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ABSTRACT

Background Although diabetic kidney disease is the leading cause of ESKD in the United States, identi-
fying those patients who progress to ESKD is difficult. Efforts are under way to determine if plasma
biomarkers can help identify these high-risk individuals.

Methods In our case-cohort study of 894 Chronic Renal Insufficiency Cohort Study participants with di-
abetes and an eGFR of <60 ml/min per 1.73 m? at baseline, participants were randomly selected for the
subcohort; cases were those patients who developed progressive diabetic kidney disease (ESKD or 40%
eGFR decline). Using a multiplex system, we assayed plasma biomarkers related to tubular injury, inflam-
mation, and fibrosis (KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and YKL-40). Weighted Cox regression
models related biomarkers to progression of diabetic kidney disease, and mixed-effects models estimated
biomarker relationships with rate of eGFR change.

Results Median follow-up was 8.7 years. Higher concentrations of KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR,
and YKL-40 were each associated with a greater risk of progression of diabetic kidney disease, even after
adjustment for established clinical risk factors. After accounting for competing biomarkers, KIM-1, TNFR-
2, and YKL-40 remained associated with progression of diabetic kidney disease; TNFR-2 had the highest
risk (adjusted hazard ratio, 1.61; 95% Cl, 1.15 to 2.26). KIM-1, TNFR-1, TNFR-2, and YKL-40 were associ-
ated with rate of eGFR decline.

Conclusions Higher plasma levels of KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and YKL-40 were associated
with increased risk of progression of diabetic kidney disease; TNFR-2 had the highest risk after accounting
for the other biomarkers. These findings validate previous literature on TNFR-1, TNFR-2, and KIM-1 in
patients with prevalent CKD and provide new insights into the influence of suPAR and YKL-40 as plasma
biomarkers that require validation.
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Diabetic kidney disease (DKD) develops in approx-  mellitus.! DKD is the leading cause of ESKD in the
imately 30% of individuals with type 1 diabetes = United States.? Pathways and processes leading to
mellitus and 40% of individuals with type 2 diabetes ~ progression of DKD are heterogeneous,? including
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inflammation, fibrosis, and tubular injury, which makes it dif-
ficult to identify patients who will develop DKD progression,
and ultimately ESKD. These diverse mechanisms may also con-
tribute to the variability in response to interventions aimed at
slowing disease progression.

To date, the established diagnostic and prognostic tools for
DKD have limitations. A kidney biopsy is the reference stan-
dard for diagnosis, but it is invasive and associated with risk,
and provides glomerular and tubulointerstitial histology of
modest prognostic value. The best measure of kidney function
is eGFR, which carries prognostic information, but is limited
due to unreliability.*> Albuminuria has also been shown to
strongly predict DKD progression, but many individuals with
diabetes develop regression of albuminuria.®-8 Furthermore,
pathologic lesions®%10 and DKD progression occur in the ab-
sence or presence of low levels of albuminuria.!’-4 Thus,
there is an unmet need for discovering better biomarkers
that can identify individuals at high risk of progression of
DKD who may benefit from more intensified or targeted
treatments.

In the past decade, investigations have elucidated specific
DKD progression pathways, along with identification of asso-
ciated biomarkers.!>16 Recent studies have reported associa-
tions of both the initiation and the progression of DKD with
several proinflammatory and profibrotic plasma markers,
such as soluble TNF receptors 1 and 2 (TNFR-1 and TNFR-
2),17-21 YKL-40 (a heparin- and chitin-binding glycopro-
tein),?2 monocyte chemotactic protein-1 (MCP-1, also known
as the C-C chemokine ligand 2),23 and soluble urokinase-type
plasminogen activator receptor (suPAR),?* and biomarkers of
tubular injury, including kidney injury molecule 1 (KIM-
1).2>26 Prior studies of DKD progression have been limited
by relatively small samples, especially of individuals with al-
ready established type 2 diabetes, and including those with
both normal and impaired kidney function, reporting only
one or two biomarker associations, and without determining
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Significance Statement

In diabetic kidney disease, ascertaining which patients will progress
to ESKD is difficult. Efforts are under way to determine whether
plasma biomarkers can identify these high-risk individuals; such
biomarkers may inform development of therapies and selection of
individuals for clinical trials. In this case-cohort study of well-
phenotyped individuals with diabetic kidney disease, increased
concentrations of plasma biomarkers related to tubular injury, in-
flammation, and fibrosis (kidney injury molecule 1 [KIM-1], TNF re-
ceptor 1 [TNFR-1], TNFR-2, monocyte chemotactic protein-1, sol-
uble urokinase-type plasminogen activator receptor [suPAR], and
YKL-40) were associated with increased risk of progression of di-
abetic kidney disease. After accounting for the other biomarkers,
higher TNFR-2 levels were most strongly associated with disease
progression. These findings validate the previous literature on
TNFR-1, TNFR-2, and KIM-1, and provide new insights on suPAR
and YKL-40 as plasma markers of diabetic kidney disease progres-
sion that require validation.

inter-relationships between biomarkers. Accordingly, we as-
sessed if plasma biomarkers related to inflammation, fibrosis,
and tubular injury were associated with the progression of
DKD in the well-characterized subpopulation of individuals
with mild to moderate kidney disease and diabetes in the
Chronic Renal Insufficiency Cohort (CRIC) Study. We hy-
pothesized that plasma concentrations of KIM-1, TNFR-1,
TNFR-2, YKL-40, suPAR, and MCP-1 were associated with
DKD progression and eGFR decline over time.

METHODS

Study Design and Study Population

This study uses a case-cohort design of participants with di-
abetes within the CRIC Study, a multicenter, prospective, ob-
servational cohort study of 3939 men and women with mild to
moderate CKD in the United States.?”-28 The case-cohort de-
sign was chosen to reduce the need to assay biomarkers in the
full cohort, while still retaining the validity to conduct pro-
spective analyses. Briefly, CRIC Study participants were re-
cruited from seven clinical centers from 2003 to 2008. The
inclusion and exclusion criteria have been detailed previ-
ously.?7>28 The major eligibility criteria included adults
21-74 years of age with eGFR from 20 to 70 ml/min per
1.73 m®. The CRIC Study protocol was approved by the in-
stitutional review boards of all participating centers, and is in
accordance with the Declaration of Helsinki. All participants
provided written informed consent.

CRIC participants were eligible for this study if they had a
diagnosis of diabetes (made on the basis of a fasting glucose
of =126 mg/dl, a nonfasting glucose of =200 mg/dl, or self-
reported use of insulin or other medications for glycemic con-
trol), an eGFR of <60 ml/min per 1.73 m?, and if their plasma
biospecimens had been collected (n=1315). The baseline for
each participant was defined as the annual study visit at which
the plasma samples were collected. The time between the
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CRIC baseline visit, at which covariate data were collected, and
the visit at which plasma samples were collected was approx-
imately 1 year (median, 370 days; interquartile range [IQR],
0-713 days). A subcohort was constructed as a randomly se-
lected subset of all eligible participants, independent of case
status. In addition, all of the individuals who developed the
primary outcome of interest, defined as ESKD or 40% decline
in baseline eGFR, were included in the study population as
cases (see Supplemental Figure 1 for study flow diagram).

Plasma Biomarker Measurements

Plasma biomarker concentrations were the primary exposure
in this study. Plasma samples were collected at baseline
(2003-2010) and stored at —80°C until they were thawed
for measurement of the biomarkers KIM-1, MCP-1, TNFR-
1, TNFR-2, suPAR, and YKL-40, using a multiplex U-PLEX
assay on the Meso Scale Discovery platform (Meso Scale Dis-
covery, Gaithersburg, MD). All of the following antibodies
(capture and detection antibodies) were obtained from R&D
Systems (Bio-Techne): KIM-1 (catalog numbers AF1750 and
AF1750); YKL-40 (catalog numbers MAB25991 and AF2577);
TNFR-1 (catalog numbers MAB625 and MAB225); TNFR-2
(catalog numbers MAB726 and AF726); suPAR (catalog num-
bers MAB807 and AF807); MCP-1 (catalog numbers MAB679
and AF279). The biomarkers were selected on the basis of
prior published reports and preliminary data generated by
the CKD Biomarker Consortium investigators.!8-24.26,29-31
Biomarker concentrations were expressed as the mean of du-
plicate measurements. Overall, intra-assay coefficients of var-
iation were all =7%, and interassay coefficients of variation
were <15.3%. Please see Supplemental Table 1 for quality-
control parameters for each biomarker assay. All assays were
performed blinded to clinical outcomes.

Other Study Variables

Information on age, sex, race/ethnicity, education, and medical
history (including hypertension, prevalent cardiovascular dis-
ease, smoking status, and medication use) were collected
through self-report. Using a standardized technique, height,
weight, and BP were measured. BP was measured in triplicate,
and the mean of the latter two measurements was recorded.
Hypertension was defined by a systolic BP >140 mm Hg, a di-
astolic BP >90 mm Hg, or self-reported use of antihypertensive
medications.3? Body mass index (BMI) was calculated as the
weight in kilograms divided by the square of height in meters.
Blood samples were used to measure hemoglobin Alc, serum
high-sensitivity C-reactive protein (hsCRP), and serum creati-
nine and cystatin C concentrations for the estimation of GFR
with a CRIC-specific equation.3 Proteinuria was assessed using
assays of urine collections of creatinine and protein (urine
protein-creatinine ratio [UPCR] in milligrams per gram).

Study Outcomes

The primary outcome of interest, DKD progression, was defined
as time to incident ESKD (determined through self-report,
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review of medical records, and linkage to the US Renal Data
System) or a =40% decline (relative to baseline) during the
follow-up period. A secondary outcome of interest included
the yearly change in eGFR over time in milliliters per minute
per 1.73 m?. Study participants were followed until the occur-
rence of the primary end point, death, withdrawal from the
study, or the end of the follow-up period (mid-2017).

Statistical Analyses

We described the study population using mean (SD) or me-
dian (IQR) for continuous variables, and frequency and pro-
portion for categoric variables. The Pearson chi-squared or
Fisher exact test and ANOVA or Kruskal-Wallis test were
used to compare categoric and continuous variables, respec-
tively. Partial Pearson pairwise correlations, adjusting for age
and sex, were assessed to evaluate the relationship between
biomarkers, eGFR, and UPCR.

Multivariable, weighted, Cox proportional hazards models
that accounted for the case-cohort design were used to assess
the association between each plasma biomarker concentration
with DKD progression. A weighted regression was used to
account for differential sampling probabilities between the
subcohort and additional cases to permit estimation of relative
risk and rates of the exposure-outcome relationship.34 We
performed hierarchic modeling with sequential adjustment
for sociodemographic covariates, including sex, race/ethnic-
ity, education, study site; and clinical characteristics, including
systolic BP, diastolic BP, BP medications, smoking status, BMI,
hsCRP, and hemoglobin Alc; and then by adding eGFR alone,
UPCR alone, and finally adjusting for both eGFR and UPCR.
We also assessed the interaction between baseline eGFR (<45
versus =45 ml/min per 1.73 m*) and DKD progression, ex-
pecting that those with a lower baseline eGFR to have en-
hanced biomarker associations with DKD progression.3>

As a sensitivity analysis, to address potential batch effects
of the biospecimen assays, we used the ComBat approach,
which corrects batch differences in mean and variance of
the assay values via empirical Bayes estimation.3® Further,
to assess the potential influence of imbalance between the
subcohort and additional cases, we limited the Cox propor-
tional hazards models to the subcohort only to assess the
consistency of results from the primary analysis using weighted
Cox proportional hazards models. As an exploratory analysis,
we also fit a multivariable model to evaluate the inter-
relationships of the six biomarkers in their association with
DKD progression. We used a backward selection algorithm
to create a parsimonious model, retaining markers with a sig-
nificance level of P<C0.05.

Mixed-effects models were used to assess the relations of
biomarker concentrations with yearly change in eGFR within
the subcohort only. All biomarkers were logarithmically trans-
formed to normalize their skewed distributions, and log,
transformed variables were used in all regression analyses.
Adjusted hazard ratios (aHRs) with 95% confidence intervals
were reported. Analyses were performed with SAS 9.4 (SAS
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Table 1. Baseline characteristics of CRIC participants with diabetes overall and by case status

Characteristics

Eligible Cohort (n=1315)

Random Subcohort (n=596) All Cases (n=538)

Age, yr (SD) 61.0(9.3)
Sex, %

Male 57.2

Female 42.8
Race/ethnicity, %

Non-Hispanic White 36.0

Non-Hispanic Black 41.2

Hispanic 19.2

Other 3.7
Education, %

Less than high school 27.2

High school and some college 48.4

College degree and higher 24.4
Smoking status, %

Current 11.2

Former 45.0

Never 43.8
Hypertension, % 95.4
Systolic BP (mm Hg), mean (SD) 133 (24)
Diastolic BP (mm Hg), mean (SD) 68 (13)
Antihypertensive medication use, % 98.4
Self-reported cardiovascular disease, % 45.6
BMI (kg/mz), mean (SD) 34.1(7.8)
Hemoglobin Alc, mean (SD) 7.2(1.5)
Baseline eGFR (ml/min per 1.73 m?), mean (SD) 36.6 (12.0)
eGFR (ml/min per 1.73 m?), mean (SD)? -
UPCR (mg/g), median (IQR) 0.3(0.1-1.4)
hsCRP (mg/L), median (IQR) 2.7 (1.1-6.7)

60.8 (9.3) 58.6(9.8)
58.2 60.6
41.8 39.4
37.2 25.8
40.8 45.5
18.5 25.1
3.5 3.5
28.0 31.4
47.5 48.3
24.5 20.3
11.4 12.3
43.1 45.2
45.5 42.6
96.0 96.7

133 (24) 140 (24)

68 (12) 71(13)
98.1 98.9
43.6 45.9

33.8(7.7) 33.9(8.0)

7.2(1.5) 7.4(1.6)
36.5(12.2) 32.7 (11.9)
-9.0(12.8) —19.2(9.8)
0.3(0.1-1.3) 1.2(0.4-3.3)
2.6 (1.1-5.9) 2.5(1.0-5.9)

2eGFR: difference between baseline and last eGFR.

Institute Inc, Cary, NC). All P values were two-tailed, with an
« level of <0.05.

RESULTS

From the 1315 eligible participants in the full CRIC cohort, we
studied 894 individuals. Of these 894 individuals, 596 were
randomly selected as a subcohort of all eligible CRIC partic-
ipants (240 of whom subsequently developed DKD progres-
sion and thus became cases), and 298 were CRIC participants
outside of the subcohort who developed DKD progression and
thus became cases during follow-up. Baseline characteristics
of the study participants are described in Table 1. The mean
age was 60.8 years in the subcohort, and 58.6 years among all
cases. A similar frequency of hypertension and current smok-
ing was observed in the subcohort and cases. The mean base-
line eGFR was 36.5 ml/min per 1.73 m” in the subcohort and
32.7 ml/min per 1.73 m? among cases, with a median baseline
UPCR of 0.3 and 1.2 mg/g among the subcohort and all cases,
respectively.

Plasma biomarker concentrations were consistently higher
among those with lower baseline eGFR values (Figure 1,
Supplemental Figure 2, Supplemental Table 2). Partial Pearson
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pairwise correlations between biomarker concentrations and
key predictors of CKD progression (eGFR and UPCR) are
shown Table 2. TNFR-1 and TNFR-2 were most correlated
(rho=0.82), and the pairwise correlations between MCP-1,
suPAR, TNFR-1, TNFR-2 were moderate to high (rho=0.28-0.74).
All biomarkers had a consistent inverse correlation with eGFR
(rho=-0.22 to —0.73), with the TNFRs and suPAR most
strongly correlated. UPCR was positively correlated with all
biomarkers (rho=0.07-0.61).

Association of Plasma Biomarkers with DKD
Progression

During the median follow-up of 8.67 years (IQR, 6.44-9.31),
there were 538 total events of DKD progression, which in-
cluded 317 ESKD events and 358 instances of a =40% decline
from the baseline eGFR. When modeling per increment in
log, biomarker values, higher concentrations of each bio-
marker was associated with a greater risk of DKD progres-
sion, even after adjustment for age, sex, race, education, BP,
hsCRP, BMI, smoking, eGFR, and UPCR (Figure 2, model 3 in
Supplemental Table 3). There was evidence of an interaction
between the baseline eGFR (<45 versus =45 ml/min per
1.73 m?) and MCP-1 on its association with DKD progression
(P interaction=0.01), with higher MCP-1 concentrations

JASN 32: 115-126, 2021
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Figure 1. Scatterplot of plasma biomarker concentrations (pg/ml) on y axis were consistenty higher among those with lower baseline
eGFR (ml/min per 1.73 m?) values on x axis. Top row (left to right): KIM-1, TNFR-1, and TNFR-2. Bottom row (left to right): MCP-1,

suPAR, and YKL-40.

associated with increased DKD progression observed for those
with eGFR <45 ml/min per 1.73 m?, compared with those
with eGFR =45 ml/min per 1.73 m? (HR, 1.35; 95% CI, 1.16
to 1.56, versus HR, 1.03; 95% CI, 0.81 to 1.31).

The results of analyses using the ComBat approach to ad-
dress potential batch effects and limiting the Cox regres-
sion models to the subcohort were consistent with the
results of the primary analysis using weighted Cox regression
(Supplemental Tables 4 and 5). Identification of a panel of
markers using Cox regression and backward selection identi-
fied three markers, KIM-1, TNFR-2, and YKL-40, that jointly
remained associated with an increased risk of DKD progres-
sion (KIM-1, aHR, 1.17; 95% CI, 1.05 to 1.30; TNFR-2, aHR,
1.61; 95% CI, 1.15 to 2.26; MCP-1, aHR, 1.20; 95% CI, 0.97 to
1.47; YKL-40, aHR, 1.18; 95% CI, 1.01 to 1.39) (Figure 3,
Supplemental Table 6).

Association of Plasma Biomarkers with Annual Change
in eGFR

After adjustment for age, sex, race, education, BP, hsCRP, BMI,
smoking, eGFR, and UPCR; TNFR-1, TNFR-2, KIM-1, and
YKL-40 were significantly associated with the annual rate of
decline in eGFR (per change in eGFR slope, in milliliters per
minute per 1.73 m% per log,-biomarker per year) (Figure 4,
model 3 in Supplemental Table 7).

DISCUSSION

In a cohort of individuals with diabetes mellitus and mild to
moderate CKD, we observed that plasma TNFR-1, TNFR-2,
KIM-1, MCP-1, suPAR, and YKL-40 concentrations were each
associated with DKD progression, even after adjustment for

Table 2. Pearson partial correlations of biomarker levels and eGFR and proteinuria, adjusting for sex and age

Biomarker MCP-1 TNFR-1 TNFR-2 suPAR YKL-40 eGFR UPCR
KIM-1 0.20° 0.48° 0.47° 0.38° 0.31° —-0.34° 0.61°
MCP-1 0.30° 0.32° 0.28° 0.19° -0.22° 0.07°
TNFR-1 0.82° 0.742 0.49° -0.73° 0.44°
TNFR-2 0.71° 0.53° —0.64° 0.39°
suPAR 0.47° —0.64° 0.29°
YKL-40 -0.30° 0.27°
All baseline biomarker values are log, transformed.

?P<0.001.

bP<0.05.
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Bl:;an?;rl‘(aer Adjusted Hazard Ratio (95% Confidence Interval)
KIM-1 1.26 (1.14 - 1.40) -
TNFR-1 1.84 (1.45-2.33) ——
TNFR-2 2.18 (1.59 - 3.00) a
MCP-1 144 (117 -1.77) ——
SuPAR 1.40 (114 - 1.72) —
YKL-40 1.35 (1.16 - 1.57) —.—

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 2. Higher plasma biomarker concetrations (per increment in log2 biomarker values) of KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR,
and YKL-40 were associated with a greater risk of DKD progression, even after adjustment for age, sex, race/ethnicity, education,
clinical center, systolic BP, diastolic BP, BMI, hsCRP, hemoglobin A1lc, antihypertensive medication use, smoking status, baseline eGFR
(ml/min per 1.73 m?), and UPCR. All HRs are adjusted for age, sex, race/ethnicity, education, clinical center, systolic BP, diastolic BP,

BMI, hsCRP, hemoglobin A1c, antihypertensive medication use, smoking status, baseline eGFR (ml/min per 1.73 m?), and UPCR.

established clinical risk factors; all but MCP-1 and suPAR were
also associated with eGFR decline. These findings validate the
previous literature on TNFR-1, TNFR-2, and KIM-1, and pro-
vide new insights into plasma suPAR and YKL-40 as markers
that need validation. Further, higher plasma concentrations of
TNFR-2 seem to be most strongly associated with DKD pro-
gression after accounting for the other plasma biomarkers.
Worldwide, the number of people with type 2 diabetes
mellitus is increasing, and it is estimated that DKD will affect
approximately 40% of these individuals,3” and DKD contrib-
utes to nearly 50% of new ESKD cases each year.3® The latter
observation highlights the importance of identifying and con-
firming better predictive and prognostic biomarkers for DKD.
The pathophysiology of DKD progression is multifactorial
and involves inflammation, fibrosis, endothelial dysfunction,
tubulointerstitial damage, podocyte injury, extracellular ma-
trix remodeling, and angiogenesis.?* A key pathway noted to
be active in DKD progression in humans is inflammation,
which is associated with upregulated secretion of several

proinflammatory cytokines, including TNFR proteins (e.g.,
TNEF-R1) and ILs (e.g., IL-1, IL-6, IL-18).4%41 At the cellular
level, these cytokines have been linked to increasing vascular
endothelial cell permeability, glomerular hypercellularity, glo-
merular basement membrane thickening, inducing apoptosis
of endothelial cells, and direct toxicity to kidney cells.42—44
Plasma concentrations of TNFR-1 and TNFR-2 are reflec-
tive of activation of the TNF pathway. In this investigation,
higher concentrations of TNFR-1 and TNFR-2 were associated
with DKD progression. These findings are in agreement
with prior studies of populations with type 1 or type 2 diabe-
tes mellitus, with normal and decreased baseline eGFR,
that demonstrated elevated circulating concentrations of
TNFR-1 and TNFR-2 were associated with decline in kidney
function (e.g., development of ESKD, macroalbuminuria, or
eGFR decline).!7-21:2° The consistent, strong associations of
TNFR-1 and TNFR-2 with DKD progression support their
important role in the chronic inflammation of DKD. Only
TNFR-2 was associated with DKD progression because

Bliaclaanf:l‘(aer Adjusted Hazard Ratio (95% Confidence Interval)
KIM-1 1.17 (1.05 - 1.30) -
TNFR-2 1.61 (1.15 - 2.26) =
MCP-1 1.20 (0.97 - 1.47) ——
YKL-40 1.18 (1.01 - 1.39) -

0.5

1.0 1.5 2.0 25 3.0 3.5

Figure 3. Higher plasma biomarker concetrations (per increment in log2 biomarker values) of KIM-1, TNFR-2, and YKL-40 associated
with an increased risk of DKD progression after backward selection of all biomarkers and adjustment for age, sex, race/ethnicity,
education, clinical center, systolic BP, diastolic BP, BMI, hsCRP, hemoglobin Alc, antihypertensive medication use, smoking status,
baseline eGFR (ml/min per 1.73 m?), and UPCR. All HRs are adjusted for age, sex, race/ethnicity, education, clinical center, systolic BP,
diastolic BP, BMI, hsCRP, hemoglobin Alc, antihypertensive medication use, smoking status, baseline eGFR (ml/min per 1.73 m?),
baseline UPCR, KIM-1, TNFR-2, MCP-1, and YKL-40. Biomarkers were selected to remain in model via backward selection (P<0.05).
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Bl:tlnanf:;(aer Adjusted Beta Coefficient (95% Confidence Interval)
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suPAR -0.38 (-0.84, 0.08) m
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Figure 4. Higher plasma biomarker concetrations (per increment in log2 biomarker values) of TNFR-1, TNFR-2, KIM-1, and YKL-40
were significantly associated with the annual rate of decline in eGFR (ml/min per 1.73 m? per year) after adjustment for age, sex, race/
ethnicity, education, clinical center, systolic BP, diastolic BP, BMI, hsCRP, hemoglobin Alc, antihypertensive medication use, smoking
status, baseline eGFR (ml/min per 1.73 m?), and UPCR. All B-coefficients are adjusted for age, sex, race/ethnicity, education, clinical
center, systolic BP, diastolic BP, BMI, hsCRP, hemoglobin Alc, antihypertensive medication use, smoking status, baseline eGFR

(ml/min per 1.73 m?), and UPCR.

TNFR-1 was not retained in the exploratory model that con-
sidered all markers jointly, likely because the two biomarkers
overlap to such an extent that only one could fit in the model.
This finding supports the key role of inflammation in DKD
progression.

MCP-1 (or C-C chemokine ligand 2), another inflamma-
tory biomarker, is a member of the C-C chemokine family that
leads to the recruitment of monocytes and transformation to
macrophages. To date, studies investigating MCP-1 and kid-
ney disease in humans have mostly focused on urine, rather
than plasma or serum, MCP-1 concentrations. Urinary MCP-
1 has been associated with allograft failure, cardiovascular dis-
ease, and death in recipients of kidney transplants*>49; it is
also associated with kidney function decline, in individuals
with type 2 diabetes who have preserved kidney function,*”
and macroalbuminuria.?> However, serum MCP-1 concentra-
tions have not been associated with eGFR decline among those
with type 2 diabetes and relatively preserved kidney func-
tion.?2 This study observed an increased risk of DKD progres-
sion with higher plasma MCP-1 concentrations, but only
among those with eGFR <45 ml/min per 1.73 m? at baseline,
making this the first study to report an association of plasma
MCP-1 concentrations and DKD progression among individ-
uals with moderate to severe CKD. Due to the limited inves-
tigation of the relationship of blood concentrations of MCP-1
with kidney disease, more research in other study populations
with diabetes is warranted to further investigate its role
in DKD.

Circulating suPAR, the soluble form of the urokinase-type
plasminogen activator receptor which is expressed mainly on
immune and endothelial cells, is released into the circulation
during inflammation.*®4° High suPAR levels have been sug-
gested to activate podocytes in pathologic conditions.>®
Higher suPAR concentrations were significantly associated
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with a larger annual decline in eGFR and an increased risk
of incident CKD, defined by eGFR <60 ml/min per 1.73 m>, in
a study population largely without diabetes (68%).2% In a pro-
spective study of 667 individuals with type 1 diabetes and
various degrees of albuminuria, a higher level of suPAR was
an independent risk factor for cardiovascular events, =30%
eGFR decline, and mortality.>! More recently, suPAR was
found to correlate with incident ESKD in a Chinese CKD co-
hort, of which 20% were diabetic.52 Consistent with these
reports, in this investigation, higher plasma levels of suPAR
were associated with an increased risk of DKD progression,
even after adjustment for baseline eGFR and albuminuria. In
contrast to prior studies, suPAR was not associated with rate of
eGFR decline or DKD progression after accounting for com-
peting biomarkers. Importantly, this is the first time that su-
PAR was measured in the same study cohort as TNFR-1 and
TNER-2. Distinctions between our study and others that ex-
amined an association between suPAR and eGFR decline in-
clude different assays and mean baseline eGFR (35 ml/min per
1.73 m? in our study versus 50—82 ml/min per 1.73 m?).24:51,52
The lack of a correlation between suPAR and the rate of eGFR
decline was also noted by Hayek et al.?# in the subpopulation
with baseline eGFR <60 ml/min per 1.73 m?, suggesting the
suPAR association may be less prominent or absent in patients
with prevalent CKD.

Recurrent or sustained tubular injury is hypothesized to
contribute to DKD progression. KIM-1, a marker of acute
and chronic proximal tubular injury in both animal models
and humans, is detectable in blood and urine after shedding of
the KIM-1 ectodomain, consistent with this hypothesis.2¢
However, previous data on circulating KIM-1 as a biomarker
for kidney disease progression has been inconsistent. Serum
KIM-1 has been observed to increase across CKD stages and to
be associated with eGFR decline and progression to ESKD in
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some,26:29:53,54 but not all,>>-56 studies. Prior studies have been
limited by small sample sizes and by including those with all
levels of eGFR, and individuals without diabetes. In this in-
vestigation, higher plasma KIM-1 concentrations were asso-
ciated with DKD progression and yearly decline in eGFR,
which further elucidates the relationship of circulating
KIM-1 and kidney function over time. Additionally, even
when adjusting for other biomarkers, KIM-1 remained asso-
ciated with DKD progression. Further research should be
conducted to validate the association of KIM-1 with DKD
progression.

YKL-40 is an indicator of tubular injury severity and may
play a role in limiting tubular cell apoptosis during the repair
phase of AKI.30 To date, YKL-40 has mainly been studied as a
kidney disease biomarker in the urine and has not yet been
extensively studied in blood samples, or in populations with
diabetes. Elevated urine levels of YKL-40 have been associated
with need for dialysis in kidney transplantation,3° but urinary
YKL-40 levels were not associated with eGFR decline in a pop-
ulation with type 2 diabetes.4” Blood concentrations of YKL-
40 have not been shown to be associated with kidney function
changes over time. In one study of participants with type 2
diabetes and varying levels of baseline eGFR (mean eGFR
78 ml/min per 1.73 m”) and albuminuria, plasma YKL-40
was not associated with eGFR decline.?? In this investigation,
elevated plasma concentrations of YKL-40 were observed to
associate with DKD progression and decline in eGFR over
time, even after adjustment for potential confounders and
other plasma biomarkers. The panel of biomarkers that was
significantly associated with DKD progression, which in-
cluded inflammatory (TNFR-2) and tubular injury (KIM-1
and YKL-40) molecules, reflects the complex pathobiology
of DKD. Further, although the biomarkers had mostly mod-
erate to high intercorrelations, each biomarker alone was as-
sociated with DKD progression, suggesting different loci of
injury or pathways may be involved in determining outcomes.
Ultimately, a multibiomarker approach to risk prediction of
DKD progression may be necessary.

Rigorous technical and clinical validation studies are nec-
essary before novel biomarkers can enter clinical practice. Sev-
eral of the biomarkers examined in this study have previously
been shown to be associated with kidney disease progression,
although the studies were often small and included heteroge-
neous etiologies of CKD. To date, many phase-3 clinical trials
for DKD have failed,>” which may relate to insufficient power,
due to low overall rates of progression to end points (e.g.,
doubling of serum creatinine, onset of ESKD, or death).>8
Biomarkers may be used in the design of clinical trials to iden-
tify patients who are at high risk for developing DKD progres-
sion and targeting them for enrollment. Furthermore, novel
biomarkers may provide additional, clinically meaningful out-
comes, particularly in phase-2 trials. The use of rigorously
validated biomarkers for prognostic enrichment of trial pop-
ulations would reduce trial costs, size, and duration.>® Such
trials may also be more attractive to potential participants who
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are identified by virtue of their high risk of disease progression.
We assessed the potential utility of the plasma biomarkers
assessed in this study to enrich clinical trial enrollment using
the open-source software, Biomarker Prognostic Enrichment
Tool for Survival Outcomes (http://prognosticenrichment.
com/surv/), which is similar to the previously published Bio-
PET for binary outcomes®® (Supplemental Material,
Supplemental Figures 3 and 4, Supplemental Table 8). As an
illustrative example, plasma TNFR-2 could be used to enrich
enrollment by excluding individuals at varying concentrations
of plasma TNFR-2, such as below the 75th percentile. Assum-
ing no interaction between baseline level of TNFR-2 and treat-
ment effect, it is estimated that the sample size needed to
detect a 20% reduction in DKD progression over a 5-year
period could be reduced by nearly 50%, with a nearly similar
percentage reduction in cost. A similar effect, but to a lesser
magnitude, was estimated for KIM-1 (Supplemental Figures 3
and 4, Supplemental Table 8).

The results of this investigation need to be interpreted in
the context of some limitations and study strengths. First, due
to the observational nature of the study, residual confounding
by eGFR is possible because correlations of the biomarkers
with eGFR were strong. To address confounding, we leveraged
the existence of a well-characterized cohort by adjusting for an
extensive set of clinical covariates. Second, participants with
elevated biomarker levels may have been recruited into the
CRIC Study later in their disease, highlighting the importance
of assessment of earlier DKD to avoid index-event bias, which
is not fully addressed with adjustment for the baseline eGFR.
Third, misclassification is a concern because we did not follow
participants after they reached the primary outcome, which
would preclude an assessment of an improvement in eGFR.
However, 40% eGFR decline represents a large change, which
reliably predicts ESKD®! and conveys the low probability that
enough subjects would achieve improved eGFR to substan-
tially influence the results. Fourth, comparison of current and
prior results for a specific biomarker may be complicated by
ELISA assays using antibodies that recognize different peptide
epitopes. Previous studies evaluating biomarkers and DKD
have been limited by small sample sizes, especially in the
case of participants with type 2 diabetes, and have included
participants without kidney disease, which limits the interpre-
tation regarding disease-related pathways. Additionally, all
plasma biomarkers were measured in the same laboratory
with detailed quality control measures. Additional strengths
of this study include the assessment of the relationship of key
biomarkers that are likely indicative of pathways important for
DKD progression. Sensitivity analyses accounting for batch
effects were also consistent with the primary analyses. Fur-
thermore, we assessed these associations in a large, carefully
phenotyped, prospective cohort with moderate to severe CKD
from clinical centers across the United States that included
representation of diverse races and both sexes. These features
add to the generalizability of our findings to a typical DKD
population.
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In summary, higher plasma concentrations of KIM-1,
TNEFR-1, TNFR-2, MCP-1, suPAR, and YKL-40 were inde-
pendently associated with increased risk of DKD progres-
sion, even after adjusting for known risk factors. These findings
validate the previous literature on TNFR-1, TNFR-2, and
KIM-1, and provide new insights on plasma suPAR and
YKL-40 as markers that need validation. Further, TNFR-2
seems to be most strongly associated with DKD progression
after accounting for the other plasma biomarkers. These
biomarkers may help in the development of novel thera-
pies to prevent DKD progression and the selection of indi-
viduals for clinical trials that will be needed to test their
effectiveness.
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Table S1: Quality control parameters of biospecimen assays.

Intra-assay*

Inter-assay”

Lower Limit of

Upper Limit of

Assay Mean CV, % | CV% Range | Mean CV, % | CV% Range Detection Detection
(pg/ml) (pg/ml)
KIM-1 4.3 0-21.5 10.0 0.1-49.6 1.98 20,000
TNFR-1 7.0 0-124.6 14.8 05-741 0.67 16,000
TNFR-2 4.1 0-41.4 11.0 0.1-51.4 0.17 20,000
MCP-1 3.7 0-75 11.2 0.9-42.6 0.31 3,900
suPAR 54 0-129.1 15.3 1.9-49.8 53 64,000
YKL-40 2.9 0-31.1 9.9 0.2-52.9 140 192,000

CV - coefficient of variation; KIM-1- kidney injury molecule-1; MCP-1: Monocyte chemotactic protein; TNFR-1: tumor necrosis factor 1;
TNFR-2: tumor necrosis factor 2; sUPAR: soluble urokinase-type plasminogen activator receptor
*CV represents variability between duplicate pairs on assayed on the same day (N=894)
CV represents variability between blind duplicates assayed on different days (N=45)




Table S2. Plasma values of biomarkers according to baseline eGFR category (n=894)

eGFR <30 eGFR 230 to <45 eGFR 45 to <60 p*

(N=335) (N=335) (N=224)
SsuPAR 10,949 (8,784 - 13,796) 7,451 (5,811 - 9,420) 5,599 (4,273 - 6,764) <0.001
(pg/mL)
TNFR-1 6,391 (4,755 - 8,788) 3,654 (2,628 — 4,861) 2,255 (1,724 - 2,957) <0.001
(pg/mL)
TNFR-2 62,696 (51,083 — 78,210) 43,033 (34,419 — 52,287) 31,223 (25,277 — <0.001
(pg/mL) 37,547)
KIM-1 (pg/mL) 983 (533 - 2,176) 659 (381 — 1,188) 457 (268 - 847) <0.001
MCP-1 (pg/mL) 156 (119 - 188) 135 (108 - 168) 118 (95 — 154) <0.001
YKL-40 199,091 (127,405 — 142,633 (87,687 — 97,935 (56,109 — <0.001
(pg/mL) 230,691) 215,445) 175,842)

Data reported as median and interquartile range. eGFR: estimated glomerular filtration rate (mL/min/1.73m?); suPAR: soluble
urokinase-type plasminogen activator receptor; TNFR-1: tumor necrosis factor-1; TNFR-2: tumor necrosis factor-2; KIM-1- kidney
injury molecule-1; MCP-1: Monocyte chemotactic protein-1;
*Assessed with ANOVA or Kruskal-Wallis tests as appropriate.




Table S3: Association of plasma biomarkers with risk of DKD progression in staged

weighted Cox proportional hazards regression models. HRs (95% ClIs) for DKD progression
per unit of log»-transformed plasma biomarker concentration.

Biomarker*

Model 1
(eGFR)

Model 2
(UPCR)

Model 3
(eGFR + UPCR)

KIM-1

1.58 (1.44-1.73)

1.33 (1.19-1.48)

1.26 (1.14-1.40)

TNFR-1

2.23 (1.76-2.82)

2.41 (2.05-2.84)

1.84 (1.45-2.33)

TNFR-2

2.79 (2.06-3.77)

3.23 (2.51-4.16)

2.18 (1.59-3.00)

MCP-1

1.38 (1.12-1.70)

1.54 (1.25-1.90)

1.44 (1.17-1.77)

suPAR

1.55 (1.28-1.87)

1.95 (1.58-2.40)

1.40 (1.14-1.72)

YKL-40

1.47 (1.27-1.70)

1.47 (1.27-1.71)

1.35 (1.16-1.57)

KIM-1- kidney injury molecule-1; MCP-1: Monocyte chemotactic protein; TNFR-1: tumor necrosis

factor 1; TNFR2: tumor necrosis factor 2; suPAR: soluble urokinase-type plasminogen activator
receptor; eGFR: estimated glomerular filtration rate (mL/min/1.73m?); UPCR: urine-to-protein

creatinine ratio

Base covariates for all models: age, sex, race/ethnicity, education, clinical center, systolic blood

pressure, diastolic blood pressure, body mass index, hsCRP, hemoglobin Alc, anti-hypertensive

medication use, smoking status

Model 1: base covariates plus baseline eGFR
Model 2: base covariates plus UPCR

Model 3: base covariates plus baseline eGFR and UPCR
*per log.-transformed biomarkers




Table S4: Association of plasma biomarkers with risk of DKD progression using ComBat

approach. HRs (95% CIs) for DKD progression per unit of logz-transformed plasma
biomarker concentration.

Biomarker* HR (95% CI) HR (95% CI) HR (95% CI)
(Corrected for mean shift) | (Corrected for mean and variance (Corrected for mean shift of quality control
shifts) samples)

KIM-1 1.30 (1.17-1.44) 1.33 (1.20-1.47) 1.28 (1.16-1.41)
TNFR-1 1.91 (1.49-2.45) 1.83 (1.45-2.32) 1.92 (1.51-2.44)
TNFR-2 2.46 (1.78-3.41) 2.38 (1.75-3.24) 2.59 (1.94-3.45)
MCP-1 1.54 (1.25-1.90) 1.59 (1.29-1.96) 1.56 (1.27-1.92)
SuPAR 1.51 (1.22-1.88) 1.57 (1.27-1.94) 1.54 (1.25-1.89)
YKL-40 1.36 (1.17-1.59) 1.39 (1.19-1.62) 1.37(1.17-1.60)

KIM-1- kidney injury molecule-1; MCP-1: Monocyte chemotactic protein; TNFR-1: tumor necrosis factor 1; TNFR2: tumor
necrosis factor 2; suPAR: soluble urokinase-type plasminogen activator receptor; eGFR: estimated glomerular filtration rate
(mL/min/1.73m?); UPCR: urine-to-protein creatinine ratio

Model 1: adjusted for age, sex, race/ethnicity, education, clinical center, systolic blood pressure, diastolic blood pressure, body
mass index, hsCRP, hemoglobin Alc, anti-hypertensive medication use, smoking status, UPCR, baseline eGFR

*per 1 unit logz-transformed biomarkers



Table S5: Association of plasma biomarkers with risk of
DKD progression in proportional hazards regression model
in the subcohort only. HRs (95% Cls) for DKD progression
per unit of logz-transformed plasma biomarker
concentration.

Biomarker* HR (95% CI)

KIM-1 1.28 (1.12-1.47)
TNFR-1 1.46 (1.07-1.98)
TNFR-2 1.68 (1.16-2.43)
MCP-1 1.38 (1.06-1.80)
SUPAR 1.43 (1.02-2.01)
YKL-40 1.30 (1.09-1.56)

KIM-1- kidney injury molecule-1; MCP-1: Monocyte chemotactic protein; TNFR-
1: tumor necrosis factor 1; TNFR2: tumor necrosis factor 2; suPAR: soluble
urokinase-type plasminogen activator receptor; eGFR: estimated glomerular
filtration rate (mL/min/1.73m?); UPCR: urine-to-protein creatinine ratio

Model adjusted for age, sex, race/ethnicity, education, clinical center, systolic
blood pressure, diastolic blood pressure, body mass index, hsCRP, hemoglobin
Alc, anti-hypertensive medication use, smoking status, UPCR + baseline
eGFR

*per 1 unit logz-transformed biomarker




Table S6: Association of plasma biomarkers with risk of
DKD progression in proportional hazards regression model
adjusting for biomarkers. HRs (95% Cls) for DKD
progression per unit of log,-transformed plasma biomarker
concentration.

Biomarker* HR (95% CI)

KIM-1 1.17 (1.05-1.30)
TNFR-2 1.61 (1.15-2.26)
MCP-1 1.20 (0.97-1.47)
YKL-40 1.18 (1.01-1.39)

KIM-1- kidney injury molecule-1; MCP-1: Monocyte chemotactic
protein; TNFR-2: tumor necrosis factor 2; eGFR: estimated glomerular
filtration rate (mL/min/1.73m?); UPCR: urine-to-protein creatinine ratio
Model adjusted for age, sex, race/ethnicity, education, clinical center,
systolic blood pressure, diastolic blood pressure, body mass index,
hsCRP, hemoglobin Alc, anti-hypertensive medication use, smoking
status, UPCR + baseline eGFR

*per 1 standard deviation logz-transformed biomarker

Biomarkers selected to remain in model via backward selection
(p<0.05)




Table S7: Association of plasma biomarkers with annual change in eGFR (ml/min/1.73m?)
in staged linear mixed effects models. 8 (95% Cls) for change in annual eGFR slope per
unit logz-transformed plasma biomarker concentration within the subcohort (N=597).

Biomarker*

Model 1
(eGFR)

Model 2
(UPCR)

Model 3
(eGFR + UPCR)

KIM-1

-0.77 (-0.96, -0.57)

-0.33 (-0.51, -0.14)

-0.34 (-0.54, -0.14)

TNFR-1

-0.97 (-1.38, -0.56)

-0.20 (-0.48, 0.08)

-0.43 (-0.81, -0.05)

TNFR-2

-0.98 (-1.46, -0.50)

-0.29 (-0.64, 0.05)

-0.53 (-0.97, -0.09)

MCP-1

-0.09 (-0.46, 0.28)

0.01 (-0.30, 0.33)

0.00 (-0.33, 0.33)

suPAR

-0.59 (-1.09, -0.09)

-0.20 (-0.56, 0.16)

-0.38 (-0.84, 0.08)

YKL-40

-0.63 (-0.87, -0.39)

-0.35 (-0.56, -0.15)

-0.39 (-0.61, -0.17)

KIM-1- kidney injury molecule-1; MCP-1: Monocyte chemotactic protein; TNFR-1: tumor necrosis factor 1;
TNFR-2: tumor necrosis factor 2; sSUPAR: soluble urokinase-type plasminogen activator receptor; eGFR:
estimated glomerular filtration rate (mL/min/1.73m?2); UPCR: urine-to-protein creatinine ratio

Base covariates for all models: age, sex, race/ethnicity, education, clinical center, systolic blood pressure,
diastolic blood pressure, body mass index, hsCRP, hemoglobin Alc, anti-hypertensive medication use,

smoking status
Model 1: base covariates plus baseline eGFR

Model 2: base covariates plus UPCR
Model 3: base covariates plus baseline eGFR and UPCR
*per logz-transformed biomarkers




CRIC Phase | Baseline Visit (N=3939)

\/

Biomarker baseline visit: Earliest visit with
plasma EDTA sample (N=3111)

N/

Exclude 1,796 participants:
without diabetes, eGFR >=60, or
developed ESKD

CRIC Participants with eGFR <60 and with diabetes

(N=1315)
Select Random sample for Select All Cases: Participants
Subcohort (N=596) with eGFR decline of >40%

OR ESKD (N=538)

Figure S1: Flow Diagram of Study Sample Selection
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Supplemental Methods for Evaluating Plasma Biomarkers for Prognostic Enrichment

The Biomarker Prognostic Enrichment Tool for Survival outcomes (BioPETsurv) is open source

software found at: http://162.243.95.157/surv, which can assess the potential utility of plasma biomarkers to
enrich clinical trial enrollment, and is similar to the previously published BioPET for binary outcomes,

located at: http://162.243.95.157/orig.* BioPETsurv can simulate biomarker and time-to-event data that

matches prespecified event rates with and without enrichment in terms of a hazard ratio. BioPETsurv
displays Kaplan-Meier survival curves for the entire patient population and enriched subsets. Based on the
level of enrichment, the prognostic strength of the biomarker, and length of the trial, BIOPETsurv estimates
the expected event rate absent intervention. The expected event rate with statistical testing specifications
(e.g., power) and the treatment effect determine the trial sample size, which is dependent on the level of
enrichment.

We set the BioPETsurv simulation parameters to reflect the range of hazard ratios for DKD
progression that were observed to be associated with individual plasma log. biomarkers in this study, from
the most modest association of KIM-1 (HR 1.26) to the strongest association of TNFR-2 (HR 2.18). We
specified constant hazards and normal distribution for the biomarkers. We set the survival data for 5,000
patients with event rate of 25% at 5 years, with 90% power to detect treatment hazard ratio 0.8 (two-sided
testing, alpha=0.05), with conservative estimates for cost of screening of $100 per patient, and cost per-
patient of $100/month to complete the trial.

The simulated results of KIM-1 are shown in Figure S3. Panel A shows estimated survival curves for
screening threshold 0% (top curve), i.e., for all patients (no enrichment). The plot shows that events
accumulate more quickly in enriched subpopulations of patients, showing more quickly decreasing survival
curves for enrichment levels 25%, 50%, and 75% (meaning that patients with biomarker below the 25th,
50th, or 75th percentile are excluded). Panel B shows the estimated event rate increases as a function of
the level of enrichment. Based on these event rates and specifying 90% power to detect treatment hazard
ratio 0.8 (two-sided testing, alpha=0.05), panel C displays the sample size (decreases with greater
enrichment). Panel D shows the number of patients needed to screen to enroll for the trial. With higher

enrichment, the screening total increases. Panels E and F display the cost analysis, which shows cost
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savings for higher levels of enrichment. Figure S4 displays the simulated results of TNFR-2, the biomarker

most strongly associated with DKD progression. Table S8 displays the numeric results of the simulations.
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Figure S3: BioPETsurv analysis of KIM-1 as a modest prognostic biomarker of DKD progression for
a 5-year clinical trial. The BioPETsurv data simulator generated data for a normally distributed biomarker
with prognostic strength of HR 1.26 corresponding to change in log. biomarker. Sample size calculations
specified 90% power to detect a treatment hazard of 0.8 using two-sided testing and alpha=0.05. For cost
analysis, patient screening was set at $100 and the cost of a patient in the trial was set at $100/month.
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Figure S4: BioPETsurv analysis of TNFR-2 as a highly prognostic biomarker of DKD progression for
a 5-year clinical trial. The BioPETsurv data simulator generated data for a normally distributed biomarker
with prognostic strength of HR 2.18 corresponding to change in logz biomarker. Sample size calculations
specified 90% power to detect a treatment hazard of 0.8 using two-sided testing and alpha=0.05. For cost
analysis, patient screening was set at $100 and the cost of a patient in the trial was set at $100/month.

Table S8: Simulation of modest to highly prognostic biomarkers of DKD progression
for a clinical trial of 5 years.
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KIM-1 (HR of 1.26 for DKD Progression)

Screening Event Rate (%) Sample Size Total Screened Reduction in
Threshold Total Cost (%)
(Level of
Enrichment)
0% 0.28 3345 3345 0
25% 0.28 3272 4363 0.01%
50% 0.30 3039 6078 6.12%
75% 0.33 2813 11,248 10.3%

TNFR-2 (HR of 2.

18 for DKD Progression)

Screening Event Rate (%) Sample Size Total Screened Reduction in
Threshold Total Cost (%)
(Level of
Enrichment)
0% 0.32 2896 2896 0%
25% 0.38 2394 3192 15.5%
50% 0.46 1971 3942 29.67%
75% 0.59 1530 6120 43.65%

Trials. 2017;14(6):629-638.
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