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ARTICLE INFO ABSTRACT

Keywords: Falling injuries pose serious health risks to people of all ages, and knowing the extent of exposure to irregular
Uneven surface surfaces will increase the ability to measure fall risk. Current gait analysis methods require overly complicated
Gait

instrumentation and have not been tested for external factors such as walking surfaces that are encountered in
the real-world, thus the results are difficult to extrapolate to real-world situations. Artificial intelligence ap-
proaches (in particular deep learning networks of varied architectures) to analyze data collected from wearable
sensors were used to identify irregular surface exposure in a real-world setting. Thirty young adults wore six
Inertial Measurement Unit (IMU) sensors placed on their body (right wrist, trunks at the L5/S1 level, left and
right thigh, left and right shank) while walking over eight different surfaces commonly encountered in the living
community as well as occupational settings. Three variations of deep learning models were trained to solve this
walking surface recognition problem: 1) convolution neural network (CNN); 2) long short term memory (LSTM)
network and 3) LSTM structure with an extra global pooling layer (Global-LSTM) which learns the coordination
between different data streams (e.g. different channels of the same sensor as well as different sensors). Results
indicated that all three deep learning models can recognize walking surfaces with above 0.90 accuracy, with the
Global-LSTM yielding the best performance at 0.92 accuracy. In terms of individual sensors, the right thigh based
Global-LSTM model reported the highest accuracy (0.90 accuracy). Results from this study provide further ev-
idence that deep learning and wearable sensors can be utilized to recognize irregular walking surfaces induced
motion alteration and applied to prevent falling injuries.

Convolutional neural network
Inertial measurement units
Artificial intelligence

1. Introduction

Falling injuries are a serious health risk for anyone, regardless of
their age (Verma and others (2016)). Twenty five percent of adults over
65 experience falls annually, with the occurrence of a first fall increasing
the likelihood of future fall events (Stevens and others (2012);
O’Loughlin and others (1993)). Even though older adults tend to expe-
rience falls more frequently, younger adults and children are prone to
falling incidents as well. Previous literature has reported that the rate of
falls increased with age from 18% in youth, to 21% in middle-aged, and
35% in elders (Talbot and others (2005)). In addition, unintentional falls
are the leading cause of nonfatal accidental injury for all ages (CDC
(2013)). As such, unintentional falls are a widespread public health issue
to address, and a better understanding of fall exposure risk is necessary
to design successful interventions.

Fall risk is associated with ground surface conditions, and uneven
outdoor surfaces may pose greater risks (Schepers and others (2017);
Oxley and others (2018); Menz and others (2003); Su and Dingwell
(2007)). Gait adaptations are necessary to navigate on uneven surfaces,
but research on real-world outdoor surfaces has been limited. In order to
design better outdoor walkways and successful interventions, it is
necessary to understand gait biomechanics associated with different
surfaces and fall risk in outdoor real-world environments. In addition,
real-time recognition of the gait alteration caused by irregular walking
surface will also help in timely prevent falling events. However, previous
studies in this domain typically involve complex equipment setups that
are only practical in laboratory settings such as motion tracking through
multiple cameras or ground reaction force sensing devices (Chen and
others (2016); Muro-De-La-Herran and others (2014); Tedesco and
others (2017)). Although these studies have contributed to a better
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understanding of how human gait and motor control interact with the
environment, the complexity of the equipment setup has restricted the
scalability of the implementation and the generalizability of the results.
Recently, the incorporation of wearable devices in human motion
studies has proven to be a powerful tool and has shown promising results
(Chen and others (2016); MuroDe-La-Herran and others (2014); Tedesco
and others (2017); Tao and others (2012); Kobsar and others (2014);
Schall Jr and others (2016)). Inertial Measurement Unit (IMU) sensors
collect data on an individual’s gait, providing useful indirect informa-
tion into users’ fatigue levels, physical conditions, and more (Lara and
Labrador (2012); Tao and others (2012); Norris and others (2014);
Reenalda and others (2016); Shimazaki and Murata (2015)). These de-
vices are a good candidate in reducing the equipment burden without
sacrificing too much measurement quality.

Gait and motion analysis has also greatly benefited from the use of
machine learning and data analytic methods. Previous literature has
shown that machine learning algorithm is capable of recognizing human
activity and distinguishing individuals from one another (Lim and
D’Souza (2019); Muller and others (2020)). Earlier works have usually
utilized intense feature-engineering operations to train classifiers to
recognize simple activities with obvious spatial pattern differences.
Classifiers that were used in these studies include
fuzzy-basis-function-based (FBF-based) classifier (Kao and others
(2009); Chen and others (2008)), decision trees (Jatoba and others
(2008); Maurer and others (2006)), Bayesian (Tapia and others (2007))
and vanilla neural networks (Randell and Muller (2000)). Although in
many cases, these relatively simple and straightforward approaches are
adequate to render accurate prediction. However, more elaborate gait
applications which are commonly seen in healthcare and behavioral
science pose new challenges calling for innovative solutions. A majority
of these earlier applications focused on recognizing simple human ac-
tions such as walking and running, but the focus has been shifting to-
wards the recognition of complex human activities with subtle
differences using advanced machine learning methods. For example,
deep learning networks have been applied to classify different Parkinson
Disease states (Hammerla and others (2015)), different
material-handling models in occupational lifting tasks (Mehrizi and
others (2019)), and to predict pedestrian trajectory in varied social in-
teractions (Alahi and others (2016); Gupta and others (2018); Sadeghian
and others (2019)). It is worth noting that most of these deep learning
applications utilize image data while time series spatial and temporal
information collected from wearable IMUs are much infrequently used.
One motivation of the current work was to expand the deep learning
application spectrum with richer data modality. Our previous works
have used deep learning networks and a simple IMU sensor setup (1 or 2
sensors) to recognize walking/running surfaces with different levels of
irregularity (Hu and others (2018); Dixon and others (2019)). These
studies were successful in distinguishing between different surfaces and
age-related traits while conceptually demonstrating the feasibility of
wearable sensors in this context, however, those studies only included
limited (i.e. no more than 3) experimental walking surfaces. There are
numerous categories of irregular surfaces commonly seen in the
real-world that can significantly affect human gait performance (Dixon
and Pearsall (2010); Damavandi and others (2012)). Another limitation
of our previous studies is the possibility of over fitting caused by the
restrained sample size. Thus, larger data sets of more terrain surfaces are
needed in order to validate the scalability of the algorithms. Research
using wearable sensors has also emphasized the importance of collecting
data outside of laboratory settings. Real-life environments are complex,
and there are various conditions that can affect gaits such as clothing,
footwear, load carrying, walking surfaces, and the inclination of the
ground (Sprager and Juric (2015)). Although lab-based systems can
collect highly accurate human movement data, they are relatively
expensive and require expert operator (Simon (2004)). Furthermore,
they are restricted to laboratory settings and thus the information
derived may not reflect gait in real-world contexts. Testing in real-world
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scenarios allow better external validity but can come at a cost of
decreased accuracy when analyzing such data, raise the demand for
better analysis technique (Brodie and others (2016); Alsheikh and others
(2016); Khandelwal and Wickstrom (2017); Weiss and others (2011,
2013)). Therefore, the primary aim of this study was to investigate if
outputs from wearable IMUs coupled with a deep convolutional neural
network could detect motion pattern alteration caused by real-world
irregular walking surfaces. Our first goal was to characterize the preci-
sion and recall performance with which deep learning algorithms can
detect walking surface categories using IMU data. The second goal was
to compare the performance from different sensor placements and
neural network layouts.

2. Methods
2.1. Participants

Thirty young adults volunteered for this study (14 females, 16 males,
23.5 + 4.3 years, 169.3 + 21.9 cm, 71.2 + 14 kg). All participants had
normal or corrected to normal vision. Participants had no reported
neurological or musculoskeletal conditions that affected their gait or
posture and no history of falling injuries in the previous two years. The
Harvard and Northeastern Institutional Review Boards approved this
study and all participants provided written consent.

2.2. Data collection on the irregular walking surfaces

Participants performed 42 walking trials (7 different surfaces x 6
repetitions) while wearing six IMU sensors set (MTw Awinda, Xsens, the
Netherlands). Each sensor included a tri-axial accelerometer, gyroscope,
and magnetometer with respective ranges of £160 m/s2, 2000 deg/s
and +1.9 Gauss. The sampling frequency was 100 Hz. The locations for
the sensors were: 1) right wrist; 2) the mid-line of the lower-back (over
the L3-L5 spinous processes of the trunk); 3-4) left and right thigh; 5-6)
left and right shank (Fig. 1). The researchers palpated participants’
bodies to place the sensors. The seven walking surfaces were: 1) flat
uneven cobble stone (26 x 18 cm blocks) pavement); 2-3) bank right
and 4) bank left; 4-5) slope up and slope down; 6-7) upstairs and
downstairs (Fig. 2). The eighth condition was a static standing without
locomotion activity.

There was no inclination in any of the surfaces except the slope
condition. Participants walked around 15 m for each trial with small
variances between each condition. All testing surfaces were in the real-
world and outside of the lab which guarantees the external validity of
the study. Data collection occurred on a busy university campus with
foot, vehicle, and train traffic which tests whether the algorithm will be
robust to external influences in the data. These irregular surfaces were
presented in a randomized order and rest between surfaces was provided
to minimize fatigue. The overall protocol required less than 2 h in order
to reduce fatigue. All data collection was conducted on days without
precipitation and the walking surfaces were dry and clear. All experi-
ments were finished during daylight hours and the same surfaces were
used for each participant. It is worth noting that footwear attributes
(comfortness, sole pattern, etc.) can also influence the wearer’s walking
pattern. Thus, on the lab visit day participants were informed in advance
that they wore their daily sport sneakers. Before formal data collection,
the experimenter manually checked the wear and tear of the thread on
the sole (more than 1/16"). More detailed descriptions of this data set
can be found in our recent publication (Luo and others (2020)).

2.3. Initial data processing

For each trial, all 36 data channels (3D accelerometer and 3D gy-
roscope from each of the 6 sensors) were scaled from 0 to 1 to ensure
equal weightings across channels and improve model performance. A
sliding window of 4 s width (400 data points) that captured 2-3 full gait



B. Hu et al.

Applied Ergonomics 96 (2021) 103414

(a) (b)

Fig. 2. Irregular surfaces tested in the study: a) uneven cobble stone; b) flat bank surface; c) stairs; d) slope surface.

cycles and a fixed step length of 1 s was applied on each trial to segment
and augment the data, respectively (Xun and others (2016); Hu and
others (2018)). After the data segmentation procedure, the whole data
set included 49420 time series. The detailed category distribution is
shown in Table 1.

2.4. Network architecture

Three different variations of different deep learning networks were
generated in this study: 1) Convolutional neural networks (CNN) are
feed-forward that are different from fully connected multi-layer net-
works as they include one or more convolutional layers. This method has
the advantage of significantly reducing the computational complexity
with respect to fully connected feed forward neural networks. CNNs
have been proven to be excellent feature extractors for motion data

Table 1
Class IDs for each action.

Class ID Action name

Stand

Flat uneven cobble stone
Bank left

Bank right

Uphill slope

Downbhill slope

Upstairs

Downstairs

N Uh WM~ O

(c) (d)

(Gadaleta and Rossi (2018)). It has the speciality of solving classification
problems of sensor data, some of the previous works on time series signal
classification have shown that this model is practicable (Kiranyaz and
others (2019); Faust and others (2018); Nweke and others (2018);
Strodthoff and Strodthoff (2019)); 2) long short term memory (LSTM)
network is a variation of recurrent neural network that can learn the
temporal dynamics of sequential data, which is well suited for learning
time series data obtained from IMU sensors (Steven Eyobu and Han
(2018); Hochreiter and Schmidhuber (1997)); 3) Global-LSTM: despite
its advantages in learning temporal features, LSTM networks have a
weakness in terms of capturing dependencies and interactions between
multiple correlated time series. In the context of human activity recog-
nition, different channels of the same IMU sensor (3 axis acceleration
and 3 axis angular velocity) and outputs from different sensors all carry
critical information which reveals segments’ spatial coordination and
motion patterns. To address this limitation, inspired by the recent suc-
cess of Social-LSTM for pedestrian walking trajectory regression (Alahi
and others (2016)), in this work we proposed a new approach - LSTM
with a global pooling mechanism (i.e. Global-LSTM) that is able to learn
the correlation between different parallel time series. First, the CNN
model started with the data input layer, and data from the IMU sensor
were used to train the model. Therefore, each training data can be
treated as a matrix of 36 x 400. The input layer was followed by the first
1D convolution layer which included 100 filters in size of 50 and a batch
normalization layer. The structure (100 x 50 1D convolution + batch
normalization) was repeated once (i.e. 2nd convolution layer) plus a
drop out layer of 0.2. Subsequently, the structure (100 x 50 1D
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convolution + batch normalization) was repeated another time plus a
maxpooling layer (size of 3) (Scherer and others (2010)) and a drop out
layer of 0.2. The purpose of having three convolution layers was to
perform dimensionality reduction, feature extraction, and extract local
connectivity (LeCun and others (2015); Gadaleta and Rossi (2018)). The
4th to 6th convolution layers were 50 x 25 1D convolution plus batch
normalization. Only the 6th layer had a drop out of 0.2, followed by a 1D
global average pooling layer. Finally, a fully connected layer with 8
neurons (i.e. 8 types of walking surface) with Softmax as the activation
function completed the CNN architecture. The output of the Softmax
function represents the probability of each walking surface in each trial.
The network architecture is illustrated in Fig. 3. Furthermore, multiple
sub-models that only used a subset of sensors were also trained on the
data to investigate the influence of sensor placement and data fusion on
the model performance. In terms of the LSTM models, in the current
study, the model first started with the input data layer. We added one
layer of LSTM unit with 80 filters, with Relu as the activation function.
We inputted the whole reshaped data and returned a sequence of data by
the LSTM Unit, followed by another same LSTM layer. Dropout 50% of
the neural network unit from the model was then applied. Subsequently,
we added another two LSTM layers and a dropout layer but with 100
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filters. The model ended with an output layer. The network architecture
is illustrated in Fig. 4. For the Global-LSTM network, we first create a
LSTM cell with 64 embedding dimension, with a linear layer to embed
the linear position and the social tensor. Same as the LSTM model, we
also use Relu as the activation function and a dropout rate of 50%. Each
LSTM cell will have a 128-dimensional hidden layer and mapped to the
output. After getting the output from the cells, all correlated time series
output will be forwarded to a global pooling layer and be calculated as a
global tensor there. Each cell learns the global information by getting
the distance from other cells at each timestamp. The network architec-
ture is illustrated in Fig. 5.

2.5. Model implementation and training

The CNN and LSTM models were developed with TensorFlow (Abadi
and others (2016)) and Keras (Chollet (2015)) under Python (Python
Software Foundation, https://www.python.org/), running on Google’s
(Google LLC, Mountainview, USA) Colaboratory GPU (GPU: 1xTesla
K80, 2496 cores, 12 GB RAM). Global-LSTM model was developed with
Pytorch (Paszke and others (2019)) under Python. Models were trained
in a fully-supervised way and gradients were backpropagated from the

activation

activation
(ReLu) (ReLu)
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Input
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Fig. 3. Convolution Neural Network architecture.
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3. Results
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\ elicit guidance on the sensor placement location for future applications,
~ = we created subsets of data to see which sensors contributed the most to
nse the performance of the model. We have taken this approach to see if one
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Table 5). For the CNN models, each individual sensor averaged be-
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2.6. Model performance analysis Table 2
Various sensor subsets for sub-models.
The performance of the models was evaluated with the testing data Dataset ID Sensors Location
set. Specifically, the following metrics were processed and compared: s1 Sensor 1 Wrist
(1) overall prediction accuracy (the percentage of time series correctly S2 Sensor 2 Lower back
predicted by the model); (2) precision (the number of true positives S3 Sensor 3 Left thigh
divided by the sum of true positives plus false positives); (3) recall (the S4 Sensor 4 Right thigh
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Table 3
Sensor sub-model results for the CNN models.

Dataset ID Avg Precision Avg Recall Avg F1-Score
S1 0.78 0.77 0.77
S2 0.78 0.77 0.78
S3 0.72 0.71 0.71
S4 0.77 0.77 0.77
S5 0.75 0.75 0.75
S6 0.77 0.76 0.75
S7 0.91 0.91 0.90
Table 4

Sensor sub-model results for the LSTM models.

Dataset ID Avg Precision Avg Recall Avg F1-Score
S1 0.90 0.89 0.89
S2 0.79 0.78 0.79
S3 0.89 0.87 0.88
S4 0.89 0.88 0.88
S5 0.87 0.88 0.88
S6 0.88 0.87 0.87
S7 0.91 0.90 0.90
Table 5

Sensor sub-model results for the Global-LSTM models.

Dataset ID Avg Precision Avg Recall Avg F1-Score
S1 0.88 0.90 0.89
S2 0.84 0.83 0.84
S3 0.87 0.86 0.87
S4 0.90 0.89 0.89
S5 0.88 0.86 0.87
S6 0.89 0.90 0.90
S7 0.92 0.93 0.92

a single sensor, the combination of all sensors elicited the best classifi-
cation performance (S7 model, 0.91 accuracy). This result indicated that
sensor placement could potentially affect model classification perfor-
mance. In regard to the LSTM networks, models trained from each
sensor data elicited significantly improved results: on average between
0.79 and 0.91 (accuracy). Sensor 1 produced the best performance (0.90
accuracy). Surprisingly, sensor 2 barely benefited from the new model
structure: the model produced the worst performance (0.79 accuracy).
In order to measure the performance of the model on the data set and
elicit guidance on the sensor placement location for future applications,
we created subsets of data to see which sensors contributed most to the
performance of the model. Finally, for the Global-LSTM networks, the
overall accuracy was further improved to 0.92 (i.e. the best in the study).
In addition, model trained using sensor 2 data was improved to 0.84
which demonstrated the effectiveness of the global layer on this part of
data. Finally, confusion matrices of the best three models (best one from
each structure) were presented as Figs. 6-8.

4. Discussions

The purpose of this study was to evaluate if deep learning models on
wearable IMU sensor data can detect different real-world irregular
walking surfaces during human walking tasks. The results indicate in all
three categories, these models can detect different walking surfaces with
satisfactory performance. LSTM and Global-LSTM networks yielded
improved performance when compared to the baseline CNN models.
Furthermore, results from the current study could guide optimal sensor
placement and sensor fusion strategy for risk predicting models. Utiliz-
ing AI methods to model the human physical motion trajectory has
received substantial attention recently. This direction of research has
broad implications including but not limited to: autonomous driving and
pedestrian safety (Liang and others (2020); Tang and Salakhutdinov
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(2019)), human safety in collaborative human robotics interaction
(Kruse and others (2012); Lasota and others (2017)), and public safety
surveillance (Fernando and others (2018)). In the current work, we
successfully applied multiple deep learning models to detect gait alter-
ation caused by different walking surfaces. Despite its perceived intui-
tiveness, there are many fundamental challenges in solving the problem
of human gait pattern prediction due to its inherent complexity and the
stochastic and dynamic interaction between humans and surrounding
environments. Since subtle locomotion adaptations to the environment
are not easily detectable by human intelligence, this presents significant
challenges to AI methods. The CNN model trained with all 6 sensors
elicited an overall accuracy of 0.91 in detecting irregular walking sur-
faces in the real-world environment. Meanwhile, models trained with
only one sensor were less accurate, suggesting that sensor fusion is
necessary for accurate gait analysis. In our previous laboratory study,
one IMU placed on the L5S1 joint combined with a deep learning neural
network with LSTM units was able to recognize gait alteration caused by
an irregular uneven brick surface at 0.96 accuracy (a binary classifier)
(Hu and others (2018)). The study takes a step forward by conducting
the experiment in a real outdoor environment and aims to maximize
ecological validity. There are several notable benefits obtained by
switching the experiment environment that helped to maximize the
ecological validity. Firstly, conducting the experiment outdoors intro-
duced multiple unpredictable factors that could affect human behavior
such as temperature, wind, and behavior of surround pedestrians.
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Secondly, the laboratory study used a designed surface where the
magnitude of unevenness between bricks was larger than that found in
the outdoor environment. Thus, it may be less challenging for the human
motor control system to adapt to and it may cause less gait alteration.
Apart from these benefits, we had the opportunity to validate our al-
gorithms for outdoor use, as previous studies have shown that some
algorithms trained with well controlled indoor data do not perform as
well when tested outdoors (Sprager and Juric (2015)). However, our
results (0.92 accuracy) suggest that the algorithm is robust in an outdoor
setting. Although the full six sensors elicited the best results, the rela-
tively complex setup may cause some compliance issues during the
real-world implementation. Some approaches may need to be taken in
mitigating the negative impacts. To begin with, IMU sensors related
communication micro processor and battery unit can be integrated into
the personal protective devices (PPE) that workers are required to wear
per OSHA regulations such as safety vests, helmets, and safety boots.
This would enable the system to be carried easily by the users as well as
avoiding the potential compliance problem. In addition, we want to
emphasize that results from the current study indicated a single sensor
can also achieve excellent performance, especially for the GlobalLSTM
models. For instance, if a specific application context only includes stairs
and a flat surface, then we can look into the results table and select a
single sensor that has the best classification accuracy. Among all the six
individual sensors, the models that trained with low back sensor outputs
showed the lowest overall accuracy except the CNN model. This finding
might be explained from the motor control perspective. The foot and
distal limb serve as the ‘shock absorber’ which absorbs, modulates, and
controls the foot-ground interaction to maintain a relatively stable upper
body. The irregularity of the walking surfaces could still generate subtle
but consistent and unique modifications to a person’s gait and which
would be recognized by the AI models. However, when it comes to the
lower back region, the whole body gait and balance control may well
mitigate the influence of the walking surfaces and keep the movement
pattern of this segment unchanged. This explanation is also supported by
the results that Global-LSTM which is able to learn the coordination
between different time series channels had the highest accuracy in
general. Furthermore, humans rely on both active and passive control to
adapt their gaits to terrain variations and tend to move their centers of
mass ballistically during walking, utilizing the available mechanical
forces and inherent stability to maintain an optimal metabolic energy
expenditure status (Matthis and others (2017)). It is possible that in the
current experiment, participants’ motor control systems absorbed and
modulated the irregular surfaces’ impact effectively and maintained
their gait sta-ble and relatively unchanged at the low back level. Follow
up kinematics analysis is needed to evaluate this finding and we will
describe the analysis in another manuscript. Advanced machine learning
methods are becoming more and more common in activity analysis, and
these results suggest that deep learning is a feasible method for con-
ducting real-world gait analysis. Compared to the other previous human
activity recognition studies, the current CNN models showed compa-
rably accurate performance (Roggen and others (2010); Lockhart and
others (2011); Anguita and others (2012); Bachlin and others (2010); Li
and others (2020); Hammerla and others (2016); Jiang and Yin (2015)).
It is worth mentioning that these studies analyze more distinguishable
activities such as normal walking, eating, etc. For those few studies that
included varied irregular surfaces, the magnitude of the unevenness of
the walkway used was larger. In contrast, the current study used
real-world structures and the unevenness was mainly caused by design
and natural deterioration. There remain some technical challenges to
using deep learning and wearable IMUs for accurate gait analysis. In
many cases, the features derived from deep learning networks might be
less discriminating than shallow features that come from a manual
feature engineering process. A possible explanation may be the fact that
in order to train deep learning networks properly, complex layer
structure and a large amount of training data are required to recognize
the entire hierarchy of features. Since deep learning is a data driven
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process by nature, if the input data is not comprehensively represented
in all the possible modalities, the trained networks will not be able to
generalize these data modalities automatically for the subsequent clas-
sification purpose (Ravi and others (2016)). We hope that the results
from this study can be used as a guide on how to apply IMUs and deep
learning technology to avoid falling injuries and create observable im-
pacts in the applied ergonomics community. A few applicable scenarios
are described here: 1) real-time unsafe walking surface detection and
warning. People may not be aware of the alteration of the surfaces and
related falling risks due to multiple reasons such as their attention is
taxed by their work at hand, physical/mental fatigue caused by pro-
longed work, or complacency issues. This phenomenon is commonly
seen in occupational settings as well as our daily lives. For example, the
lane departure warning system in modern vehicles is a good example of
correcting this type of human errors. Results from the current study will
help in the development of similar systems in the pedestrian walking
domain; 2) occupational long term risk exposure assessment. In the
construction industry, the working environment is highly dynamic and
unstructured, traditional ergonomics observation methods will not
induce effective and accurate risk exposure evaluation. With our algo-
rithms, workers’ detailed falling risk exposure profile throughout the
course of their work shift can be obtained. Employers can utilize this
piece of information to adjust their safety program, while workplace
insurance providers can consider this in their premium determination
models. Following the recent advancements in Recurrent Neural
Network (RNN) models for sequence data recognition tasks, we pro-
posed a Global-LSTM model which can learn general human movement
patterns and predict their future adaptions due to the environmental
influences. This is in contrast to traditional approaches that use
hand-crafted functions such as classical gait or biomechanics analyses.
While LSTMs have the ability to learn and reproduce long time series,
they do not capture dependencies between multiple correlated se-
quences. This weakness is observed in the current study: although single
sensor LSTMs outperformed CNNs by a big margin, the full set models
did not show a comparable level of improvement because CNNs can take
advantage of multi-modal data streams and learn their interconnections
while LSTMs lack this capability. Compared to regular LSTM models, we
applied an innovative layer (i.e. global layer) to learn the interconnec-
tion and coordination between different joints and body segments dur-
ing the physical motion in 3D space. Specifically, we designed a novel
architecture which connects the LSTMs corresponding to nearby se-
quences (i.e. data streams from different sensors). In particular, we
introduce a “Global” pooling layer which enables the LSTMs of proximal
time series to share their hidden-states with each other. This new model,
which we refer to as the “Global-LSTM”, can automatically extract and
learn typical interactions among sensors’ outputs which coincide in the
time domain. Results from the study demonstrate the effectiveness of
this new network architecture. Several limitations of this study need to
be noted. First, even though interpretable machine learning has received
substantial attention recently, CNN models still work in a quasi-black
box manner. This makes it difficult to understand exactly which gait
features were exploited by the models in the classification task.
Follow-up studies with traditional gait analyses are necessary to provide
more insight into this question. The participants in this study were all
healthy young adults which may limit generalizability to the overall
population. In addition, we only collected data during days without
precipitation to protect participants as well as the digital devices.
However, on some surfaces walking can be significantly altered in case
of rain or snow fall, when surfaces become more slippery. Future studies
with more safety precaution approaches are required to test the algo-
rithms with wet surfaces. In addition, while we were successful in
detecting subtle gait changes due to walking surface changes, more work
is necessary to understand which of these gait adaptations are associated
with fall risk and potential applications of sensors and machine learning
might be applied to real-world fall prevention. Lastly, a systematic
feature selection Ribeiro and others (2016) and Lundberg and Lee
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(2017), for instance and ranking analysis would shed light on the system
optimization, which is lacking in the current study.

5. Conclusion

In conclusion, this study developed different deep learning models to
classify different irregular surfaces using data collected from wearable
sensors during human walking tasks with satisfactory performance.
Different sub-models were also trained to investigate the influence of
sensor placement, data fusion, and model structure on model prediction
performance. Results indicate the strong potential of using deep learning
models and wearable sensors to track human gait and prevent falling
injuries in real-world settings.
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