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A B S T R A C T   

Falling injuries pose serious health risks to people of all ages, and knowing the extent of exposure to irregular 
surfaces will increase the ability to measure fall risk. Current gait analysis methods require overly complicated 
instrumentation and have not been tested for external factors such as walking surfaces that are encountered in 
the real-world, thus the results are difficult to extrapolate to real-world situations. Artificial intelligence ap
proaches (in particular deep learning networks of varied architectures) to analyze data collected from wearable 
sensors were used to identify irregular surface exposure in a real-world setting. Thirty young adults wore six 
Inertial Measurement Unit (IMU) sensors placed on their body (right wrist, trunks at the L5/S1 level, left and 
right thigh, left and right shank) while walking over eight different surfaces commonly encountered in the living 
community as well as occupational settings. Three variations of deep learning models were trained to solve this 
walking surface recognition problem: 1) convolution neural network (CNN); 2) long short term memory (LSTM) 
network and 3) LSTM structure with an extra global pooling layer (Global-LSTM) which learns the coordination 
between different data streams (e.g. different channels of the same sensor as well as different sensors). Results 
indicated that all three deep learning models can recognize walking surfaces with above 0.90 accuracy, with the 
Global-LSTM yielding the best performance at 0.92 accuracy. In terms of individual sensors, the right thigh based 
Global-LSTM model reported the highest accuracy (0.90 accuracy). Results from this study provide further ev
idence that deep learning and wearable sensors can be utilized to recognize irregular walking surfaces induced 
motion alteration and applied to prevent falling injuries.   

1. Introduction 

Falling injuries are a serious health risk for anyone, regardless of 
their age (Verma and others (2016)). Twenty five percent of adults over 
65 experience falls annually, with the occurrence of a first fall increasing 
the likelihood of future fall events (Stevens and others (2012); 
O’Loughlin and others (1993)). Even though older adults tend to expe
rience falls more frequently, younger adults and children are prone to 
falling incidents as well. Previous literature has reported that the rate of 
falls increased with age from 18% in youth, to 21% in middle-aged, and 
35% in elders (Talbot and others (2005)). In addition, unintentional falls 
are the leading cause of nonfatal accidental injury for all ages (CDC 
(2013)). As such, unintentional falls are a widespread public health issue 
to address, and a better understanding of fall exposure risk is necessary 
to design successful interventions. 

Fall risk is associated with ground surface conditions, and uneven 
outdoor surfaces may pose greater risks (Schepers and others (2017); 
Oxley and others (2018); Menz and others (2003); Su and Dingwell 
(2007)). Gait adaptations are necessary to navigate on uneven surfaces, 
but research on real-world outdoor surfaces has been limited. In order to 
design better outdoor walkways and successful interventions, it is 
necessary to understand gait biomechanics associated with different 
surfaces and fall risk in outdoor real-world environments. In addition, 
real-time recognition of the gait alteration caused by irregular walking 
surface will also help in timely prevent falling events. However, previous 
studies in this domain typically involve complex equipment setups that 
are only practical in laboratory settings such as motion tracking through 
multiple cameras or ground reaction force sensing devices (Chen and 
others (2016); Muro-De-La-Herran and others (2014); Tedesco and 
others (2017)). Although these studies have contributed to a better 
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understanding of how human gait and motor control interact with the 
environment, the complexity of the equipment setup has restricted the 
scalability of the implementation and the generalizability of the results. 
Recently, the incorporation of wearable devices in human motion 
studies has proven to be a powerful tool and has shown promising results 
(Chen and others (2016); MuroDe-La-Herran and others (2014); Tedesco 
and others (2017); Tao and others (2012); Kobsar and others (2014); 
Schall Jr and others (2016)). Inertial Measurement Unit (IMU) sensors 
collect data on an individual’s gait, providing useful indirect informa
tion into users’ fatigue levels, physical conditions, and more (Lara and 
Labrador (2012); Tao and others (2012); Norris and others (2014); 
Reenalda and others (2016); Shimazaki and Murata (2015)). These de
vices are a good candidate in reducing the equipment burden without 
sacrificing too much measurement quality. 

Gait and motion analysis has also greatly benefited from the use of 
machine learning and data analytic methods. Previous literature has 
shown that machine learning algorithm is capable of recognizing human 
activity and distinguishing individuals from one another (Lim and 
D’Souza (2019); Muller and others (2020)). Earlier works have usually 
utilized intense feature-engineering operations to train classifiers to 
recognize simple activities with obvious spatial pattern differences. 
Classifiers that were used in these studies include 
fuzzy-basis-function-based (FBF-based) classifier (Kao and others 
(2009); Chen and others (2008)), decision trees (Jatoba and others 
(2008); Maurer and others (2006)), Bayesian (Tapia and others (2007)) 
and vanilla neural networks (Randell and Muller (2000)). Although in 
many cases, these relatively simple and straightforward approaches are 
adequate to render accurate prediction. However, more elaborate gait 
applications which are commonly seen in healthcare and behavioral 
science pose new challenges calling for innovative solutions. A majority 
of these earlier applications focused on recognizing simple human ac
tions such as walking and running, but the focus has been shifting to
wards the recognition of complex human activities with subtle 
differences using advanced machine learning methods. For example, 
deep learning networks have been applied to classify different Parkinson 
Disease states (Hammerla and others (2015)), different 
material-handling models in occupational lifting tasks (Mehrizi and 
others (2019)), and to predict pedestrian trajectory in varied social in
teractions (Alahi and others (2016); Gupta and others (2018); Sadeghian 
and others (2019)). It is worth noting that most of these deep learning 
applications utilize image data while time series spatial and temporal 
information collected from wearable IMUs are much infrequently used. 
One motivation of the current work was to expand the deep learning 
application spectrum with richer data modality. Our previous works 
have used deep learning networks and a simple IMU sensor setup (1 or 2 
sensors) to recognize walking/running surfaces with different levels of 
irregularity (Hu and others (2018); Dixon and others (2019)). These 
studies were successful in distinguishing between different surfaces and 
age-related traits while conceptually demonstrating the feasibility of 
wearable sensors in this context, however, those studies only included 
limited (i.e. no more than 3) experimental walking surfaces. There are 
numerous categories of irregular surfaces commonly seen in the 
real-world that can significantly affect human gait performance (Dixon 
and Pearsall (2010); Damavandi and others (2012)). Another limitation 
of our previous studies is the possibility of over fitting caused by the 
restrained sample size. Thus, larger data sets of more terrain surfaces are 
needed in order to validate the scalability of the algorithms. Research 
using wearable sensors has also emphasized the importance of collecting 
data outside of laboratory settings. Real-life environments are complex, 
and there are various conditions that can affect gaits such as clothing, 
footwear, load carrying, walking surfaces, and the inclination of the 
ground (Sprager and Juric (2015)). Although lab-based systems can 
collect highly accurate human movement data, they are relatively 
expensive and require expert operator (Simon (2004)). Furthermore, 
they are restricted to laboratory settings and thus the information 
derived may not reflect gait in real-world contexts. Testing in real-world 

scenarios allow better external validity but can come at a cost of 
decreased accuracy when analyzing such data, raise the demand for 
better analysis technique (Brodie and others (2016); Alsheikh and others 
(2016); Khandelwal and Wickstrom (2017); Weiss and others (2011, 
2013)). Therefore, the primary aim of this study was to investigate if 
outputs from wearable IMUs coupled with a deep convolutional neural 
network could detect motion pattern alteration caused by real-world 
irregular walking surfaces. Our first goal was to characterize the preci
sion and recall performance with which deep learning algorithms can 
detect walking surface categories using IMU data. The second goal was 
to compare the performance from different sensor placements and 
neural network layouts. 

2. Methods 

2.1. Participants 

Thirty young adults volunteered for this study (14 females, 16 males, 
23.5 ± 4.3 years, 169.3 ± 21.9 cm, 71.2 ± 14 kg). All participants had 
normal or corrected to normal vision. Participants had no reported 
neurological or musculoskeletal conditions that affected their gait or 
posture and no history of falling injuries in the previous two years. The 
Harvard and Northeastern Institutional Review Boards approved this 
study and all participants provided written consent. 

2.2. Data collection on the irregular walking surfaces 

Participants performed 42 walking trials (7 different surfaces × 6 
repetitions) while wearing six IMU sensors set (MTw Awinda, Xsens, the 
Netherlands). Each sensor included a tri-axial accelerometer, gyroscope, 
and magnetometer with respective ranges of ±160 m/s2, ±2000 deg/s 
and ±1.9 Gauss. The sampling frequency was 100 Hz. The locations for 
the sensors were: 1) right wrist; 2) the mid-line of the lower-back (over 
the L3-L5 spinous processes of the trunk); 3–4) left and right thigh; 5–6) 
left and right shank (Fig. 1). The researchers palpated participants’ 
bodies to place the sensors. The seven walking surfaces were: 1) flat 
uneven cobble stone (26 × 18 cm blocks) pavement); 2–3) bank right 
and 4) bank left; 4–5) slope up and slope down; 6–7) upstairs and 
downstairs (Fig. 2). The eighth condition was a static standing without 
locomotion activity. 

There was no inclination in any of the surfaces except the slope 
condition. Participants walked around 15 m for each trial with small 
variances between each condition. All testing surfaces were in the real- 
world and outside of the lab which guarantees the external validity of 
the study. Data collection occurred on a busy university campus with 
foot, vehicle, and train traffic which tests whether the algorithm will be 
robust to external influences in the data. These irregular surfaces were 
presented in a randomized order and rest between surfaces was provided 
to minimize fatigue. The overall protocol required less than 2 h in order 
to reduce fatigue. All data collection was conducted on days without 
precipitation and the walking surfaces were dry and clear. All experi
ments were finished during daylight hours and the same surfaces were 
used for each participant. It is worth noting that footwear attributes 
(comfortness, sole pattern, etc.) can also influence the wearer’s walking 
pattern. Thus, on the lab visit day participants were informed in advance 
that they wore their daily sport sneakers. Before formal data collection, 
the experimenter manually checked the wear and tear of the thread on 
the sole (more than 1/16′′). More detailed descriptions of this data set 
can be found in our recent publication (Luo and others (2020)). 

2.3. Initial data processing 

For each trial, all 36 data channels (3D accelerometer and 3D gy
roscope from each of the 6 sensors) were scaled from 0 to 1 to ensure 
equal weightings across channels and improve model performance. A 
sliding window of 4 s width (400 data points) that captured 2–3 full gait 
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cycles and a fixed step length of 1 s was applied on each trial to segment 
and augment the data, respectively (Xun and others (2016); Hu and 
others (2018)). After the data segmentation procedure, the whole data 
set included 49420 time series. The detailed category distribution is 
shown in Table 1. 

2.4. Network architecture 

Three different variations of different deep learning networks were 
generated in this study: 1) Convolutional neural networks (CNN) are 
feed-forward that are different from fully connected multi-layer net
works as they include one or more convolutional layers. This method has 
the advantage of significantly reducing the computational complexity 
with respect to fully connected feed forward neural networks. CNNs 
have been proven to be excellent feature extractors for motion data 

(Gadaleta and Rossi (2018)). It has the speciality of solving classification 
problems of sensor data, some of the previous works on time series signal 
classification have shown that this model is practicable (Kiranyaz and 
others (2019); Faust and others (2018); Nweke and others (2018); 
Strodthoff and Strodthoff (2019)); 2) long short term memory (LSTM) 
network is a variation of recurrent neural network that can learn the 
temporal dynamics of sequential data, which is well suited for learning 
time series data obtained from IMU sensors (Steven Eyobu and Han 
(2018); Hochreiter and Schmidhuber (1997)); 3) Global-LSTM: despite 
its advantages in learning temporal features, LSTM networks have a 
weakness in terms of capturing dependencies and interactions between 
multiple correlated time series. In the context of human activity recog
nition, different channels of the same IMU sensor (3 axis acceleration 
and 3 axis angular velocity) and outputs from different sensors all carry 
critical information which reveals segments’ spatial coordination and 
motion patterns. To address this limitation, inspired by the recent suc
cess of Social-LSTM for pedestrian walking trajectory regression (Alahi 
and others (2016)), in this work we proposed a new approach - LSTM 
with a global pooling mechanism (i.e. Global-LSTM) that is able to learn 
the correlation between different parallel time series. First, the CNN 
model started with the data input layer, and data from the IMU sensor 
were used to train the model. Therefore, each training data can be 
treated as a matrix of 36 × 400. The input layer was followed by the first 
1D convolution layer which included 100 filters in size of 50 and a batch 
normalization layer. The structure (100 × 50 1D convolution + batch 
normalization) was repeated once (i.e. 2nd convolution layer) plus a 
drop out layer of 0.2. Subsequently, the structure (100 × 50 1D 

Fig. 1. Sensor setup demonstration.  

Fig. 2. Irregular surfaces tested in the study: a) uneven cobble stone; b) flat bank surface; c) stairs; d) slope surface.  

Table 1 
Class IDs for each action.  

Class ID Action name 

0 Stand 
1 Flat uneven cobble stone 
2 Bank left 
3 Bank right 
4 Uphill slope 
5 Downhill slope 
6 Upstairs 
7 Downstairs  
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convolution + batch normalization) was repeated another time plus a 
maxpooling layer (size of 3) (Scherer and others (2010)) and a drop out 
layer of 0.2. The purpose of having three convolution layers was to 
perform dimensionality reduction, feature extraction, and extract local 
connectivity (LeCun and others (2015); Gadaleta and Rossi (2018)). The 
4th to 6th convolution layers were 50 × 25 1D convolution plus batch 
normalization. Only the 6th layer had a drop out of 0.2, followed by a 1D 
global average pooling layer. Finally, a fully connected layer with 8 
neurons (i.e. 8 types of walking surface) with Softmax as the activation 
function completed the CNN architecture. The output of the Softmax 
function represents the probability of each walking surface in each trial. 
The network architecture is illustrated in Fig. 3. Furthermore, multiple 
sub-models that only used a subset of sensors were also trained on the 
data to investigate the influence of sensor placement and data fusion on 
the model performance. In terms of the LSTM models, in the current 
study, the model first started with the input data layer. We added one 
layer of LSTM unit with 80 filters, with Relu as the activation function. 
We inputted the whole reshaped data and returned a sequence of data by 
the LSTM Unit, followed by another same LSTM layer. Dropout 50% of 
the neural network unit from the model was then applied. Subsequently, 
we added another two LSTM layers and a dropout layer but with 100 

filters. The model ended with an output layer. The network architecture 
is illustrated in Fig. 4. For the Global-LSTM network, we first create a 
LSTM cell with 64 embedding dimension, with a linear layer to embed 
the linear position and the social tensor. Same as the LSTM model, we 
also use Relu as the activation function and a dropout rate of 50%. Each 
LSTM cell will have a 128-dimensional hidden layer and mapped to the 
output. After getting the output from the cells, all correlated time series 
output will be forwarded to a global pooling layer and be calculated as a 
global tensor there. Each cell learns the global information by getting 
the distance from other cells at each timestamp. The network architec
ture is illustrated in Fig. 5. 

2.5. Model implementation and training 

The CNN and LSTM models were developed with TensorFlow (Abadi 
and others (2016)) and Keras (Chollet (2015)) under Python (Python 
Software Foundation, https://www.python.org/), running on Google’s 
(Google LLC, Mountainview, USA) Colaboratory GPU (GPU: 1xTesla 
K80, 2496 cores, 12 GB RAM). Global-LSTM model was developed with 
Pytorch (Paszke and others (2019)) under Python. Models were trained 
in a fully-supervised way and gradients were backpropagated from the 

Fig. 3. Convolution Neural Network architecture.  
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final Softmax layer to the input layer. The ‘sparse categorical cross en
tropy’ was applied as the loss function and was optimized using 
mini-batch gradient descent. Adaptive Moment Estimation (Adam) was 
used as the update rule due to its optimization convergence rate 
(Kingma and Ba (2014)). The initialization of model parameters was 
randomly assigned through the normal distribution. For the activation 
functions of the network (for the initial layers only), “swish” activation 
function was chosen. It is a relatively new activation function proposed 
by (Ramachandran and others (2017)). 

2.6. Model performance analysis 

The performance of the models was evaluated with the testing data 
set. Specifically, the following metrics were processed and compared: 
(1) overall prediction accuracy (the percentage of time series correctly 
predicted by the model); (2) precision (the number of true positives 
divided by the sum of true positives plus false positives); (3) recall (the 
number of true positives divided by the sum of true positives and false 
negatives); (4) F1-score (harmonic mean of (2) and (3)) (Powers 
(2011)). 

3. Results 

In order to measure the performance of the model on the data set and 
elicit guidance on the sensor placement location for future applications, 
we created subsets of data to see which sensors contributed the most to 
the performance of the model. We have taken this approach to see if one 
of the sensors (Table 2) disproportionately contributed to the perfor
mance of the model (CNN: Table 3; LSTM: Table 4; Global-LSTM: 
Table 5). For the CNN models, each individual sensor averaged be
tween 0.71 and 0.78 (macro weighted avg precision, recall, and F1- 
score). Sensor 1 and 2 (i.e. wrist and lower back) produced the best 
model (0.78 accuracy). On the other hand, sensor 3 (i.e. left thigh) had 
the worst prediction performance (0.72 accuracy). However, sensor 
fusion may have improved model performance in this case: compared to 

Fig. 4. Long Short Term Memory architecture.  

Fig. 5. Global pooling layer architecture of Global LSTM.  

Fig. 6. Confusion Matrix of CNN model.  

Table 2 
Various sensor subsets for sub-models.  

Dataset ID Sensors Location 

S1 Sensor 1 Wrist 
S2 Sensor 2 Lower back 
S3 Sensor 3 Left thigh 
S4 Sensor 4 Right thigh 
S5 Sensor 5 Left Shank 
S6 Sensor 6 Right Shank 
S7 All 6 sensors All above  
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a single sensor, the combination of all sensors elicited the best classifi
cation performance (S7 model, 0.91 accuracy). This result indicated that 
sensor placement could potentially affect model classification perfor
mance. In regard to the LSTM networks, models trained from each 
sensor data elicited significantly improved results: on average between 
0.79 and 0.91 (accuracy). Sensor 1 produced the best performance (0.90 
accuracy). Surprisingly, sensor 2 barely benefited from the new model 
structure: the model produced the worst performance (0.79 accuracy). 
In order to measure the performance of the model on the data set and 
elicit guidance on the sensor placement location for future applications, 
we created subsets of data to see which sensors contributed most to the 
performance of the model. Finally, for the Global-LSTM networks, the 
overall accuracy was further improved to 0.92 (i.e. the best in the study). 
In addition, model trained using sensor 2 data was improved to 0.84 
which demonstrated the effectiveness of the global layer on this part of 
data. Finally, confusion matrices of the best three models (best one from 
each structure) were presented as Figs. 6–8. 

4. Discussions 

The purpose of this study was to evaluate if deep learning models on 
wearable IMU sensor data can detect different real-world irregular 
walking surfaces during human walking tasks. The results indicate in all 
three categories, these models can detect different walking surfaces with 
satisfactory performance. LSTM and Global-LSTM networks yielded 
improved performance when compared to the baseline CNN models. 
Furthermore, results from the current study could guide optimal sensor 
placement and sensor fusion strategy for risk predicting models. Utiliz
ing AI methods to model the human physical motion trajectory has 
received substantial attention recently. This direction of research has 
broad implications including but not limited to: autonomous driving and 
pedestrian safety (Liang and others (2020); Tang and Salakhutdinov 

(2019)), human safety in collaborative human robotics interaction 
(Kruse and others (2012); Lasota and others (2017)), and public safety 
surveillance (Fernando and others (2018)). In the current work, we 
successfully applied multiple deep learning models to detect gait alter
ation caused by different walking surfaces. Despite its perceived intui
tiveness, there are many fundamental challenges in solving the problem 
of human gait pattern prediction due to its inherent complexity and the 
stochastic and dynamic interaction between humans and surrounding 
environments. Since subtle locomotion adaptations to the environment 
are not easily detectable by human intelligence, this presents significant 
challenges to AI methods. The CNN model trained with all 6 sensors 
elicited an overall accuracy of 0.91 in detecting irregular walking sur
faces in the real-world environment. Meanwhile, models trained with 
only one sensor were less accurate, suggesting that sensor fusion is 
necessary for accurate gait analysis. In our previous laboratory study, 
one IMU placed on the L5S1 joint combined with a deep learning neural 
network with LSTM units was able to recognize gait alteration caused by 
an irregular uneven brick surface at 0.96 accuracy (a binary classifier) 
(Hu and others (2018)). The study takes a step forward by conducting 
the experiment in a real outdoor environment and aims to maximize 
ecological validity. There are several notable benefits obtained by 
switching the experiment environment that helped to maximize the 
ecological validity. Firstly, conducting the experiment outdoors intro
duced multiple unpredictable factors that could affect human behavior 
such as temperature, wind, and behavior of surround pedestrians. 

Table 3 
Sensor sub-model results for the CNN models.  

Dataset ID Avg Precision Avg Recall Avg F1-Score 

S1 0.78 0.77 0.77 
S2 0.78 0.77 0.78 
S3 0.72 0.71 0.71 
S4 0.77 0.77 0.77 
S5 0.75 0.75 0.75 
S6 0.77 0.76 0.75 
S7 0.91 0.91 0.90  

Table 4 
Sensor sub-model results for the LSTM models.  

Dataset ID Avg Precision Avg Recall Avg F1-Score 

S1 0.90 0.89 0.89 
S2 0.79 0.78 0.79 
S3 0.89 0.87 0.88 
S4 0.89 0.88 0.88 
S5 0.87 0.88 0.88 
S6 0.88 0.87 0.87 
S7 0.91 0.90 0.90  

Table 5 
Sensor sub-model results for the Global-LSTM models.  

Dataset ID Avg Precision Avg Recall Avg F1-Score 

S1 0.88 0.90 0.89 
S2 0.84 0.83 0.84 
S3 0.87 0.86 0.87 
S4 0.90 0.89 0.89 
S5 0.88 0.86 0.87 
S6 0.89 0.90 0.90 
S7 0.92 0.93 0.92  

Fig. 7. Confusion Matrix of LSTM model.  

Fig. 8. Confusion Matrix of Global LSTM model.  
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Secondly, the laboratory study used a designed surface where the 
magnitude of unevenness between bricks was larger than that found in 
the outdoor environment. Thus, it may be less challenging for the human 
motor control system to adapt to and it may cause less gait alteration. 
Apart from these benefits, we had the opportunity to validate our al
gorithms for outdoor use, as previous studies have shown that some 
algorithms trained with well controlled indoor data do not perform as 
well when tested outdoors (Sprager and Juric (2015)). However, our 
results (0.92 accuracy) suggest that the algorithm is robust in an outdoor 
setting. Although the full six sensors elicited the best results, the rela
tively complex setup may cause some compliance issues during the 
real-world implementation. Some approaches may need to be taken in 
mitigating the negative impacts. To begin with, IMU sensors related 
communication micro processor and battery unit can be integrated into 
the personal protective devices (PPE) that workers are required to wear 
per OSHA regulations such as safety vests, helmets, and safety boots. 
This would enable the system to be carried easily by the users as well as 
avoiding the potential compliance problem. In addition, we want to 
emphasize that results from the current study indicated a single sensor 
can also achieve excellent performance, especially for the GlobalLSTM 
models. For instance, if a specific application context only includes stairs 
and a flat surface, then we can look into the results table and select a 
single sensor that has the best classification accuracy. Among all the six 
individual sensors, the models that trained with low back sensor outputs 
showed the lowest overall accuracy except the CNN model. This finding 
might be explained from the motor control perspective. The foot and 
distal limb serve as the ‘shock absorber’ which absorbs, modulates, and 
controls the foot-ground interaction to maintain a relatively stable upper 
body. The irregularity of the walking surfaces could still generate subtle 
but consistent and unique modifications to a person’s gait and which 
would be recognized by the AI models. However, when it comes to the 
lower back region, the whole body gait and balance control may well 
mitigate the influence of the walking surfaces and keep the movement 
pattern of this segment unchanged. This explanation is also supported by 
the results that Global-LSTM which is able to learn the coordination 
between different time series channels had the highest accuracy in 
general. Furthermore, humans rely on both active and passive control to 
adapt their gaits to terrain variations and tend to move their centers of 
mass ballistically during walking, utilizing the available mechanical 
forces and inherent stability to maintain an optimal metabolic energy 
expenditure status (Matthis and others (2017)). It is possible that in the 
current experiment, participants’ motor control systems absorbed and 
modulated the irregular surfaces’ impact effectively and maintained 
their gait sta-ble and relatively unchanged at the low back level. Follow 
up kinematics analysis is needed to evaluate this finding and we will 
describe the analysis in another manuscript. Advanced machine learning 
methods are becoming more and more common in activity analysis, and 
these results suggest that deep learning is a feasible method for con
ducting real-world gait analysis. Compared to the other previous human 
activity recognition studies, the current CNN models showed compa
rably accurate performance (Roggen and others (2010); Lockhart and 
others (2011); Anguita and others (2012); Bachlin and others (2010); Li 
and others (2020); Hammerla and others (2016); Jiang and Yin (2015)). 
It is worth mentioning that these studies analyze more distinguishable 
activities such as normal walking, eating, etc. For those few studies that 
included varied irregular surfaces, the magnitude of the unevenness of 
the walkway used was larger. In contrast, the current study used 
real-world structures and the unevenness was mainly caused by design 
and natural deterioration. There remain some technical challenges to 
using deep learning and wearable IMUs for accurate gait analysis. In 
many cases, the features derived from deep learning networks might be 
less discriminating than shallow features that come from a manual 
feature engineering process. A possible explanation may be the fact that 
in order to train deep learning networks properly, complex layer 
structure and a large amount of training data are required to recognize 
the entire hierarchy of features. Since deep learning is a data driven 

process by nature, if the input data is not comprehensively represented 
in all the possible modalities, the trained networks will not be able to 
generalize these data modalities automatically for the subsequent clas
sification purpose (Ravi and others (2016)). We hope that the results 
from this study can be used as a guide on how to apply IMUs and deep 
learning technology to avoid falling injuries and create observable im
pacts in the applied ergonomics community. A few applicable scenarios 
are described here: 1) real-time unsafe walking surface detection and 
warning. People may not be aware of the alteration of the surfaces and 
related falling risks due to multiple reasons such as their attention is 
taxed by their work at hand, physical/mental fatigue caused by pro
longed work, or complacency issues. This phenomenon is commonly 
seen in occupational settings as well as our daily lives. For example, the 
lane departure warning system in modern vehicles is a good example of 
correcting this type of human errors. Results from the current study will 
help in the development of similar systems in the pedestrian walking 
domain; 2) occupational long term risk exposure assessment. In the 
construction industry, the working environment is highly dynamic and 
unstructured, traditional ergonomics observation methods will not 
induce effective and accurate risk exposure evaluation. With our algo
rithms, workers’ detailed falling risk exposure profile throughout the 
course of their work shift can be obtained. Employers can utilize this 
piece of information to adjust their safety program, while workplace 
insurance providers can consider this in their premium determination 
models. Following the recent advancements in Recurrent Neural 
Network (RNN) models for sequence data recognition tasks, we pro
posed a Global-LSTM model which can learn general human movement 
patterns and predict their future adaptions due to the environmental 
influences. This is in contrast to traditional approaches that use 
hand-crafted functions such as classical gait or biomechanics analyses. 
While LSTMs have the ability to learn and reproduce long time series, 
they do not capture dependencies between multiple correlated se
quences. This weakness is observed in the current study: although single 
sensor LSTMs outperformed CNNs by a big margin, the full set models 
did not show a comparable level of improvement because CNNs can take 
advantage of multi-modal data streams and learn their interconnections 
while LSTMs lack this capability. Compared to regular LSTM models, we 
applied an innovative layer (i.e. global layer) to learn the interconnec
tion and coordination between different joints and body segments dur
ing the physical motion in 3D space. Specifically, we designed a novel 
architecture which connects the LSTMs corresponding to nearby se
quences (i.e. data streams from different sensors). In particular, we 
introduce a “Global” pooling layer which enables the LSTMs of proximal 
time series to share their hidden-states with each other. This new model, 
which we refer to as the “Global-LSTM”, can automatically extract and 
learn typical interactions among sensors’ outputs which coincide in the 
time domain. Results from the study demonstrate the effectiveness of 
this new network architecture. Several limitations of this study need to 
be noted. First, even though interpretable machine learning has received 
substantial attention recently, CNN models still work in a quasi-black 
box manner. This makes it difficult to understand exactly which gait 
features were exploited by the models in the classification task. 
Follow-up studies with traditional gait analyses are necessary to provide 
more insight into this question. The participants in this study were all 
healthy young adults which may limit generalizability to the overall 
population. In addition, we only collected data during days without 
precipitation to protect participants as well as the digital devices. 
However, on some surfaces walking can be significantly altered in case 
of rain or snow fall, when surfaces become more slippery. Future studies 
with more safety precaution approaches are required to test the algo
rithms with wet surfaces. In addition, while we were successful in 
detecting subtle gait changes due to walking surface changes, more work 
is necessary to understand which of these gait adaptations are associated 
with fall risk and potential applications of sensors and machine learning 
might be applied to real-world fall prevention. Lastly, a systematic 
feature selection Ribeiro and others (2016) and Lundberg and Lee 
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(2017), for instance and ranking analysis would shed light on the system 
optimization, which is lacking in the current study. 

5. Conclusion 

In conclusion, this study developed different deep learning models to 
classify different irregular surfaces using data collected from wearable 
sensors during human walking tasks with satisfactory performance. 
Different sub-models were also trained to investigate the influence of 
sensor placement, data fusion, and model structure on model prediction 
performance. Results indicate the strong potential of using deep learning 
models and wearable sensors to track human gait and prevent falling 
injuries in real-world settings. 
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