applied, with the response 

variable represented by Y.  In each case the overall mean is represented by µ.  The a term 

represented the effect of the two types of pliers (straight and bent).  The ? term 

represented the effect of the two work surface orientations (vertical and slanted).  The d

 

term represented the effect of the two levels of constraint (constrained and 

unconstrained).   The ß term represented the effect of subject blocking.  Additionally, the 

model contained terms to represent the three two-way interactions between a, ?, and d, as 

well as the three-way interaction between these terms.  Finally, the model included an 

error term, e.  The model is as follows: 

Yi,j,k,l = µ + ai + ?j + dk +  ßl + (ai ?j) + (ai dk) + (?j dk) + (ai ?j dk) + ei,j,k,l 

In all cases the F-statistic was tested as the ratio of the mean square of the 

treatment (MStreatement) divided by the mean square of the error term (MSerror), where; 

S(SSß*a + SSß*? + SS ß*d + SS ß*a*? + SS ß*a*d + SS ß*?*d + SS ß*a*?*d) 
MSerror =

 

S(dfß*a + dfß*? + df ß*d + df ß*a*? + df ß*a*d + df ß*?*d + df ß*a*?*d) 
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4.0 RESULTS 

4.1 Tests of Assumptions 

4.1.1 Test for Assumption of Normal Distribution of Residuals 

4.1.1.1 Jumper Task 

Figures 4.1 through 4.8 show the results of the test for normality for the dependent 

variables and the corresponding Shapiro-Wilk’s probability for the jumper task. 
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Plot of Residuals - Productivity
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Figure 4.1: Plot of Residuals for Variable = Productivity.    
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Figure 4.2: Normal Probability Plot for Variable = Productivity. 
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Plot of Residuals - Arm Elevation
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Figure 4.3: Plot of Residuals for Variable = Arm Elevation.   
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Figure 4.4: Normal Probability Plot for Variable = Arm Elevation. 
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Plot of Residuals - Wrist Flexion/Extension
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Figure 4.5: Plot of Residuals for Variable = Wrist Flexion/Extension.    
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Figure 4.6: Normal Probability Plot for Variable = Wrist Flexion/Extension. 
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Plot of Residuals - Radial/Ulnar Deviation
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Figure 4.7: Plot of Residuals for Variable = Wrist Radial/Ulnar Deviation.    
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Figure 4.8: Normal Probability Plot for Variable = Wrist Radial/Ulnar Deviation. 
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4.1.1.2 Spring Task 
Figures 4.9 through 4.16 show the results of the test for normality for the dependent 

variables and the corresponding Shapiro-Wilk’s probability for the spring task.  Note that 

the extreme outliers in Figure 4.15 are a result of three instances when subjects used a 

“dagger” grip when performing a task on the vertical work surface; this put the wrist in a 

position where it was deviated to a large degree in the radial direction. 
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Figure 4.9: Plot of Residuals for Variable = Productivity.   
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Figure 4.10: Normal Probability Plot for Variable = Productivity. 
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Plot of Residuals - Arm Elevation
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Figure 4.11: Plot of Residuals for Variable = Arm Elevation.     
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Figure 4.12: Normal Probability Plot for Variable = Arm Elevation.  
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Figure 4.13: Plot of Residuals for Variable = Wrist Flexion/Extension.   
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Figure 4.14: Normal Probability Plot for Variable = Wrist Flexion/Extension. 
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Plot of Residuals - Radial/Ulnar Deviation
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Figure 4.15: Plot of Residuals for Variable = Wrist Radial/Ulnar Deviation.     
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Figure 4.16: Normal Probability Plot for Variable = Radial/Ulnar Deviation.  
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4.1.2 Test for Assumption of Equal Variance 

4.1.2.1 Jumper Task 

Figures 4.17 through 4.20 show the plots of residual by position in sequence of 

experimental trials (jumper task), investigating equality of variance for the dependent 

variables.  
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Figure 4.17: Time Order Plot for Productivity Residuals.  
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           Plot of RARM ELEV*ORDER.  Legend: A = 1 obs, B = 2 obs, etc.  
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Figure 4.18: Time Order Plot for Arm Elevation Residuals.
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             Plot of RFE*ORDER.  Legend: A = 1 obs, B = 2 obs, etc.  
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Figure 4.19: Time Order Plot for Flexion/Extension Residuals.
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             Plot of RRU*ORDER.  Legend: A = 1 obs, B = 2 obs, etc.  
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Figure 4.20: Time Order Plot for Radial/Ulnar Deviation Residuals.
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4.1.2.2 Spring Task  
Figures 4.21 through 4.24 show the plots of residual by position in sequence of 

experimental trials (spring task), investigating equality of variance for the dependent 

variables.  
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Figure 4.21: Time Order Plot for Productivity Residuals. 
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          Plot of RARM ELEV*ORDER.  Legend: A = 1 obs, B = 2 obs, etc.  
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Figure 4.22: Time Order Plot for Arm Elevation Residuals. 
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             Plot of RFE*ORDER.  Legend: A = 1 obs, B = 2 obs, etc.  
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Figure 4.23: Time Order Plot for Flexion/Extension Residuals.
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             Plot of RRU*ORDER.  Legend: A = 1 obs, B = 2 obs, etc.  
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Figure 4.24: Time Order Plot for Radial/Ulnar Deviation Residuals. 
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In four cases the results of the Shapiro-Wilk’s test indicated rejection of the null 

hypothesis, and normal distribution of the residuals could not be assumed.  In each case 

outliers were identified from the residuals and were temporarily removed from the data 

set, and the Shapiro-Wilk’s test was run again.  In two cases (productivity for the jumper 

task and flexion/extension for the spring task) the re-run of the test resulted in acceptance 

of the null hypothesis.  Furthermore, analysis of variance of the model with the modified 

data set provided the same significant effects as the complete data set.  In the other two 

cases (radial/ulnar deviation for both tasks), removal of outliers did not lead to 

acceptance of the null hypothesis on the Shapiro-Wilk’s test.  However, analysis of 

variance was again performed on the modified data set, and in both cases the significant 

results came out the same as with the complete data set.   

To summarize, this preliminary analysis showed that the assumption of equality 

of variance was satisfied and the departure from normality had no effects on the 

significant effects.  Considering this point, in combination with the fact that the analysis 

of variance is quite robust to moderate departures of the normality assumption 

(Montgomery, 1984), the analysis was conducted with the complete data set.  Finally, 

none of the plots of the residuals by positional sequence suggested trends that violated 

the assumption of equal variance (Montgomery, 1984).  
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4.2 ANOVA Results 

4.2.1 Jumper Task 

Tables 4.1 through 4.4 list the results on the ANOVA (including F test statistic and P-

value) for the four dependent variables productivity, arm elevation, wrist 

flexion/extension, and wrist radial/ulnar deviation and all interactions.  (All significant 

results - except for Subject - are bolded.)  

Table 4.1: Productivity Results. 
Effect F Test Statistic Prob. > F 
Subject 12.13 P < 0.0001 
Pliers 15.26 P < 0.0002 
Orientation 13.73 P < 0.0003 
Constraint 8.50 P < 0.005 
Pliers x Orientation 0.03 not significant 
Pliers x Constraint 0.10 not significant 
Orientation x Constraint 0.04 not significant 
Pliers x Orientation x Constraint 1.77 not significant 

    

Table 4. 2: Arm Elevation Results. 
Effect F Test Statistic Prob. > F 
Subject 3.77 P < 0.0001 
Pliers 49.07 P < 0.0001 
Orientation 13.90 P < 0.0003 
Constraint 26.84 P < 0.0001 
Pliers x Orientation 5.56 P < 0.03 
Pliers x Constraint 27.15 P < 0.0001 
Orientation x Constraint 10.49 P < 0.002 
Pliers x Orientation x Constraint 3.78 P < 0.0545 
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Table 4.3: Wrist Flexion/Extension Results. 
Effect F Test Statistic Prob. > F 
Subject 4.81 P < 0.0001 
Pliers 1.89 not significant 
Orientation 0.03 not significant 
Constraint 24.70 P < 0.0001 
Pliers x Orientation 5.49 P < 0.03 
Pliers x Constraint 10.16 P < 0.002 
Orientation x Constraint 4.33 P < 0.04 
Pliers x Orientation x Constraint 0.58 not significant 

    

Table 4.4: Wrist Radial/Ulnar Deviation Results. 
Effect F Test Statistic Prob. > F 
Subject 4.71 P < 0.0001 
Pliers 1.87 not significant 
Orientation 2.81 not significant 
Constraint 26.99 P < 0.0001 
Pliers x Orientation 11.31 P < 0.002 
Pliers x Constraint 9.72 P < 0.003 
Orientation x Constraint 7.51 P < 0.01 
Pliers x Orientation x Constraint 1.33 not significant 
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Figures 4.25 through 4.33 show the significant two-way interaction effects for each of the 

dependent variables (jumper task).   
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Figure 4.25: Interaction Effect of Pliers x Orientation on Arm Elevation.    
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Figure 4.26: Interaction Effect of Pliers x Constraint on Arm Elevation. 
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Orientation x Constraint Interaction
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Figure 4.27: Interaction Effect of Orientation x Constraint on Arm Elevation.     
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Figure 4.28: Interaction Effect of Pliers x Orientation on Wrist Extension. 
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Pliers x Constraint Interaction
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Figure 4.29: Interaction Effect of Pliers x Constraint on Wrist Extension.     

Figure 4.30: Interaction Effect of Orientation x Constraint on Wrist Extension.    
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Figure 4.31: Interaction Effect of Pliers x Orientation on Ulnar Deviation.     

Figure 4.32: Interaction Effect of Pliers x Constraint on Ulnar Deviation. 
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Figure 4.33: Interaction Effect of Orientation x Constraint on Ulnar Deviation.    
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Figures 4.34 through 4.37 show the significant main effects for each of the dependent 

variables (jumper task).  Note: significant main effects that were invalidated by a higher 

order interaction are not plotted.     
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Figure 4.34: Main Effect of Pliers on Productivity.    
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Figure 4.35: Main Effect of Orientation on Productivity.  
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Productivity Main Effect - Constraint
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Figure 4.36: Main Effect of Constraint on Productivity.    
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Figure 4.37: Main Effect of Constraint on Wrist Extension.      
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4.2.2 Spring Task 

Tables 4.5 through 4.8 list the results on the ANOVA (including F test statistic and P-

value) for the four dependent variables productivity, arm elevation, wrist 

flexion/extension, and wrist radial/ulnar deviation and all interactions. (All significant 

results - except for Subject - are bolded.)   

Table 4.5: Productivity Results. 
Effect F Test Statistic Prob. > F 
Subject 18.62 P < 0.0001 
Pliers 6.97 P < 0.01 
Orientation 16.64 P < 0.0001 
Constraint 3.96 P < 0.05 
Pliers x Orientation 4.59 P < 0.04 
Pliers x Constraint 2.24 not significant 
Orientation x Constraint 0.34 not significant 
Pliers x Orientation x Constraint 0.58 not significant 

    

Table 4.6: Arm Elevation Results. 
Effect F Test Statistic Prob. > F 
Subject 9.81 P < 0.0001 
Pliers 3.71 P < 0.0567 
Orientation 10.98 P < 0.002 
Constraint 0.07 not significant 
Pliers x Orientation 0.67 not significant 
Pliers x Constraint 0.67 not significant 
Orientation x Constraint 0.29 not significant 
Pliers x Orientation x Constraint 2.14 not significant 
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Table 4.7: Wrist Flexion/Extension Results. 
Effect F Test Statistic Prob. > F 
Subject 22.46 P < 0.0001 
Pliers 1.19 not significant 
Orientation 41.20 P < 0.0001 
Constraint 0.71 not significant 
Pliers x Orientation 1.58 not significant 
Pliers x Constraint 0.71 not significant 
Orientation x Constraint 0.01 not significant 
Pliers x Orientation x Constraint 2.18 not significant 

    

Table 4.8: Wrist Radial/Ulnar Deviation Results. 
Effect F Test Statistic Prob. > F 
Subject 3.97 P < 0.0001 
Pliers 7.68 P < 0.007 
Orientation 6.45 P < 0.02 
Constraint 1.52 not significant 
Pliers x Orientation 1.13 not significant 
Pliers x Constraint 1.00 not significant 
Orientation x Constraint 4.14 P < 0.05 
Pliers x Orientation x Constraint 1.18 not significant 
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Figures 4.38 and 4.39 show the significant two-way interaction effects for each of the 

dependent variables (spring task).    

Figure 4.38: Interaction Effect of Pliers x Orientation on Productivity.    

Figure 4.39: Interaction Effect of Orientation x Constraint on Ulnar Deviation. 
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Figures 4.40 through 4.45 show the significant main effects for each of the dependent 

variables (spring task). Note: some of the significant main effects are not plotted because 

a significant higher order interaction invalidated the interpretation of the main effect.   
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Figure 4.40: Main Effect of Pliers on Productivity.    
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Figure 4.41: Main Effect of Orientation on Productivity. 
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Figure 4.42: Main Effect of Constraint on Productivity.     
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Figure 4.43: Main Effect of Orientation on Arm Elevation.  
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Wrist Extension Main Effect - Orientation
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Figure 4.44: Main Effect of Orientation on Wrist Extension.    
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Figure 4.45: Main Effect of Pliers on Radial/Ulnar Deviation.   
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5.0 DISCUSSION 

5.1 Results Directly Addressing Hypotheses 

Hypothesis #1: there would be a significant productivity disadvantage with the bent-
handle pliers due to the constraint of the tool design (lack of symmetry about the long 
axis). 

Both tasks had significant main effects of pliers.  The results for the spring task 

demonstrated a productivity decrement, with the bent-handle pliers taking on average 

4.9% longer to complete the task; this supports hypothesis #1.   

On the other hand, the bent-handle pliers resulted in 5.3% faster task performance on the 

jumper task; this refutes hypothesis #1. It could be that because the jumper task requires 

no rotation of the pliers, the lack of long-axis symmetry has no detrimental effect on 

productivity, and in fact there appears to be a productivity advantage to the bent-handle 

pliers in this case.  A likely explanation for this advantage is that there is less visual 

obstruction of the important task characteristics (the interaction between the pliers jaws 

and the jumper, and the view of the connector pins) with the bent-handle pliers compared 

to the straight-handle pliers.  Another suggestion is that with the jumper task there were 

generally postural benefits of the bent-handle pliers (outlined below), and the more 

awkward postures required of the straight-handle pliers could have a fatiguing effect that 

reduces productivity.   

Therefore as a general rule hypothesis #1 is shown to be incorrect, but instead it 

appears that the productivity effect of the bent-handle pliers is task-specific; that is, a task 

that requires greater manipulation of the tool will have productivity detriments with the 

bent-handle pliers, but there is the potential for productivity advantages with these pliers 

if the task requirements resemble those described above.  
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Hypothesis #2: When held with a power grip or oblique grip, postural benefits (less 
radial/ulnar deviation and less arm elevation) of the bent-handle pliers are task-specific.  
In particular, it was expected that a task that can be performed with the pliers remaining 
in the sagittal plane and not requiring rotation out of this plane would have significantly 
less deviations with the bent-handle pliers.  Conversely, tasks requiring manipulation out 
of this plane will favour the straight-handle pliers. 

There was a significant main effect of pliers on arm elevation for the jumper task.  

The data for the constrained trials alone revealed that with the bent-handle pliers the 

average arm elevation was 19º, compared to 38º for the straight-handle pliers; a reduction 

in arm elevation of 50%.  This result supports hypothesis #2. 

There was a two-way interaction effect of pliers x constraint on ulnar deviation 

for the jumper task.  Analysis of the constrained data alone revealed that ulnar deviation 

was 30º with the bent-handle pliers, versus 34º with the straight-handle pliers; this 

represents a reduction of 12%.  This result also supports hypothesis #2.   

There was a main effect of pliers on ulnar deviation for the spring task.  Analysis 

of the data (for the constrained trials only) revealed that the mean ulnar deviation with 

the bent-handle pliers was 21º, while for the straight-handle pliers it was 27º (a 22% 

reduction).  This result refutes hypothesis #2. There was no significant effect of pliers on 

shoulder elevation for the spring task; this lack of significance also refutes hypothesis #2.   

Overall hypothesis #2 is shown to be incorrect.  The results for the jumper task do 

support the hypothesis suggesting that the bent-handle pliers are better at reducing 

awkward postures for this task (and presumably for tasks with similar requirements).  The 

results on the spring task indicate that there is still a postural advantage to the bent-

handle pliers (when the coupling is constrained to the grip implied by the design) for a 

task that requires greater degrees of end-point manipulation.   
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A comparison of the significant effect on arm elevation of pliers between the two 

tasks shows a 50% reduction for the jumper task compared to a non-significant result for 

the spring task (where the overall mean was 21º).  This difference does support the 

general theme of this hypothesis that the effects are task-specific, however it further 

suggests that the difference in task requirements substantially influences the effect of the 

tool design, and that, at least in this case and likely most, the ability to make 

generalizations is very limited. 

Hypothesis #3:  The specificity of the design of the bent-handle pliers would result in 
significant postural benefits (less radial/ulnar deviation and less arm elevation) over the 
straight-handle pliers when the pliers are held (constrained) to a power grip or oblique 
grip.  Conversely, when subjects are able to hold the pliers unconstrained the postural 
advantage would be lost. 

There was an interaction effect of pliers x constraint on arm elevation for the 

jumper task.  The interaction effect was analyzed further to show that in the constrained 

condition the bent-handle pliers had significantly less arm elevation than the straight-

handle pliers, while in the unconstrained condition there was no significant effect of 

pliers.  These results support hypothesis #3. 

There was an interaction effect of pliers x constraint on radial/ulnar deviation for 

the jumper task.  These results demonstrate that in the constrained condition the bent-

handle pliers resulted in less ulnar deviation, while in the unconstrained condition, the 

straight-handle pliers were better in reducing ulnar deviation. These results also support 

hypothesis #3. 

In the case of the spring task there were not significant effects for pliers x 

constraint on either of the postural measures of interest; these results refute hypothesis 

#3. 
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Therefore, while as a general rule hypothesis #3 is shown to be incorrect, the 

inference is that the effect of the constrained use of the pliers is again highly task-

specific. 

5.2 Other Significant Results 

5.2.1 Flexion/Extension 

Flexion/extension data were collected, but there were no hypotheses made 

regarding the expected results since the design of the bent-handle pliers was not meant to 

address this posture.  There was one significant main effect of orientation on 

flexion/extension angle for the spring task.  There was one main effect of constraint on 

flexion/extension angle for the jumper task, and all two-way interactions were significant 

for the jumper task. Even though there were significant effects, the largest mean 

deviation in extension was approximately 11º, while for flexion it was approximately 5º.  

Of all the literature reviewed for this study, there were none that suggested that deviation 

of this degree would present any risk for development of a MSD, and so no further 

discussion is warranted. 

5.2.2 Productivity 

In both tasks in this study there was a significant main effect of work surface 

orientation on productivity, and in both cases the work surface slanted at 45º resulted in 

faster completion times (5.1% faster for the jumper task and 7.2% for the spring task).  

Although not of main interest in this study, these results suggest that with regards to 

productivity the slanted work surface is better.  A likely explanation for this result is that 

the slanted work surface allows for better visual perception (particularly by eliminating 

parallax) for task performance. 
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There was also a main effect of constraint for both tasks.  None of the hypotheses 

addressed constraint as a main effect, but these results are of interest and will be 

discussed further in Section 5.3. 

For the spring task there was a pliers x orientation interaction, which showed that 

the bent-handle pliers incurred a greater productivity decrement when changing from the 

slanted to vertical work surface (11.7% more time to complete the task with the bent-

handle pliers versus 3.7% longer with the straight-handle pliers).  These results cannot be 

explained without further investigation. 

5.2.3 Arm Elevation (Shoulder Posture) 

For both tasks there was a main effect of orientation on arm elevation, and in both 

cases the slanted surface resulted in increased arm elevation; in the jumper task the arm 

elevation was 26% greater, while in the spring task it was 16.8% higher.  These results 

are not surprising since as the work surface rotates away from the subject (on an axis 

perpendicular to the sagittal plane), the common kinematic response is to either elevate 

the arm and/or deviate the wrist to the ulnar side to allow the jaws of the pliers to be 

oriented approximately perpendicular to the work surface. 

There was a pliers x orientation interaction for the jumper task.  This 

demonstrated the same effect of increased arm elevation in moving from vertical to 

slanted for both pliers, but the increase in arm elevation was greater for the straight-

handle pliers.  These results (and others) will be discussed further in Section 5.3. There 

was a main effect of constraint, as well as a significant interaction of constraint x 

orientation on arm elevation for the jumper task; these results will also be addressed in 

Section 5.3. 
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5.2.4 Radial/Ulnar Deviation 

For the spring task there was a significant two-way interaction of orientation x 

constraint; these results suggest that in this task unconstraining the tool coupling is only 

effective in changing radial/ulnar posture on the slanted work surface.  This explanation 

can be validated by the observation that on the slanted surface subjects did change hand-

tool coupling 16 of 32 trials, while on the vertical surface a change was made only nine 

of 32 trials.  (These observations of the frequency of hand-coupling change during the 

unconstrained trials are described in more detail in section 5.3, where they are used to 

further explain many of the results in this experiment.) 

For the jumper task there were significant effects on radial/ulnar deviation due to 

constraint (main), pliers x orientation interaction, and orientation x constraint 

interaction; all of these results are explained further in Section 5.3   

5.3 Further Discussion Regarding Tool Coupling 

There was an observation made during data collection that, though not validated 

statistically, is believed (in the opinion of the investigator) to go a long way in explaining 

many of the results obtained, and ultimately supports the notion that the design of the 

bent-handle pliers constrains users.   

The design of the study had subjects perform all conditions in a randomized order 

of presentation of pliers by orientation; within this randomization, however, subjects 

always performed the constrained condition first, followed immediately by the 

unconstrained.  (This order reflects what would likely happen in a real-world application, 

where a worker would start using a tool as it was designed to be used, but given the 

opportunity, would explore other ways to use the tool.)  Though subjects did not have to 
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change coupling for the unconstrained conditions, notes taken during the experiment 

indicated that with the straight-handle pliers subjects did change their coupling with the 

tool 42 out of 64 times, while with the bent-handle pliers this was done only 18 out of 64 

times (for all trials subjects were informed to perform as quickly as possible, so when 

choosing the coupling used during the unconstrained conditions this remained the 

objective).   

Often the coupling change was minor, for example moving the pliers out from the 

palm onto the fingertips.  However, there were occasions when subjects made “major” 

changes to the coupling (major is defined here as a departure from holding the pliers in 

the sagittal plane with the thumb opposed by at least three digits, and the jaws exiting 

from the radial aspect of the hand), and this was more frequently done with the straight-

handle pliers (15 of 64 trials) then with the bent-handle pliers (6 out of 64 trials).  Of 

these, there was a particularly common “major” coupling change that subjects made: 

turning the pliers so that the jaws exited from the ulnar aspect of the hand (called here, a 

“dagger grip”).  With the bent-handle pliers subjects tried the dagger grip six out of 64 

trials, while with the straight-handle pliers it was attempted 13 of 64 trials.  Furthermore, 

of the six trials used with the bent-handle pliers only two resulted in a subjective 

preference for the dagger grip over the constrained grip, while with the straight-handle 

pliers the ratio was ten of 13.  (Note: the other two major changes with the straight-

handle pliers included one trial where the subject held the pliers in an extremely 

supinated manner that allowed the shoulder and wrist to be maintained in neutral 

positions, and one resulted in the pliers being held such that they exited the hand from 
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between the third and fourth digits.)  Tables 5.1 and 5.2. provide a summary of the 

coupling changes made during the unconstrained conditions.   

Table 5.1: Breakdown of alternative couplings during unconstrained conditions (data from both tasks 
combined). 
Tool Minor Coupling Change Dagger Grip Other Major Coupling 

Change 
Total out of 64 

Straight-handle 27 13 2 42 
Bent-handle 12 6 0 18 

  

The alternative coupling numbers can be broken down further by work surface 

orientation as demonstrated in Table 5.2.  

Table5. 2: Number of trials for which a different coupling was used during the unconstrained condition on 
the two orientations (data from both tasks combined). 
Tool Vertical Slanted Total 
Straight-handle 18 24 42 
Bent-handle 5 13 18 
Total 23 37  

 

Table 5.2 demonstrates, that not only were subjects more likely to use the 

straight-handle pliers with different couplings, but that it was more common to change 

the coupling on the slanted work surface. 

Relating this back to the significant results, it can be seen that for both tasks, 

orientation had a significant main effect; with the slanted surface the jumper task was 

performed 5% faster, while the spring task was performed 7.1% faster (this was 

explained as likely being due, at least in part, to better visual input).  Also, both tasks had 

a main effect of constraint on productivity, with the unconstrained conditions resulting in 

quicker task performance.  Taking these main effects into consideration, the suggestion 
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from a productivity perspective is that the slanted work surface is superior for 

productivity, as is the unconstrained condition. 

The significant main and interaction effects on radial/ulnar deviation support this 

design recommendation from an ergonomic perspective.  The pliers x constraint 

interaction (jumper task) demonstrated that deviation was minimized with the 

unconstrained, straight-handle pliers (47.3% less than the bent-handle pliers in the 

unconstrained condition).  While for the orientation x constraint interaction (jumper task) 

deviation was minimized for the unconstrained condition on the slanted work surface (the 

slanted unconstrained condition was 32.2% less than the vertical unconstrained).  The 

only interaction effect on posture for the spring task was orientation x constraint on 

radial/ulnar deviation, but these results do not support this argument. 

Similarly, looking at the significant effects on shoulder posture, it can be seen that 

for the jumper task there was a significant main effect of constraint and that this effect 

showed reduced shoulder deviation (28.3% less) when the pliers are used unconstrained.  

Additionally there was an orientation x constraint interaction effect that showed both 

orientations are positively impacted by the unconstrained condition, and that the 

improvement is greater for the slanted orientation (the slanted orientation reduced arm 

elevation by 39%, while the vertical orientation reduced it by only 12.6%). 

The consistent theme of these results is that when tool-users hold the pliers 

unconstrained they are able to maintain more neutral postures, and that this benefit is 

more pronounced with the straight-handle pliers.  Furthermore, it supports performance 

of the task on a slanted surface, where performance may be quicker. 
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5.4 Relating This Study to Previous Works  

The previous investigations into bent-handle designs for hammers, files, and 

knives (cited earlier in this document) all found favourable results, in one form or 

another, of the bent-handle design over the conventional, straight-handle counterpart.  

However, it is difficult to relate the results when the outcomes of interest are not the 

same. 

This study investigated both the ergonomic impact (via posture) and the 

productivity impact of the two different designs.  Schoenmarklin and Marras (1989a) 

found postural differences between the different hammer designs in the maximum 

amount of ulnar deviation, but not in the total range of motion, while they did not find 

productivity differences.  Similarly, Hsu and Chen (1999) found postural benefits to their 

bent-handle file design, but there were no differences in tests of precision or efficiency 

(except for the extreme 90º bend, which was worse than all others, including the straight-

handle design).  The investigation into bent-handle knives did not explore productivity, 

and lastly, there is disagreement between the productivity results of Tichauer (1968) and 

Dempsey and Leamon (1995).  This study found a productivity advantage to the bent-

handle pliers for one task, and a decrement in the other task.  It is important to consider 

the motivational role of productivity, if it is supported or opposed by postural benefits, 

and if the two conflict, how much does each contribute to the decision regarding which 

tool to use.  These are all factors that are not only task specific, but certainly weigh 

differently amongst individuals. 

Many of the earlier studies relied on subjective evaluation of the two different 

designs for hand tools.  Granada and Konz (1981), Krohn and Konz (1982), and Konz 
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and Street (1984), all used college students as subjects to evaluate the tool designs.  Only 

Hsu and Chen (1999) used experienced subjects, and though they did find subjective 

preferences with the bent-handle design, the results of one study cannot be applied to 

industry in general.  Would we find consistent results if experienced subjects were used 

in all the studies?  It is worth reminding the reader that in their discussion section, Hsu 

and Chen (1999) noted that workers should have both a bent-handle file and a 

conventional straight-handle tool at their disposal. 

Another consideration is that, as with this investigation, all but one of the works 

cited here were laboratory studies; the only previous work found in the ergonomics 

literature that utilized a field study to asses the effects of a bent-handle design was that of 

Tichauer (1973), and a review by Leamon and Dempsey (1995) indicates “the validity of 

Tichauer’s results needs further support”.  Overall, the lack of field results for this design 

issue has major implications on the face validity of the results, and the subsequent 

recommendation that has been emphasized as a hand-tool design tenet, must be re-

evaluated.   

An article by Dempsey and Leamon (1995) provides further rationale for 

understanding (and perhaps underplaying) the ergonomic impact that bent-handle tools 

may have.  In their article they outline a model that shows tool design being just one of 

four major factors (the others being workplace design, operator characteristics, and task 

characteristics), with handle shape being just one of five tool design characteristics, that 

ultimately determine wrist deviation.  Their model shows tool design interacting with 

operator characteristics, and as has been clearly emphasized in this paper, it is likely that 

for real world uses of the pliers (and other tools designed to this tenet) the bent-handle 
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design is likely to constrain the operator.  Again the reader is reminded that both 

Schoenmarklin and Marras ((1989a), and Konz and Streets (1984) alluded to this in the 

respective discussion sections of their bent-handle hammer studies; stating that the 

changes in the design of the tool handle cannot be done independently of the task, and 

that the bend in the handle can constrain the user’s grip.   

5.5 Future Research 

The motivation for this study was the lack of congruence between the common 

ergonomic recommendation to “bend the tool” (specifically the example of the pistol-grip 

pliers) and the lack of industry use of this tool.   One of the primary hypotheses was that 

the lack of symmetry about the long axis of the bent-handle pliers constrained the user of 

the tool.  Further studies should be developed to investigate the relationship between tool 

design symmetry and user constraints.   

Additionally, it was hypothesized that the results were task specific, and that tasks 

requiring manipulation of the jaws of the pliers outside of the sagittal plane were less 

suited to use of the bent-handle pliers (as determined by the dependent variables in this 

study).  It would be worthwhile evaluating a task that was identical in all respects (for 

example: task goal, interaction between part and pliers, equal travel distances, equal 

visual conditions) but that had as an independent variable tool manipulation in different 

planes. 

Ultimately, what is needed is an example from industry of a task that currently 

uses the bent-handle pliers (or any of the other bent-handle tools mentioned) that could be 

used for a field study to analyze the productivity and ergonomic implications of this 

design recommendation. 
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5.6 Limitations 

The postural data collected in this study were averaged to produce one value per 

subject per trial.  Although pilot data indicated that the range of motion in any of the 

dependent variables measured was relatively small, there may have been additional 

information contained in this data that could provide insight into the implications of the 

bent-handle pliers design.   

During the unconstrained trials subjects were not permitted to change their 

coupling once they started the trial.  This was done to reduce the complexity of the study, 

and to reduce the variability, however it does not reflect the real world where tool users 

would likely be able to change their coupling (and other task factors) to shift the strain of 

the task during performance. 

A detailed description of the work surface height determination was provided for 

this study.  It is believed that the approach taken for determining this task characteristic 

was appropriate, however the work surface height has a great deal of influence on the 

dependent variables and the effect on the study results cannot be known.  Expanding the 

study to include an independent variable of height would potentially provide insight, but 

would also dramatically increase the scope of the study. 

As mentioned in the Introduction, there were no industry tasks found where the 

bent-handle pliers were being used.  This would have provided a superior method for 

analyzing the effects of the bent-handle pliers compared to the straight-handle pliers.  

Although it is believed that the fabricated tasks were good representatives of real world 

tasks, this may not have been the case. 
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Subjects used in this study had varying degrees of experience with pliers; this 

likely introduced more variability into the study, making the identification of significant 

results more difficult.  Similarly, experienced workers (with a real task) may have a 

different strategy for using the pliers that the recruited subjects in this study would not 

have necessarily used. 

The short duration of the trials may have altered the results, since longer use may 

require different strategies.  For example, subjects may have been able to provide higher 

productivity over the shorter period of time, and they may have been able to maintain 

awkward postures for the durations used in this study; not reflecting what may occur in a 

real work environment. 
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6.0 CONCLUSION 

Although the results of this study did not fully corroborate the original 

hypotheses, there were many significant results that did support them to varying degrees.  

Furthermore, a line of logic was developed based indirectly on the results that suggested 

that the design of the bent-handle pliers constrains users for the tasks used in this study, 

and that the constraint of the design has the potential to reduce productivity and cause 

more awkward wrist and shoulder postures.   

There is the suggestion that the bent-handle pliers would be better for a task that 

has very specific characteristics (sagittal plane orientation with no rotation out of this 

plane), but the difficulty in finding an industry example with these characteristics leaves 

this question unanswered.  Overall, the results suggest that a hand tool designed for 

specificity can impose constraints on the user, and in such a case a flexible design is 

better.  

A final conclusion to be made from these results, and those of previous works, is 

that this design recommendation cannot be made in the absence of a clear and complete 

understanding of the task requirements, the user population, and the environmental 

conditions.    
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7.0 APPENDICES 

7.1 Work Surface Height Determination Data 

Table 7.1: Pilot Subject Anthropometry Data.  
Pilot Subject #1 Pilot Subject #2 Pilot Subject #3 

Shoulder Height 161.4 132.8 146.5 
Elbow Height 122.6 102.6 115 
Mid-arm 142 117.7 130.8 

 

Table 7.2: Pilot Subject Preferred Work Heights and Averages for Jumper Task. 
Jumper Task Pilot Subject #1 Pilot Subject #2 Pilot Subject #3 
Straight/Slanted 113 106.7 111.1 
Bent/Slanted 120.7 110.5 119.4 
Slanted Average 116.9 108.6 115.3 
Straight/Vertical 137.8 114.6 125.7 
Bent/Vertical 150.5 118.1 135.9 
Vertical Average 144.2 117.5 130.8 

 

Table 7.3: Pilot Subject Preferred Work Heights and Averages for Spring Task. 
Spring Task Pilot Subject #1 Pilot Subject #2 Pilot Subject #3 
Straight/Slanted 123.5 115.6 117.5 
Bent/Slanted 127.6 113.7 121.9 
Slanted Average 125.6 114.7 119.7 
Straight/Vertical 134.6 117.5 128 
Bent/Vertical 151.1 117.5 132.1 
Vertical Average 142.9 117.5 130.1 

 

Table 7.4: Differences Between Task/Orientation Average Height (Havg (data from Tables 2 & 3)) and 
Three Body Landmarks (data from Table 1); for each pilot subject.   

Pilot Subject #1 Pilot Subject #2 Pilot Subject #3 
Shoulder - Havg -44.55 -24.2 -31.25 
Elbow - Havg -5.75 6 0.25 Jumper/Slanted 
Mid-arm - Havg -25.15 -9.1 -15.5 
Shoulder - Havg -17.25 -16.45 -15.7 
Elbow - Havg 21.55 13.75 15.8 Jumper/Vertical 
Mid-arm - Havg 2.15 -1.35 0.05 
Shoulder - Havg -35.85 -18.15 -26.8 
Elbow - Havg 2.95 12.05 4.7 Spring/Slanted 
Mid-arm - Havg -16.45 -3.05 -11.05 
Shoulder - Havg -18.55 -15.3 -16.45 
Elbow - Havg 20.25 14.9 15.05 Spring/Vertical 
Mid-arm - Havg 0.85 -0.2 -0.7 
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Table 7.5: Differences between subjects (body landmark - Havg (data from Table 4)) and rank by least 
difference between subjects.   

PS#1 – PS#2 PS#1 – PS#3 PS#3 – PS#2 Rank 
Shoulder - Havg -20.35 -13.3 -7.05 3 
Elbow - Havg -11.75 -6 -5.75 1 Jumper/Slanted 
Mid-arm - Havg -16.05 -9.65 -6.4 2 
Shoulder - Havg -0.8 -1.55 0.75 1 
Elbow - Havg 7.8 5.75 2.05 3 Jumper/Vertical 
Mid-arm - Havg 3.5 2.1 1.4 2 
Shoulder - Havg -17.7 -9.05 -8.65 3 
Elbow - Havg -9.1 -1.75 -7.35 1 Spring/Slanted 
Mid-arm - Havg -13.4 -5.4 -8 2 
Shoulder - Havg -3.25 -2.1 -1.15 2 
Elbow - Havg 5.35 5.2 0.15 3 Spring/Vertical 
Mid-arm - Havg 1.05 1.55 -0.5 1 
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7.2 Sample Data Collection  

Table 7.6: Example of major steps for a subject data-collection period. 
Step 1 Study description and completion of informed consent. 
Step 2 Anthropometric data collection. 
Step 3 Instrumentation. 
Step 4 Neutral-wrist data collection (two files) 
Step 5 Explanation and demonstration of spring task. 
Step 6 Practice spring task with bent pliers on vertical work surface, followed by practice with 

straight pliers on vertical work surface1. 
Step 7 Practice spring task with bent pliers on slanted work surface, followed by practice with straight 

pliers on slanted work surface1. 
Step 8 Data collection trial for spring task; sample order of performance2: 

• Bent pliers, vertical work surface, constrained. 
• Bent pliers, vertical work surface, unconstrained. 
• Bent pliers, slanted work surface, constrained. 
• Bent pliers, slanted work surface, unconstrained. 
• Straight pliers, slanted work surface, constrained. 
• Straight pliers, slanted work surface, unconstrained. 
• Straight pliers, vertical work surface, constrained. 
• Straight pliers, vertical work surface, unconstrained. 

Step 9 Explanation and demonstration of Jumper task. 
Step 10 Practice jumper task with bent pliers on vertical work surface, followed by practice with 

straight pliers on vertical work surface1. 
Step 11 Practice jumper task with bent pliers on slanted work surface, followed by practice with 

straight pliers on slanted work surface1. 
Step 12 Data collection trial for jumper task; sample order of performance2: 

• Straight pliers, slanted work surface, constrained. 
• Straight pliers, slanted work surface, unconstrained. 
• Bent pliers, vertical work surface, constrained. 
• Bent pliers, vertical work surface, unconstrained. 
• Straight pliers, vertical work surface, constrained. 
• Straight pliers, vertical work surface, unconstrained. 
• Bent pliers, slanted work surface, constrained. 
• Bent pliers, slanted work surface, unconstrained. 

Step 13 Final neutral-wrist data collection. 
Step 14 Removal of instrumentation and end of subject data collection. 

1. Order of performance was alternated between subjects. 
2. Order of performance of pliers by orientation was randomized among subjects, but constrained 

condition always immediately preceded unconstrained condition for all combinations of pliers by 
orientation. 
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7.3 Informed Consent Form 
North Carolina State University  
INFORMED CONSENT FORM  

Productivity and Ergonomic Investigation of Bent-Handle Pliers.  

Principal Investigator: Kelly Duke     Faculty Sponsor:  Gary Mirka  

You are invited to participate in a research study.  The purpose of this study is to determine if there are benefits to using bent-
handled needle-nose pliers versus straight pliers in certain tasks.   

INFORMATION 
In preparation for the experiment motion sensors will be placed on your dominant arm and secured using hypoallergenic tape.  You 
will then be asked to move your hands through their full range of motion for calibration purposes.  During this experiment you will be 
asked to perform two different tasks as quickly as possible.  The first task will require you to use two different kinds of pliers to move 
computer jumpers between mounting pins on a board.  The second task will require you to use two different kinds of pliers to stretch a 
small spring and attach it to a post on the work surface.  Both of the tasks will be performed on work surfaces in two different 
orientations (vertical and 45º) with both the straight pliers and the bent-handle pliers. The entire session will be videotaped. 
This study will occur in one session and will require approximately 90 total minutes of your time.  

RISKS 
Your participation in this study involves minimal risk.  This experiment will require the use of the upper extremity and may cause 
discomfort in those individuals with chronic or acute problems of the dominant side arm.  If you have a history of chronic problems of 
the shoulder, arm, elbow, forearm or hand wrist please tell the researchers.  If you do not have such problems, please mark your 
initials here: _____.  There is some risk of skin irritation to people with very sensitive skin, even though all adhesive tapes used in the 
experiment are hypoallergenic.  If you have very sensitive skin, please tell the researchers now.  If you do not have such sensitivities, 
please mark your initials here: _____.  Additionally, due to the repetitive nature of the tasks, you may experience slight, discomfort of 
the hands and/or wrists for a period of up to approximately a day following the trial.  

BENEFITS 
This study will provide no direct benefits to you, the subject, but it will contribute to the ergonomic tool-design body of knowledge.  

CONFIDENTIALITY 
The information in the study records will be kept strictly confidential.  Data will be stored securely and will be made available 
only to persons conducting the study unless you specifically give permission in writing to do otherwise.  No reference will be 
made in oral or written reports that could link you to the study.  All videotapes will be destroyed upon completion of data 
analysis.  

COMPENSATION 
For participating in this study you will receive an “Industrial Engineering – Ergonomics” T-shirt. If you withdraw from the study 
prior to its completion, you will still receive the T-shirt.  

EMERGENCY MEDICAL TREATMENT (if applicable) 
No compensation for medical treatment will be provided in the event of an injury or illness.   

CONTACT 
If you have questions at any time about the study or the procedures, you may contact the researcher, Kelly Duke, at 328 
Riddick Labs, or 515-7210.  If you feel you have not been treated according to the descriptions in this form, or your rights as a 
participant in research have been violated during the course of this project, you may contact Dr. Matthew Zingraff, Chair of 
the NCSU IRB for the Use of Human Subjects in Research Committee, Box 7514, NCSU Campus (919/513-1834) or Mr. 
Matthew Ronning, Assistant Vice Chancellor, Research Administration, Box 7514, NCSU Campus (919/513-2148)  

PARTICIPATION 
Your participation in this study is voluntary; you may decline to participate without penalty.  If you decide to participate, you 
may withdraw from the study at any time without penalty and without loss of benefits to which you are otherwise entitled.  If 
you withdraw from the study before data collection is completed your data will be returned to you or destroyed.  

CONSENT 
I have read and understand the above information.  I have received a copy of this form.  I agree to participate in this study.  

Subject's signature_______________________________________ Date _________________  

Investigator's signature__________________________________ Date _________________  


