
Distributed Coordination of Heterogeneous Agents
Using a Semantic Overlay Network and a Goal-Directed
Graphplan Planner
António Luı́s Lopes*, Luı́s Miguel Botelho

Instituto de Telecomunicações, Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

Abstract

In this paper, we describe a distributed coordination system that allows agents to seamlessly cooperate in problem solving
by partially contributing to a problem solution and delegating the subproblems for which they do not have the required
skills or knowledge to appropriate agents. The coordination mechanism relies on a dynamically built semantic overlay
network that allows the agents to efficiently locate, even in very large unstructured networks, the necessary skills for a
specific problem. Each agent performs partial contributions to the problem solution using a new distributed goal-directed
version of the Graphplan algorithm. This new goal-directed version of the original Graphplan algorithm provides an efficient
solution to the problem of "distraction", which most forward-chaining algorithms suffer from. We also discuss a set of
heuristics to be used in the backward-search process of the planning algorithm in order to distribute this process amongst
idle agents in an attempt to find a solution in less time. The evaluation results show that our approach is effective in
building a scalable and efficient agent society capable of solving complex distributable problems.

Citation: Lopes AL, Botelho LM (2013) Distributed Coordination of Heterogeneous Agents Using a Semantic Overlay Network and a Goal-Directed Graphplan
Planner. PLoS ONE 8(5): e62931. doi:10.1371/journal.pone.0062931

Editor: Olaf Sporns, Indiana University, United States of America

Received November 21, 2012; Accepted March 26, 2013; Published May 21, 2013

Copyright: � 2013 Lopes, Botelho. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work described in the paper has been supported by the Portuguese Foundation for Science and Technology (http://alfa.fct.mctes.pt/index.phtml.
en) under the scholarship grant SFRH/BD/27533/2006 and the grants PTDC/EEACRO/104658/2008 and PEst-OE/EEI/LA0008/2011. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: alsl@iscte.pt

Introduction

One of the major challenges of creating real-world agent

societies is to develop a coordination infrastructure that is scalable

and robust enough to support cooperation in increasingly complex

problems. Multi-agent coordination has been the focus of much

research in the area of distributed problem solving and multi agent

systems. Although extensive research has been done in this area,

most of that work relies on centralized or hierarchical structures.

The work presented in this paper combines multi-agent coordi-

nation and peer-to-peer (P2P) computing as an efficient way of

deploying scalable and efficient distributed problem solving. Our

main goal is to build a coordination framework that allows

heterogeneous agents to freely participate in totally decentralized

large-scale collaborative environments. In the presented proposal,

agents are able to use their own skills to partially contribute to

complex problems and delegate the remaining unsolved subprob-

lems to other agents that are better equipped to further contribute

to the problem’s solution.

The remainder of the paper is organized as follows. In the back

section, we provide a background description of the problem we

have addressed and the related work. This includes the description

of our own work on the underlying discovery mechanism based on

the dynamically built semantic overlay network (some of the concepts

described here were presented in previous papers but we

summarize them here, though in less detail, for the sake of

making this paper self-contained) and the description of the

planning graph paradigm and the Graphplan algorithm. In the dist

section, we present our overall distributed approach to this

coordination problem by first describing our distributed version of

the Graphplan algorithm and then the goal-directed version of the

previously described distributed algorithm. The evaluation section

is dedicated to present and discuss the results of applying both

versions of the algorithm to complex planning environments and,

finally, in the conclusion section, we conclude the paper and

discuss some limitations of our approach which will be considered

in future research.

Background

Even though classical planning approaches such as state-space

planning [1], plan-space planning [2] and graph planning [3] have

evolved to address fairly complex problems [4] [5] [6] [7], these are

still inadequate to be used in large distributed environments, since

they only consider the single agent view. In growing environments

where multiple heterogeneous agents operate without a central or

hierarchical structure, there is a need to efficiently coordinate the

network of intelligent agents in order for their collective power to be

used in providing solutions to complex problems.

Usually, current research addresses the coordination problem for

distributedproblemsolvingbymakinguseofcentralizedcomponents

[8] [9] [10] or organizational structures [11] [12] [13] [14] [15] [16]

[17] [18] that are potential central points of failure, may introduce

inefficiencies, and may not scale to larger environments, which can

compromise the entire system. Moreover, major comparisons of

multi agent coordination strategies [19] [20] show that centralization

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e62931

is only suitable when the environment is composed of a few hundred

agents and that distributed approaches are clearly more effective for

larger networks.

Adopting a divide and conquer strategy to solve the multi agent

coordination problem has proven to be an effective alternative

[21]. The use of goal transformations [22] is an example of such a

coordination mechanism. Basically, this strategy allows an agent,

who has to solve goal G, to solve a goal G’ instead that generates a

sub-solution and then pass the remainder of the goal (i.e. G minus

G’) to another agent. In more detail, an agent looking to solve goal

G must solve the set of open conditions of this goal, i.e., it must

have the necessary skills to solve all the desired conditions that are

not true in the current state. If the agent does not have the

necessary skills to do so, it divides the open conditions into two

sets: one with conditions that the agent is capable of achieving; and

another with the remaining conditions. It is this set of open

conditions, for which the agent cannot contribute, that is sent to

another agent, hoping it will contribute to satisfy them.

For the agent to know who to delegate this set of conditions it

cannot cope with, the whole set of agents is organized in

subdomains [22]. Each agent represents the sub-domain to which

it belongs, which contains not only its own actions, but also a set of

phantom actions it does not possess. A domain can be split into

any number of sub-domains bounded by the total number of

actions in the domain. Phantom actions point to the agents that

possess them. Hence, if an agent does not own an action, it knows

which agent to enlist for that action.

However, from a network topology point of view, this means

that each agent must have a phantom connection to all other

agents in the network (referred to as a fully-connected network),

which is prohibitive for very large and dynamic networks with high

churn rates (the rate at which agents enter or leave a network)

making the approach non-scalable. In the experiments presented

in [22], the authors have only used a maximum of 3 agents with a

maximum of 3 actions each. The described mechanism concat-

enates the resultant sub-plans from agents into a final solution

plan, without a central coordination process. However, it does not

take into account possible conflicts that may arise from the fact

that agents only contribute to parts of the problem without

considering the effect that their decisions may have on other

agents’ contributions.

Although the approach described above does not rely on

centralized components, it makes use of a distributed setting that is

not scalable for large networks or for networks in which there is a high

churn rate. We address the efficient management of large networks

with high churn rates without using centralized elements, superim-

posed organizational structures or fully-connected networks. Using

the semantic link paradigm to create meaningful connections

amongst the agents in the environment (also referred to as semantic

overlay networks [23]) is an effective way to optimize the discovery

process. If, as shown in [24], an agent has a resource or a skill that is

somehow related to a resource or skill that belongs to another agent,

then it is important that a semantic based connection exists between

these two agents stating the meaning of their relationship. This

semantic-link can then be used to improve future searches or

collaboration initiatives. This avoids having too many connections

between the agents (as in fully-connected networks) since only

semantically-related agents are connected.

Semantic-based Distributed Discovery Mechanism
For an agent to contribute to solve a specific problem that can

only be solved by the collective effort of different agents in a

network, it needs an efficient discovery algorithm to find the agents

that provide the other necessary contributions. Peer-to-peer (P2P)

computing research has provided interesting solutions, namely

informed searches [25] [26] [27] [28] [29] and distributed hash

tables (DHT) [30] [31] [32]. However, these semantic-free

approaches, although having good performance for point queries

(like DHT), they are not as effective for approximate, range, or

text queries [23] and they do not, on their own, capture the

relationships between an action or agent’s name and its content or

metadata [33].

A semantic approach aims at bringing a more powerful and

meaningful description of agents and their actions so as to

optimize the discovery process in collaborative environments. In

previous work [34] we have shown that it is possible to improve

the resource coordination process in multi agent peer-to-peer

networks by building, maintaining and using a semantic overlay

network [23] that is dynamically learnt and updated by the

discovery mechanism. The discovery and self-organization pro-

cess, in which agents establish semantic connections amongst

them, thus fueling the semantic overlay network, is first carried out by

using efficient and robust search mechanisms and network

evolution techniques (see [34] and [35] for details). The process

in which the semantic overlay is built starts as soon as agents enter

the network and broadcast their skills. This is an on-going process

that is never actually complete since new agents can enter the

network at any time. Agents can use the semantic overlay network to

easily locate resources, for example, while performing other tasks

such as planning a solution for a specific problem. When doing so,

if an agent detects that a certain skill cannot yet be found in the

semantic overlay network, it can trigger the discovery mechanism

in order to update the semantic overlay network.

During this process, each agent uses a simple inference rule to

determine whether or not other agents should be semantically

linked to it: agent a’s action a should be semantically linked to

agent b’s action b if b’s effects (denoted as effects(b)) contribute to

achieve a’s preconditions (denoted as precond(a)). The following

expression illustrates the inference rule (we consider that

preconditions and effects are sets of propositions which represent

their conjunction):

A c ½(c [precond (a) ^ (effects (b) ‘ c)� ð1Þ

The main purpose of this process is to allow a network of

otherwise unrelated agents to self-organize, such that each agent

knows exactly where the actions on which its own actions depend

(or contribute to) are. This information will be useful for

coordinating agents within the distributed problem solving

process.

Nevertheless, this process has to be efficiently carried out and

should be flexible and scalable enough to support increasingly

larger networks. We have developed two algorithms, Priority-

based Flooding (PbF) and Iterative Branching Depth-First Search

(IBDFS) and compared them with existing ones. Both these

algorithms were presented and evaluated in [34] and [35]. In this

paper, we briefly describe the best of the two algorithms, IBDFS,

which is used in our coordination system.

Our proposed search technique, Iterative Branching Depth-

First Search (IBDFS), is based on the depth-first search mechanism

and it can be used as an alternative to other algorithms (even in

high load networks). We introduce the use of an iterative

branching process in the depth-first search to increase the

coverage of the network. When initiating a search process, an

agent will randomly contact one of its neighbors. If the neighbor

possesses the required skill, then the agent informs the requesting

agent and the process ends. If the neighbor replies stating that it

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e62931

does not have the required skill and that it will apply the same

iterative branching depth first search process with its neighbors,

then the agent will contact a second neighbor and so forth.

Algorithm 1 depicts the recursive discovery algorithm.

Algorithm 1 IBDFS(q, N): let q be the query to be processed, N

the list of neighbors and r the result of a query processing event.

Require: N .0

1: r r �
2: if : processed(q) then

3: r r process(q)

4: reply(r)

5: processed(q) R true

6: end if

7: if r =� then

8: randomly select ni M N

9: rni
/forward q,nið Þ

10: if rni
~� then

11: IBDFS(q, N 2 ni)

12: end if.

13: end if.

This approach increases the branching level iteratively on each

hop count, thus increasing the chances of finding the answer faster,

comparatively to the depth first search approach.

Planning-graph and the Graphplan Algorithm
Given an initial state of the world and a goal or set of goals (we

use the STRIPS [1] representation under the assumption of a

deterministic and fully observable domain) and a set of potential

actions, a planning graph [3] consists of a directed, leveled graph

where levels alternate between proposition levels containing

proposition nodes and action levels containing action nodes

SP0,A1,P1, . . . ,Ai,PiT. The first level (P0) is a proposition level

composed of proposition nodes corresponding to the initial state.

The second level (A1) is an action level composed of action nodes,

one for each action whose preconditions are satisfied by the

propositions in the first level (P0). The third level (P1) is a

proposition level composed of proposition nodes, which represent

the propositions created by the effects of the actions in the second

level. Also, the propositions created by previous proposition levels

are added to this level. That is, at each level Pi, each proposition

p[Pi is propagated to the next level Piz1 by a dummy action no-op

that has a single precondition and a single positive effect p.

The planning graph is built this way until a proposition level is

reached that includes all propositions of the goal. A planning graph

does not represent a valid plan for a planning problem. Instead, it

uses the principles of independence and mutual exclusion - or mutex - to

drastically reduce the search space and help finding a valid plan

faster.

Two actions a and b are independent if and only if the following

two conditions hold (we denote precond(a) as the preconditions of

an action a, and respectively effectsz(a) as the positive effects of a
and effects{(a) as the negative effects of a):

effects{(a)\½precond (b)|effectsz (b)�~� ð2Þ

effects{(b)\½precond(a)|effectsz(a)�~� ð3Þ

Two actions a and b in level Ai are mutex if either a and b are

dependent or if a precondition of a is mutex with a precondition of

b. Two propositions p and q in Pi are mutex if every action in

Ai{1 that has p as a positive effect (including no-op actions) is

mutex with every action that produces q. The set of mutex

relations at proposition level Pi and action level Ai are denoted

respectively mPi and mAi.

Graphplan [3] is an example of how a planning graph can be used

for solving a planning problem. The Graphplan algorithm iteratively

expands the planning graph by one level (with the exception of the

first expansion, which is done until a proposition level is reached

where all goal propositions are included and no pairs of them are

mutex since it does not make sense to start searching for a plan in a

graph that has not yet reached a goal state) and then searches

backward from the last level of this graph for a solution. The

search procedure looks for a set of non-mutex actions that achieve

the goal propositions. Preconditions of the chosen actions become

the new goal propositions and the process continues. A failure to

meet the goal at some level i leads to backtrack over all other

subsets of actions in level iz1. If the first level is successfully

reached, then the corresponding action sequence is a solution

plan.

This iterative graph expansion and search processes are pursued

until either a plan is found or the search reveals that no solution

can be found in the planning graph. A way to determine that a

problem has no solution and to avoid an infinite expansion process

is by using the level-off property, which dictates that every planning

graph has a fixed-point level k that is the smallest k such that

DPk{1D~DPk D and DmPk{1D~DmPk D.
Graphplan has revolutionized automated planning research

mainly because of its simple, elegant algorithm and its represen-

tation of planning problems that created the basis for an extremely

fast planner [36]. Nevertheless, the algorithm applies to the one-

agent planning paradigm and does not explore the potential of

using Graphplan in a distributed setting.

Methods

If we interpret the problem to be solved as a goal (or a set of

goals) to be achieved, then its decomposition into sub-problems

requires the decomposition of the main goal into smaller sub-goals.

Hence, agents need a planning algorithm that allows them to

decompose the initial goal (or goals) into smaller goals, to

contribute to achieve some of them and to delegate the remaining

to other, more suitable, agents. We have built a distributed version

of the Graphplan planner [3] that allows agents to do just that:

perform local contributions to the current planning graph and

delegate the partially filled graph to more suitable agents (which

are discovered using a semantic overlay network).

However, as with similar Graphplan-based approaches [37] [38],

its performance tends to degrade at an undesirable rate as

problems grow in size or complexity. This is due to the problem of

"distraction", in which planners using forward chaining algorithms

waste a lot of time considering propositions in the initial state that

are irrelevant to the final solution plan. In this paper we describe

and evaluate the goal-directed version of our distributed Graphplan

planner, which performs a preliminary graph expansion process

that starts from the goal state and produces a special-purpose

graph (called operators-graph) with only the planning operators (or

actions) that are relevant to the problem at hand. Once this

operators-graph is distributedly built, the normal expansion of the

planning graph can then proceed using only the relevant operators

found in the operators-graph. The final backward graph search, in

which agents try to find a valid solution to the planning problem,

cannot be distributed, but it can be tackled with different

strategies. In this paper, we also discuss and evaluate a set of

heuristics that allow a group of agents to perform this search using

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e62931

different techniques as a way of finding the solution as quickly as

possible.

Distributed Graphplan
In the centralized version of the Graphplan algorithm, the

planning agent has full knowledge of the available actions.

However, in a distributed environment, each agent only has

knowledge of its own actions. We modified the algorithm to take

into account partial contributions to the development of the

planning graph. The process is carried out as follows (Algorithm 2

details the expansion process engaged by each agent):

Algorithm 2 Expand(i, PG): Let i be the current level of

expansion in the planning graph, I the set of propositions in the

initial state, G the set of goal propositions, PG a planning graph with

the structure ÆP0, A1, mA1, P1, mP1 …, An, mAn, Pn, mPnæ and A the

set of actions the agent knows (Note : the sets in the algorithm

with a superscripted 2 in the name, represent all possible pairs of

the elements of those sets):

1: if i = 0 then
2: PGÆP0æ r I

3: Expand(1, PG)

4: else
5: A9 r {a M A | precond(a) # Pi21 and

precond2(a) > mPi21 =�}

6: P9 r {p | ’ a M A9 : p M effects+(a)}

7: mAi r {(a, b) M A92 and (a M A9, b M Ai), a ? b |

effects2(a) > [precond(b) < effects+(b)] ? %

or effects2(b) > [precond(a) < effects+(a)]

or ’ (p, q) M mPi21 : p M precond(a), q M precond(b)}

8: Ai r Ai < A9

9: mPi r {(p, q) M P92 and (p M P9, q M Pi) |

; a, b M Ai, a ? b :

p M effects+(a), q M effects+(b)) (a, b) M mAi}

10: Pi r Pi < P9

11: if |Pi21| = |Pi| and |mPi21| = |mPi| then
12: AnalyseAndForward(PG)

13: else
14: if (;g MG) | gM Pi and G2 > mPi=� then
15: return PG

16: else
17: Expand(i +1, PG)

18: end if
19: end if
20: end if

N An agent receiving a planning problem solving request, which

includes a description of the initial state and a set of goals,

creates the first proposition level (P0 - line 2 of alg. 2) that is

composed of all propositions of the initial state (this is only

done by the first agent that receives this request);

N The agent then determines which of its own actions can be

added to each action level Ai (line 5 of alg. 2) and

corresponding propositions (actions’ effects) to level Pi (line 6

of alg. 2) of the planning graph;

N Mutexes are calculated for all possible pairs of added actions

and of those with the actions in level Ai. The mutexes between

actions already present in level Ai do not have to be

recalculated. An identical process is carried out for proposi-

tions (see lines 7 and 9 of Algorithm 2 for details).

N When the agent is unable to make further contributions to the

planning graph (i.e., when the planning graph levels-off - line 11 of

the alg.), it analyses the open propositions (to which it was

unable to contribute) and forwards the partial planning graph to

an agent chosen from a set of appropriate agents (obtained using

the agent discovery mechanism supported by the semantic overlay

network - line 12 of alg. 2);

N The new agent receiving the planning graph will execute these

same steps up to a point where a level Pi in the graph is

reached where all goal propositions exist and none of which is

mutex with any other (line 14 of alg 2), or until a certain

terminating condition holds.

The AnalyseAndForward procedure in the algorithm (line 12)

encapsulates the choice of the agent to which the partially-filled

planning graph should be sent. There are several different ways as

to how this process can be carried out and we provide a detailed

analysis on this in the Results and Discussion section, in particular,

the Open Conditions and Resolvers sub-section.

The termination of this overall expanding process in a

distributed environment is not trivial. In the centralized version,

an agent can declare that a problem is impossible, if the graph

levels-off. For an agent with only partial knowledge of the world, it

is impossible to know if a leveled-off graph means that the problem is

impossible or if it simply means that the agent does not have the

necessary skills to complete it and should, therefore, request the

contribution of another agent.

This could lead to an indefinite process of forwarding partially

solved problems between agents. To prevent this situation, we use

a similar mechanism as the one used in P2P search algorithms,

where a time-to-live (TTL) parameter is used to specify the allowed

number of times the request may be forwarded without it being

updated with new contributions. Once that TTL parameter

expires, the problem is considered impossible and the requester

agent is duly informed. Although this may seem to cause the

algorithm to be incomplete, the Graphplan algorithm is in fact

complete. It is only the inability of the discovery process to find the

necessary skills (because these may not exist in the network or they

would require several iterations through the network to be found)

that causes the algorithm to not reach a solution plan.

Once a planning graph reaches a point where all goal propositions

exist and none of which are mutex, it is up to the agent holding the

planning graph at that time to execute the backward search (starting

from the goal propositions) that will find a valid solution plan. The

agent can also request the assistance of other agents in the

backward search. In such cases, each agent will use a different

heuristic in the process (an analysis of the heuristics used in the

backward search is presented in the evaluation section, in

particular, the eval:heuristics sub-section). Algorithms 3 and 4

carry out this whole process.

Algorithm 3 Extract(PG, G, i): Let PG be a planning graph with

the structure ÆP0, A1, mA1, P1, mP1 …, An, mAn, Pn, mPnæ, G the

current set of goal propositions, i the current level being analyzed

and pi a set of actions that achieve propositions of G:

1: if i = 0 then
2: return Ææ
3: else
4: if G M =(i) then
5: return �
6: else
7: pi r SearchPG(PG, G, %, i)

8: if pi ? � then
9: return pi.

10: else
11: =(i) r =(i) < G

12: return �
13: end if
14: end if
15: end if

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e62931

Algorithm 4 SearchPG(PG, g, pi, i): Let PG be a planning graph

with the structure ÆP0, A1, mA1, P1, mP1 …, An, mAn, Pn, mPnæ, G the

current set of goal propositions, pi a set of actions that achieve

propositions of G, i the current level being analyzed, Ai the action

level i, mAi the mutexes between actions in Ai and P the current

solution plan:

1: if G =� then
2: P r Extract(PG, <{precond(a) | ; a M pi}, i 21)

3: if P=� then
4: return �
5: else
6: return P.Æpiæ
7: end if
8: else
9: select any g M G

10: resolvers r {a M Ai | g M effects+(a) and ; b M pi :

(a, b) 1 mAi}

11: if resolvers =� then
12: return �
13: else
14: select any a M resolvers

15: return SearchPG(PG, G – effects+(a), pi <
a, i)

16: end if
17: end if
Algorithm 3 takes as input a planning graph, a current set of

goal propositions and a current level index. It extracts a set of

actions that achieves the goal propositions by recursively calling

Algorithm 4 (line 7). If it succeeds in reaching level 0, then it

returns an empty sequence (lines 1 and 2), from which pending

recursions successfully return a solution plan.

The mutex relation between propositions provides only forbidden

pairs, not tuples. But it might be the case that the search process

shows that a tuple of more than two propositions corresponding to

an intermediate sub-goal fails. To avoid analyzing the same

(invalid) tuple more than once, which might occur due to the

backtracking and the iterative deepening of the backward search

process, algorithm 3 records any information regarding failed

tuples (in the hash table denoted by + - in line 11) and checks each

current goal with respect to these recorded tuples (in line 4) to save

time in future searches.

Algorithm 4 selects each goal proposition p at a time (line 9) and

from the resolvers of p, that is, actions that achieve p and that are

not mutex with actions already selected for that level, it chooses one

action a (line 14) that tentatively extends the current subset pi

through a recursive call at the same level (line 15). This is

performed on a subset of goals minus p and minus all positive

effects of a in g. If a failure regarding this choice occurs, a

backtrack over other alternatives for achieving p (if any) or a

backtrack further up (if all resolvers of p have been tried) is

performed. When g is empty (line 1), then pi is complete. At this

point, the search recursively tries to extract a solution for the

following level i-1 (line 2). This process carries on until the first

proposition level is reached successfully and a final solution plan is

extracted from the planning graph.

Goal-directed Distributed Graphplan
In most domains, some of the propositions contained in the

initial state are completely irrelevant to reach the goal state of a

specific problem. As most forward-chaining planners, Graphplan

suffers from the problem of distraction, where the planner considers

all propositions in the initial state even if they will not help reach a

solution plan. In fact, these unnecessary propositions have an

undesirable effect because they can be very time-consuming, thus

degrading the performance of the planner. Therefore, they should

be avoided. The problem lies in the fact that forward-chaining

planners do not know which propositions are relevant.

To cope with this problem, we have used a similar approach to

the one presented in [5]. We use means-ends analysis in the

Graphplan algorithm, by first producing an operators-graph [39] using

a backward-chaining process starting from the goal state. Since it

only considers the propositions in the goal state, the operators-graph

will produce a graph with only relevant actions.

This planner uses a similar process to the one used in the

generation of the planning graph but in the opposite direction, as

shown in Algorithm 5. It finds actions (including no-ops) that can

contribute to goal propositions (line 5 of alg. 5) and the

preconditions of those actions become the new goal propositions

(line 6 of alg. 5).

Algorithm 5 BuildOG(i, OG): Let i be the current level of

expansion in the operators-graph, G the set of propositions in the goal

state, OG an operators-graph with the structure ÆPn, An, …, P1, A1, P0æ
and A the set of actions the agent knows:

1: if i = 0 then

2: OGÆP0æ r G

3: BuildOG(1, OG)

4: end if

5: A9 r {a M A, b M Ai, a ? b, p M Pi21 | (effects+(a) w p}

6: P9 r {p | ’a M A9 : p M precond(a)}

7: Ai r Ai < A9

8: Pi r Pi < P9

9: if |Pi21| = |Pi| and |Ai21| = |Ai| then

10: AnalyseAndForward(OG)

11: else

12: if (;p M Pi) | p M I then

13: returnOG

14: else

15: BuildOG(i +1, OG)

16: end if

17: end if

The process continues until it reaches a level in which all

propositions are contained in the initial state (line 12 of alg. 5) or

the graph levels-off (line 9 of alg. 5). Since there is no mutexes

calculation in this process, the level-off property in this case is

slightly different: the operators-graph has a fixed-point level k that is

the smallest k such that DPk{1D~DPk D and DAk{1D~DAkD.
Once the graph has been generated, the forward expansion of

the planning graph (Algorithm 2) can take place, except this time it

will only consider the operators that are contained in the operators-

graph, thus significantly reducing the size of the graph and the

number of mutexes calculations.

The generation of this graph is a lot faster because it is not as

complex as the forward-based planning graph generation (which

includes calculating mutexes). But since it does not analyze the

relations between actions of the same level, it still generates actions

that, even though relevant, may not occur in a solution plan.

Nevertheless, this approach still presents advantages for domains

in which the distraction problem has a strong impact, because it will

consider a lot less actions than the original Graphplan algorithm.

The drawback is, obviously, the overhead introduced by the

generation of the operators-graph.

Results and Discussion

As described in previous sections, we have developed two

algorithms that allow agents to partially contribute to solve faced

problems using only their limited knowledge of the world, enabling

each agent to delegate the yet to be achieved goals to other agents,

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e62931

which may be discovered, relying on the semantic overlay network

based P2P search algorithm. One of those algorithms is our

distributed version of the Graphplan algorithm (see the Distributed

Graphplan sub-section).

The other algorithm is a goal-directed version of the distributed

Graphplan algorithm (see the Goal-directed Distributed Graphplan

sub-section), which considers a lot less actions than the original

approach but, in order to do so, it introduces a considerable

overhead by having to generate the operators-graph.

This section presents the tests performed to evaluate these two

algorithms. We begin by briefly presenting, in the eval:scenarios

sub-section, the two scenarios in which the algorithms were

extensively tested (a detailed description of these scenarios is

available online at http://antoniolopes.info/files/appendices/

scenarios). Then, in the Distribution of Skills sub-section, we

evaluate the overall performance of the algorithms as the problems

grow in size, in both previously described testing scenarios. These

tests clearly show that the goal-directed version of the distributed

Graphplan algorithm scales better than the other version of the

algorithm, by simply employing a much more efficient planning

graph generation process. In the Distribution of Skills sub-section

we continue the analysis of the scalability and efficiency of the

goal-directed version of the algorithm by evaluating and

concluding that its performance is not affected by variations in

the number of agents and skills in the environment. In the eval:ocr

sub-section we explore a different strategy for choosing resolver

agents and evaluate how this affects the performance of the system.

Finally, in the eval:heuristics section we discuss and evaluate a set

of heuristics for performing the backward search on the planning

graph.

Testing Scenarios
Our approach is intended to be used in environments where a

problem, described as a set of goals to be achieved, must be solved

through decomposition and delegation possibly to several agents.

In such environments, agents have different capabilities, which

may or not be complementary, and it is their collaborative work

that ultimately produces a solution to the problem. In this sub-

section we describe two such environments, the Rescue Agents and

Custom Balls Factory scenarios, in which we have deployed and

tested our approach:

N Rescue Agents - In this scenario, agents represent entities that

participate in a rescue operation after the occurrence of a

natural disaster, where they have to perform operations such as

clearing roads, putting out fires and providing assistance to

injured people.

N Custom Balls Factory - In this scenario, agents represent

machines that can apply different types of customization in

the production of sports balls, such as color, size, shape, fabric

type, filing, manufacturing process and other properties.

The scenarios, which were chosen because they represent

diverse large classes of coordination problems, are deliberately

different to allow analyzing and testing different aspects of the

coordination approach. On one hand, we have the Rescue Agents

scenario, which in spite of the low number of different types of

entities (paramedics, ambulances, firemen and policemen), is a

very complex planning scenario due to the high level of

interaction/cooperation that is needed between the agents. In

almost any situation, all entities of the environment are required to

intervene to provide the best assistance possible to the injured

people, thus making conflicts management the top most priority of

the planning activity. Basically, this scenario is intended to

represent those coordination problems in which small teams of

individuals have to intensely collaborate (to avoid conflicts) to solve

very complex or large problems (which usually lead to very large

solution plans), such as rescue operations, project planning or

soccer-playing robots.

On the other hand, we have the Custom Balls Factory scenario,

which in spite of involving many different capabilities, is a fairly

simple planning scenario. For each manufactured ball, only a very

small set of skills is needed from the vast selection of existing

capabilities, thus characterizing this scenario as a discovery

challenge. The planning process on this scenario only becomes

relevant when the requested customization of the ball uses a set of

interdependent features requiring a specific execution sequence

(for example, a ball must first be fully painted with one color and

only then can stripes be painted with another color - executing

these actions in reverse order would result in the effects of the

paint action canceling the effects of the stripes action). Basically,

this scenario represents those coordination environments in which

the problems to be solved are usually simple and small but for

which the number of possible candidates to participate in the

creation of the solution plan is huge, such as service coordination,

travel planning or event planning.

Overall Performance
First of all, we wanted to test and analyze the overall

performance of the planning algorithms in both scenarios, as the

problems became larger. We have performed a set of tests using

increasingly complex variants of these scenarios on both

algorithms. In the Rescue Agents scenario we used 3 different types

of entities (paramedic, ambulance driver and fireman) and 10

agents for each of those entities. We then increased the number of

injured people and the number of fires (there was one fire for the

tests with 1–4 injured people and a new fire was introduced on the

variants with 5 or more injured people) in the environment to test

the performance evolution of the algorithms.

In the Custom Balls Factory scenario we used 20 combinations of

different types of features of the balls manufacturing process (color,

size and other distinct marks combined with painting, assembling

and inflating) and 2 agents for each of those combinations. We

then increased the complexity of the manufactured ball by

changing the number of features of the ball and the dependencies

between them.

Figure 1 presents the test results for both scenarios (left diagram

for the Rescue Agents scenario and right diagram for the Custom Balls

Factory scenario). The measured time represents the overall

planning time, including the distributed graph generation (opera-

tors-graph - where applicable - and planning-graph) and backward

search. The semantic overlay network’s generation time is not included

since it is not of significance in the overall planning time (100–

200 ms) and because it is an activity that agents perform as they

connect to the network, which means the overlay network is

already built when they receive the problem solving request.

Both scenarios’ test results show a similar behavior: although the

operators-graph based algorithm has poorer performance in smaller

problems (when there are less injured people or the balls are less

complex), it is clear that it scales far better than the distributed

Graphplan algorithm. This is strongly linked to the fact that, for

more complex or large problems, means-ends analysis is effective in

reducing the planner search space, in spite of the introduced

overhead. This is particularly evident in the Rescue Agents scenario.

The irregular behavior of the operators-graph based algorithm in

the Custom Balls Factory scenario, apparent in the right diagram of

fig. 1, is due to the fact that this scenario is more sensible to

changes in planning complexity. As explained above, this scenario

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 6 May 2013 | Volume 8 | Issue 5 | e62931

is more of a discovery challenge and, since the semantic overlay

network is such an efficient agent discovery mechanism, as long as

the number of conflicts between capabilities does not increase (e.g.

due to ordering or dependency constraints), the performance

remains the same. This is clear in the figure for balls 4, 5 and 6,

which in spite of having a different number of features, the

constraints between them are the same and thus, do not affect the

performance of the system.

To fully understand what is really causing those behaviors in the

algorithms, let us analyze a breakdown of the activities of each

algorithm in the Rescue Agents scenario.

Figure 2 presents the breakdown of activity data for the same

test as shown in the left diagram of fig. 1 but divided into two

diagrams (the one on the left presents the operators-graph based

algorithm and the one on the right presents the planning graph

version that does not build the operators-graph).

As we can see, the most time-consuming activity is the

Backward Search process. This is the task that involves searching

the planning graph backwards in order to find a valid solution

plan. The generation of the operators-graph, although causing poorer

performance in simpler problems, is very efficient in improving the

Backward Search phase in larger and more complex problems by

significantly reducing the number of actions that are considered in

the planning graph generation process (although not shown here,

the same conclusions apply to the Custom Balls Factory scenario).

Distribution of Skills
In the previous sub-section, we tested the behavior of the

planning algorithms as the problems became larger in order to

assess their scalability and efficiency. This showed that the

operators-graph based version of the distributed Graphplan algorithm

scales far better. However, the scalability and efficiency analysis

must also assess planner behavior as the number of available

agents (and corresponding skills) increases.

In the tests shown in the previous section, the number of agents

per skill was 10 in the Rescue Agents scenario and 2 (per combination

of skills) in the Custom Balls Factory scenario. The tests shown here,

in Figure 3 (left diagram for Rescue Agents scenario and right

diagram for Custom Balls Factory scenario), present the results for the

same tests as in the previous section but with an increasing number

of agents per skill (or combination of skills).

As we can see, in both scenarios, there seems to be almost no

variation in the overall performance of the planner as the number

of agents per skill increases. The lack of variation is caused by the

fact that, when the time comes to choose an agent to which the

partially-solved problem should be sent, even though the choosing

agent now has a larger number of alternatives to consider, it

chooses the appropriate agent randomly. Hence, the number of

existing candidate agents is of no relevance to the performance of

the planner.

In the previous sub-section, we did not consider the time it took

to generate the corresponding semantic overlay network for each

scenario because it was equal for all the tests and it was too

insignificant relatively to the overall planning time. However, now

that the number of agents varies (and thus the skill distribution factor)

the generation of the semantic overlay network is different for each test.

We use the expression skill distribution factor as a measure of the

amount of different skills existing in the network (relative to the

total number of agents) and consequently their availability.

Figure 4 depicts the time taken to generate the overlay network

for each variation of the number of agents per skill, for both

scenarios.

The figure depicts a very slight variation of the time to generate

the semantic overlay network as the number of agents per skill varies.

Although the number of agents has significantly increased (twice or

three times more), the time it takes to generate the semantic

network is almost unchanged because, as the number of agents

increases, the skill distribution factor decreases and so, the more likely

it is to find each different skill in the network. Hence, the variation

of the time that it takes to complete the generation of the semantic

overlay network in networks with more agents per skill is considerably

smaller.

Open Conditions and Resolvers
Each agent only plays a small part in the overall problem

solving process. When the agent realizes that it can no longer

contribute to the problem at hand, it must find a suitable agent

that can potentially contribute to the unsolved sub-problems. As

Figure 1. Comparison between the two algorithms in both testing scenarios. Comparison between Distributed Graphplan and Operators-
graph-based Distributed Graphplan in both testing scenarios, with the Rescue Agents scenario on the left panel and the Custom Balls Factory scenario
on the right panel.
doi:10.1371/journal.pone.0062931.g001

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 7 May 2013 | Volume 8 | Issue 5 | e62931

previously explained, the agent chooses one of the open conditions

in the planning problem (propositions that remain unsatisfied in

the current graph) and uses the semantic overlay network to

determine which agents (and corresponding skills) can be used to

further contribute to solve it. Once a list of candidate agents has

been obtained, the agent must choose one to which the current

problem will be forwarded.

Up to this point, in the tests performed to evaluate our

approach, the agents made these decisions randomly. However, it

is important to determine the influence a deeper or more

sophisticated analysis of the open conditions and available resolver

agents may have on the performance of the algorithm. One

possible (and intuitive) approach is to quantify the contribution of

each candidate agent by choosing the agent that can contribute to

the largest number of open conditions in the current graph. We

applied this heuristic to the planning algorithm and performed the

same tests as in the previous sub-section, which results are shown

in Figure 5.

We can see in the figure that the performance of the planner got

worse as the number of agents per skill increased in both scenarios.

Figure 2. Comparison between algorithms in the Rescue Agents scenario. Breakdown and comparison of activities between Operators-
graph-based Distributed Graphplan (left panel) and Distributed Graphplan (right panel) in the Rescue Agents scenario.
doi:10.1371/journal.pone.0062931.g002

Figure 3. Evolution of the performance of the algorithm in both testing scenarios. Evolution of performance of the Operators-graph-based
Distributed Graphplan in both testing scenarios (with the Rescue Agents scenario on the left panel and the Custom Balls Factory scenario on the right
panel) as skills distribution increase. The given number of agents is per skill.
doi:10.1371/journal.pone.0062931.g003

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e62931

However, the variation was smaller in the Custom Balls Factory

scenario. This is related to the fact that each agent, when faced

with the decision to choose the next agent to forward the planning

graph, has to perform the same open conditions/skills analysis to a

larger number of candidate agents. In the case of the Custom Balls

Factory scenario, the number of candidate agents per combination

of skill is much smaller than in the Rescue Agents scenario, therefore

the performance of the algorithm is less affected in the Custom Balls

Factory scenario.

This leads us to conclude that a random approach is, in general,

more suitable for choosing the next open condition/agent to

proceed in the planning process. Nevertheless, one cannot

disregard the advantages of a more careful analysis such as the

one depicted in this heuristic, just because, for these particular

scenarios, the introduced overhead was too much to compensate

for the gain in the performance of the planner. This is further

discussed in the next section, in particular, the Choosing

Appropriate Resolvers Based on Context sub-section.

Heuristics in Planning Graph Backward Search
In the Distributed Graphplan section, we described the

backward search process that is carried out to find a valid solution

plan when the generation of the planning graph achieves a state in

which all goal propositions are satisfied. This search process starts

from the goal propositions and finds sets of non-mutex actions that

contribute to those goals and then the preconditions of those

Figure 4. Comparison of time to generate the semantic overlay network as the number of agents per skill varies.
doi:10.1371/journal.pone.0062931.g004

Figure 5. Evolution of performance of the algorithm in both testing scenarios (2). Evolution of performance of the Operators-graph-based
Distributed Graphplan in both testing scenarios (with the Rescue Agents scenario on the left panel and the Custom Balls Factory scenario on the right
panel) as skills distribution increase using a specific heuristic. The given number of agents is per skill.
doi:10.1371/journal.pone.0062931.g005

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 9 May 2013 | Volume 8 | Issue 5 | e62931

actions become new goals (in the previous level). This process

continues until the first level is reached successfully, in which case,

pending recursions successfully return a solution plan.

Although the planning graph generation process is distributed,

allowing different agents to contribute to the planning problem,

this backward search process cannot be distributed. Moreover,

sending the planning graph to other agents, so that these could

also perform a backward search, would be pointless because they

would simply be duplicating efforts.

However, as shown in Algorithm 4, this search process has two

important choice points that may affect the performance of the

search process: choosing a goal proposition (line 9 of alg. 4) and

choosing an action resolver (line 14 of alg. 4). This could be used as

a way to distribute the backward search through different agents as

well.

Still, this would not be a "divide and conquer" approach. Instead,

all agents would be working on the same planning graph but each

one would be using a different heuristic. This can be thought of as

a maze with multiple entrances. The path to the other side of the

maze constitutes the solution plan. The goal is for at least one

agent to find the solution, which it can then share with the others.

If each agent starts at a different entrance, chances are they will

arrive at the other side at different times because some paths take

less time to travel than others.

The difference is that traveling through a maze is a totally

uninformed task, whereas the algorithm for the backward search

can be focused with heuristics for selecting the next proposition g

in the current set G and for choosing the action a in resolvers. A

general heuristic consists of selecting first a proposition g that leads

to the smallest set of resolvers, that is, the proposition g achieved

by the smallest number of actions. For example, if g is achieved by

just one action, then g does not involve a backtrack point and it is

better if it is processed as early as possible in the search tree. A

symmetrical heuristic for the choice of an action supporting g is to

prefer no-op actions first because they have fewer preconditions.

Other heuristics that are more specific to the planning-graph

structure and more informed take into account the level at which

actions and propositions appear for the first time in the graph. The

later a proposition appears in the planning graph the most

constrained it is. Hence, one would select the latest propositions

first.

Considering all these possibilities, we decided to analyze the

effect that different heuristics have on the performance of the

planner, in particular, on the backward search process. We tested

all possible combinations of heuristics for choosing a goal

proposition and heuristics for choosing resolver actions. The

following is a list of the heuristics for choosing a goal proposition:

N FIFO - priority to propositions that appear earlier in the

graph;

N LIFO - priority to propositions that appear later in the graph;

N Res{ - priority to propositions that have fewer action

resolvers;

N Resz - priority to propositions that have more action

resolvers;

N Random - propositions are randomly chosen;

The following is a list of the heuristics for choosing a resolver

action:

N Precond{ - priority to resolvers that have fewer precondi-

tions;

N Precondz - priority to resolvers that have more precondi-

tions;

N Random - resolvers are randomly chosen;

The tests consisted on running the planner 100 times for each

possible pair of heuristics on a simplified planning problem for the

described scenarios. Table 1 presents the average results for all

possible pairs of heuristics. Rows represent heuristics for choosing

a resolver action and columns represent heuristics for choosing a

goal proposition.

The results seem to support the hypothesis presented above,

that is, choosing resolver actions that have less preconditions

(which has a lower impact if backtracking occurs) and choosing

propositions that appear later in the graph (which are more

constrained) has a very positive effect. That combination

(Precond{ with LIFO) had the best time performance of all

possible combinations (44 ms) and, in general, these individual

heuristics combined with other heuristics (see row Precond{ and

column LIFO) have also presented satisfying results compared to

other combinations. Processing the number of resolvers that a goal

proposition has in order to choose the proposition with fewer

resolvers (column Res{), while it could apparently have a positive

effect, the time spent determining the proposition with fewer

resolvers is too much to actually bring any gain compared to the

LIFO approach. Also, it is quite clear that using the opposite

approach (column Resz) severely affects the performance of the

search process, due to the "heavy" backtracking that is required to

deal with giving priority to goal propositions that have more

resolvers.

Random heuristics do not present any generic pattern, in some

cases presenting good results and in others the worst results, which

is consistent with the random choice of goal propositions and

resolver actions and further proves the results are sound.

Considering these results, we have decided to use the Precond{

and Precondz heuristics for choosing resolver actions and the

FIFO and LIFO heuristics for choosing goal propositions. This

way, each agent participating in a backward search process can

use a different combination of heuristics. We also have to consider

that these results may be different for more complex problems,

which further motivates the use of different heuristics and the

participation of different agents in the backward search for a

solution plan.

Conclusions

In this paper we have described the approach taken in a

cooperative environment, where we have deployed a distributed

network of problem solving agents by using a semantic overlay network

and a distributed Graphplan-based algorithm. The evaluation

results show that a goal-directed approach can be considered

scalable and efficient. However, as most research, this is a

continuous work and we aim to improve some of the aspects of the

coordination system. In this section, we outline some of those

Table 1. Comparison of heuristics in Graphplan backward
search process.

FIFO LIFO Res2 Res+ Random

Precond2 45 44 240 5645 69

Precond+ 90 49 230 8092 315

Random 67 52 242 6790 298

Comparison of heuristics in Graphplan backward search process. Values are in
milliseconds and represent only the time spent in the backward search process.
doi:10.1371/journal.pone.0062931.t001

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 10 May 2013 | Volume 8 | Issue 5 | e62931

aspects that need improvement, which will be the guidelines for

future work.

Exploring Alternative Solutions
Our approach focuses on finding the agents with the necessary

capabilities in the network, as efficiently as possible, and

performing the necessary planning to find a solution to each

problem. However, finding just the necessary capabilities to solve a

problem may end up producing inefficient solution plans. This is

particularly important in time-sensitive scenarios such as Rescue

Agents where it is essential that the entities in the environment act

quickly to save the lives of the injured people.

Consider the following example: to rescue an injured person

that is trapped inside some wreckage, our system would try to find

a doctor and a fireman, which possess the necessary skills for the

problem at hand. For this particular problem, this solution is, in

fact, the optimal solution. However, imagine that there are,

instead, several injured people and several doctors and firemen

available. The system would still try to find only one doctor and

one fireman (because that is enough to solve the problem) instead

of creating the optimal solution plan that would explore the

possibility of using several doctors and firemen in parallel.

However, improving our system to address this limitation is not

an easy task. For example, imagine that an agent has already

produced a solution plan for a specific problem but that the plan

could be improved by adding other entities that could work in

parallel to reach a potentially faster execution. This situation raises

several questions. How can an agent know that the plan that it

currently holds, although enough to solve the problem, can be

improved by adding new participants? The only way the agent has

to know for sure is to continue the collaboration process and

continuously request the participation of new entities. But, if each

agent is constantly assuming the solution plan can be improved by

adding new participants, when does this process end? Maybe each

agent can compare the resulting plans to determine if any

improvements were actually made. If none were made, then the

agent can assume the plan has reached an optimal state.

Alternatively, each agent could perform the planning process with

the goal of maximizing a domain-dependent evaluation function

that would, for example, value plans with more parallelism.

However, without those domain-dependent functions, these

agents can only operate with the partial knowledge of the skills

available in the network. It might be the case that an agent is not

able to further improve a solution plan, thus considering it to be

optimal, but the plan could, in fact, be improved, if different

capabilities were available to the agent. We are not aware of any

way of ensuring that the best solution has been achieved in such

distributed and decentralized environments. Moreover, in order to

come up with potentially better solution plans, the distributed

problem solving process must continue to explore new possibilities,

which may result in much longer planning processes. In fact, we

have performed a few preliminary tests in which the agents were

forced to search for a better solution plan (until no further

improvements could be made) and, while the solution plans were

in fact better (less steps or more parallelism in the execution

phase), the planning phase took a lot more time than our original

approach. So, although it can potentially lead to a longer solution

plan, our approach has the advantage of providing a much faster

planning process.

Acting on Behalf of Other Agents
Each agent in our system has only knowledge of its own skills. It

is only after taking part in the self-organization process of building

the semantic overlay network that an agent becomes aware of the skills

of other agents, especially, of those semantically related to it. In

our approach, this information is only used to locate agents that

have the necessary skills to complete the solution to a particular

problem. Once the skill is located, the agent currently holding the

partially-solved problem sends it to the agent holding the required

skill so that it can contribute to the plan.

What if, instead, the first agent used that information directly in

its planning process thus saving the time it takes to communicate

with the other agent? This has the potential of speeding up the

planning process, but in doing so, the first agent is acting on behalf

of the other agent in terms of commitment to participate in the

solution plan. In other words, the first agent is assuming that, just

because it has the necessary skills, the other agent will contribute to

solve the given problem. This kind of assumption cannot be made

because the first agent has no way of knowing if the second agent

can commit to play the required role in the solution plan or if there

are any constraints preventing it from doing so, for example,

having previously committed to participate in another plan that

would clash with this one.

Planning with such strategy would only lead to solution plans

that most likely would not be executed due to the fact that the

participating agents cannot perform the required actions because

local constraints, which were not considered at planning time,

prevent them from committing to the actions on the solution plan.

A possible alternative is for agents to engage in a negotiation

process in which they exchange constraints. For example, the first

agent, before adding the action to the plan, would ask permission

to the second agent, to which it could reply, after checking current

local constraints, whether it accepts it or not. These messages are

potentially less "expensive" from the communication’s point-of-

view because they are simple queries, compared to the size of the

messages that are sent with partially-filled planning graphs.

However, there may be more of them in quantity, which reduces

the potential of this approach.

Agents cannot act on behalf of other agents unless they have

their permission or they are aware of their constraints. In both

cases, heavy communication may be required. However, once an

agent is aware of other agents’s constraints, it would no longer

have to ask for them again (assuming these do not change over

time and that the agent is in possession of all the constraints and

not just a subset). This is not a safe assumption to make, especially

in highly dynamic environments, but it may be of relevance for

problems in which a continuous collaboration between two or

more agents is required. For some agents, contributing to a

solution plan only requires a small participation, that is, the

number of times its actions appear in the final solution plan is quite

small. However, in scenarios as the Rescue Agents, most participating

agents have a more determining role in the solution plan, as a

doctor having to provide assistance to 6 injured people located in

different areas of a city. This problem, which requires the

participation of a doctor and an ambulance driver, will

continuously be sent back and forth between the two agents

representing these two entities so that each can add its actions to

the solution plan. A lot of communication can be saved if one of

the agents simply performs the planning once all local constraints

and necessary actions are known.

For example, consider that the first agent receiving the problem

is the medic agent, which after processing it, determines that it can

provide assistance to one of the injured people, but for that it

requires the participation of an ambulance that can take him

there. So, it contacts the ambulance agent by sending it the

partially-solved problem. At this point, the ambulance agent

already has the necessary knowledge to perform the entire

planning process that would involve providing assistance to the

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 11 May 2013 | Volume 8 | Issue 5 | e62931

remaining injured people. However, as explained before, it cannot

commit to the plan on behalf of the medic agent unless it has its

permission or it is aware of its constraints. But, if the medic agent,

when sending the partially-solved problem to the ambulance

agent, would also include its local constraints (as an implicit

authorization to act on its behalf), then the ambulance agent could

build the entire solution plan, thus saving a lot of messages in the

process. We performed some preliminary tests and, in fact, the

problems of the Rescue Agents scenario were solved in less time than

in the original approach, whereas the problems in the Custom Balls

Factory scenario had little or no improvement at all. Nevertheless,

this approach, which is based on a potentially unsafe assumption

that agents can commit to the plans on behalf of other agents (as

long as they know their constraints), needs to be further analyzed.

An alternative approach could be based on abstract commit-

ments at the planning stage that would only be realized at the

execution stage. That is, an agent building the solution plan could

include abstract commitments with the skills that it found on the

network. These commitments are abstract in the sense that no

actual agent has committed to them. They are only associated to a

skill found in the network. Then, at the execution stage, agents

with the necessary skills and without local constraints that would

clash with the plan requirements perform those parts of the plan.

We have worked on similar approaches before [40] [41] but

further research is necessary to consider dynamic unstructured

environments. This is something that we plan to do in the future.

Choosing Appropriate Resolvers Based on Context
Each agent in this distributed problem solving process, after

determining how its own skills can be used to partially contribute

to the solution, must find a suitable agent that can potentially

contribute to the unsolved parts of the problem. In most situations,

this includes having to choose a particular agent from a long list of

candidates, which may influence the performance of the system.

We have used an approach in which the agent was chosen

randomly from the candidates list, and later on discussed an

alternative approach relying on an heuristic that would quantify

the potential contribution of each candidate agent (see the Open

Conditions and Resolvers sub-section).

The use of a random approach in choosing the adequate agent

to contribute to the solution was justified simply by the fact that it

was faster than choosing the agent that can solve more open

conditions, in all performed tests. The random approach is faster

because the overhead introduced by the heuristic approach was

too much to compensate the improvement brought by its use.

However, in more complex environments, such as the ones in

which agents commit and act based on costs and rewards, a

random approach can be very inefficient, leading to very costly

solution plans. In such cases, the challenge revolves around

identifying the information that should be used to select the

appropriate agent.

The quantifiable contributions and the costs and rewards

associated with the commitment of chosen agents are important to

evaluate potential candidates, but other different sources of

information can also be useful. Information such as the agent’s

general availability, workload, location and past average perfor-

mance are just a few examples of contextual data that, in

combination with other relevant data, can be used to narrow down

the list of potential candidates.

Combining all of these considerations into a unified context-

aware system is quite a challenge, but it is one in which we have

already presented some promising research work [40] [41] [42].

We intend to evaluate how a context-aware based process can be

used in such distributed unstructured environments to improve the

process of choosing the appropriate resolvers for partial contribu-

tions in distributed problem solving.

Acknowledgments

The authors would like to thank the support of ISCTE-Instituto Universitário

de Lisboa and Instituto de Telecomunicações.

Author Contributions

Conceived and designed the experiments: ALL LMB. Performed the

experiments: ALL. Analyzed the data: ALL LMB. Wrote the paper: ALL

LMB.

References

1. Fikes R, Nilsson N (1971) Strips: A new approach to the application of theorem

proving to problem solving. Artificial intelligence 2: 189–208.

2. Sacerdoti E, Center A (1975) The nonlinear nature of plans. In: In Proceedings

of the 4th Int. Joint Conf. on Artificial Intelligence. Morgan Kaufmann, p. 206.

3. Blum A, Furst M (1997) Fast planning through planning graph analysis. Artificial

intelligence 90: 281–300.

4. Durfee E, Lesser V (1991) Partial global planning: a coordination framework for

distributed hypothesis formation. IEEE Transactions on Systems, Man and

Cybernetics 21: 1167–1183.

5. Kambhampati S, Parker E, Lambrecht E (1997) Understanding and extending

graphplan. In: In Proceedings of the 4th European Conference on Planning:

Recent Advances in AI Planning. Springer-Verlag London, UK, 260–272.

6. Anderson C, Smith DE, Weld DS (1998) Conditional effects in graphplan. In: In

proceedings of the 4th Int. Conf. on AI Planning Systems.

7. Weld DS, Anderson CR, Smith DE (1998) Extending graphplan to handle

uncertainty and sensing actions. In: In Proceedings of the 15th National/Tenth

Conf. on Artificial intelligence/innovative Applications of Artificial intelligence.

volume 98, 897–904.

8. Wellman M (1993) A market-oriented programming environment and its

application to distributed multi commodity ow problems. Journal of Artificial

Intelligence Research 1: 1–23.

9. Walsh W (1999) A market protocol for decentralized task allocation and

scheduling with hierarchical dependencies. In: In Proceedings of the 3rd Int.

Conf. on Multi-Agent Systems. 325–332.

10. Fung R, Chen T (2005) A multiagent supply chain planning and coordination

architecture. International Journal of Advanced Manufacturing Technology 25:

811–819.

11. Shoham Y, Tennenholtz M (1992) On the synthesis of useful social laws for

artificial agent societies. In: In Proceedings of the National Conference on

Artificial Intelligence. 276–276.

12. Walsh W, Wellman M, Ygge F (2000) Combinatorial auctions for supply chain

formation. In: In Proceedings of the 2nd ACM Conf. on Electronic Commerce.

ACM New York, NY, USA, 260–269.

13. Wellman M, Walsh W, Wurman P, MacKie-Mason J (2001) Auction protocols

for decentralized scheduling. Games and Economic Behavior 35: 271–303.

14. Ter Mors A, Valk J, Witteveen C, Arabnia HR, Mun Y (2004) Coordinating

autonomous planners. In: In Proceedings of the Int. Conf. on Artificial

Intelligence. 795–801.

15. Abdallah S, Lesser V (2004) Organization-based cooperative coalition

formation. In: In Proceedings of the IEEE/WIC/ACM Int. Conf. on Intelligent

Agent Technology. pp.162–168.

16. Jamali N, Zhao X (2005) Hierarchical resource usage coordination for large-

scale multi-agent systems. Lecture Notes on Artificial Intelligence: Massively

Multi-agent Systems I 3446: 40–54.

17. Gaston M, Desjardins M (2005) Agent-organized networks for dynamic team

formation. In: In Proceedings of the 4th Int. Joint Conf. on Autonomous agents

and multiagent systemsnternational joint conference on Autonomous Agents and

Multiagent Systems. ACM New York, NY, USA, 230–237.

18. de Weerdt M, Zhang Y, Klos T (2007) Distributed task allocation in social

networks. In: In Proceedings of the 6th Int. Joint Conf. on Autonomous Agents

and Multiagent Systems. ACM New York, NY, USA.

19. Ogston E, Vassiliadis S (2002) A peer-to-peer agent auction. In: In Proceedings

of the 1st Int. Joint Conf. on Autonomous Agents and Multiagent Systems. ACM

New York, NY, USA, pp.151–159.

20. Ben-Ami D, Shehory O (2005) A comparative evaluation of agent location

mechanisms in large scale mas. In: In Proceedings of the 4th Int. Joint Conf. on

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 12 May 2013 | Volume 8 | Issue 5 | e62931

Autonomous Agents and Multiagent Systems. ACM New York, NY, USA,

pp.339–346.
21. Cox JS, Durfee EH, Bartold T (2005) A distributed framework for solving the

multiagent plan coordination problem. In: Proceedings of the fourth

international joint conference on Autonomous agents and multiagent systems.
New York, NY, USA: ACM, AAMAS ’05, pp.821–827. doi: 10.1145/

1082473.1082598. URL http://doi.acm.org/10.1145/1082473.1082598.
22. Cox M, Elahi M, Cleereman K (2003) A distributed planning approach using

multiagent goal transformations. In: In Proceedings of the 14th Midwest

Artificial Intelligence and Cognitive Science Conference. pp.18–23.
23. Crespo A, Garcia-Molina H (2005) Semantic overlay networks for p2p systems.

In: In Proceedings of the 3rd Int. Workshop on Agents and Peer-to-Peer
Computing. New York, NY, USA: Springer, p. 1.

24. Adjiman P, Chatalic P, Goasdoue F, Rousset M, Simon L (2006) Distributed
reasoning in a peer-to-peer setting: Application to the semantic web. Journal of

Artificial Intelligence Research 25: 5–6.

25. Crespo A, Garcia-Molina H (2002) Routing indices for peer-to-peer systems. In:
In Proceedings of the 22nd Int. Conf. on Distributed Computing Systems.

Washington, DC, USA: IEEE Computer Society, p. 23.
26. Yang B, Garcia-Molina H (2002) Efficient search in peer-to-peer networks. In:

Proceedings of the Int. Conf. on Distributed Computing Systems.

27. Kalogeraki V, Gunopulos D, Zeinalipour-Yazti D (2002) A local search
mechanism for peer-to-peer networks. In: Proceedings of the 11th Int. Conf. on

Information and Knowledge Management. New York, NY, USA: ACM,
pp.300–307. doi:http://doi.acm.org/10.1145/584792.584842.

28. Tsoumakos D, Roussopoulos N (2003) Adaptive probabilistic search for peer-to-
peer networks. In: In Proceedings of the 3rd Int. Conf. on Peer-to-Peer

Computing. Washington, DC, USA: IEEE Computer Society, p. 102.

29. Lv Q, Cao P, Cohen E, Li K, Shenker S (2002) Search and replication in
unstructured peer-to-peer networks. In: In Proceedings of the 16th Int. Conf. on

Supercomputing. New York, NY, USA: ACM, pp.84–95. doi:http://doi.acm.
org/10.1145/514191.514206.

30. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: A

scalable peer-to-peer lookup service for internet applications. In: In Proceedings

of the Conf. on Applications, Technologies, Architectures, and Protocols for

Computer Communications. New York, NY, USA: ACM, pp.149–160.

doi:http://doi.acm.org/10.1145/383059.383071.

31. Rowstron AIT, Druschel P (2001) Pastry: Scalable, decentralized object location,

and routing for large-scale peer-to-peer systems. In: In Proceedings of the IFIP/

ACM Int. Conf. on Distributed Systems Platforms. London, UK: Springer-

Verlag, pp.329–350.

32. Zhao BY, Kubiatowicz JD, Joseph AD (2001) Tapestry: An infrastructure for

fault-tolerant wide-area location and routing. Technical report, University of

Berkeley, Berkeley, CA, USA.

33. Risson J, Moors T (2006) Survey of research towards robust peer-to-peer

networks: Search methods. Computer Networks 50: 3485–3521.

34. Lopes A, Botelho L (2008) Improving multi-agent based resource coordination

in peer-to- peer networks. Journal of Networks 3: 38–47.

35. Lopes A, Botelho L (2008) Effcient algorithms for agent-based semantic resource

discovery. In: AAMAS Workshop on Agents and Peer-to-Peer Computing.

36. Weld D (1999) Recent advances in ai planning. Artificial Intelligence Magazine

20: 93–123.

37. Iwen M, Mali AD (2002) Distributed graphplan. Tools with Artificial

Intelligence, IEEE International Conference on 0: 138.

38. Pellier D (2010) Distributed planning through graph merging. In: Proceedings of

the 2nd International Conference on Agents and Artificial Intelligence. pp.128–

134.

39. Smith D, Peot M (1996) Suspending recursion in causal-link planning. In:

Proceedings of the 3rd Int. Conf. on Articial Intelligence Planning Systems.

40. Lopes A, Botelho L (2007) Executing semantic web services with a context-aware

service execution agent. Lecture Notes in Computer Science 4504: 1.

41. Botelho L, Lopes A, Moller T, Schuldt H (2008) Intelligent Service

Coordination in the Semantic Web, Birkhauser, chapter Semantic Web Service

Execution. pp.263–287.

42. Costa P, Gonçalves B, Botelho L (2008) Intelligent Service Coordination in the

Semantic Web, Birkhauser, chapter Context-Awareness System. pp.289–308.

Distributed Coordination of Heterogeneous Agents

PLOS ONE | www.plosone.org 13 May 2013 | Volume 8 | Issue 5 | e62931

