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Supplementary Figures  

 

  

 

Supplementary Figure S1. Score histograms of the top-scoring, correct library match (solid 

lines) and second-highest-scoring, incorrect library match (dashed lines), using the three SDSS 

functions as described, for the mouse-fed molted nymph dataset (top panel), and the tiger blood 

dataset (bottom panel). The distributions are obtained by bootstrapping the data 5000 times. 
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Supplementary Tables 

 

  Hemoglobin only (sequence-based) 

Species 

Animal_ID. 

Tick_ID 

Best sequence match Bootstrap support Success Rate 

Lab mouse 

MM1.l1 Lab Mouse >99% 

5/5 

MM1.l2 Lab Mouse >99% 

MM1.l3 Lab Mouse >99% 

MM1.l4 Lab Mouse >99% 

MM2.l1 Lab Mouse >99% 

White-footed 

mouse 

PL1.l1 White-footed mouse >99% 

4/4 
PL2.l1 White-footed mouse >99% 

PL3.l1 White-footed mouse >99% 

PL4.l1 White-footed Mouse >99% 

Chipmunk 

TS1.l1 Chipmunk >99% 

3/3 TS2.l1 Chipmunk >99% 

TS3.l1 Chipmunk >99% 

Squirrel 

SC1.l1 Chipmunk 
a
 93.4% 

3/3
a
 SC1.l2 Chipmunk 

a
 88.4% 

SC1.l3 Chipmunk 
a
 >99% 

TOTAL    15/15 

 

Supplementary Table S1. The species on which an engorged larvae (I. scapularis) 

previously parasitized can be confidently determined through detection of hemoglobins by 

sequence searching. (
a
) S. carolinensis squirrel was not included in the sequence database. The 

identification was regarded as successful if the most frequently identified hemoglobin sequence 

was from T. striatus chipmunks, evolutionarily the most closely related species. 
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Species Tick Age 
Animal_ID. 

Tick_ID 

Hemoglobin only (sequence-based) 

Best sequence match Bootstrap support Success Rate 

Lab 

Mouse 

1 Month 

MM1.n1 Lab Mouse >99% 

6/6 

MM1.n2 Lab Mouse >99% 

MM1.n3 Lab Mouse >99% 

MM2.n1 Lab Mouse >99% 

MM2.n2 Lab Mouse >99% 

MM2.n3 Lab Mouse >99% 

3 Month 

MM1.n4 Lab Mouse >99% 

6/6 

MM1.n5 Lab Mouse >99% 

MM1.n6 Lab Mouse >99% 

MM2.n4 Lab Mouse >99% 

MM2.n5 Lab Mouse >99% 

MM2.n6 Lab Mouse >99% 

6 Month 

MM1.n7 Lab Mouse >99% 

4/6 

MM1.n8 Lab Mouse >99% 

MM1.n9 Lab Mouse >99% 

MM2.n7 Lab Mouse >99% 

MM2.n8 No Match 
a
 X 

MM2.n9 No Match
 a
 X 

White-

footed 

mouse 

5 Month 

PL5.n1 White-footed mouse >99% 

2/6 

PL6.n1 No Match
 a
 X 

PL6.n2 No Match
 a
 X 

PL7.n1 White-footed mouse >99% 

PL7.n2 No Match
 a
 X 

PL7.n3 No Match
 a
 X 

Chipmunk 5 Month 
CM4.n1 No Match

 a
 X 

0/2 
CM5.n1 No Match

 a
 X 

TOTAL     18/26 

 

Supplementary Table S2. The species on which molted nymphs (I. scapularis) parasitized 

during their larval stage is less effective using hemoglobin sequence searching than 

proteome profiling. (
a
) No match were found to any of the hemoglobin sequences. 
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  Self Core
b
 

  Service Cost
a
 Time Service Cost 

Sample 

prep 

Digestion $0.18 ~18h
c
 Digestion $40.00 

Sample 

clean up 
$2.22 ~30 min Sample 

clean up 
$35.00  

LC-MS
2
   $0.57

d
 90min   $350.00 

 

Supplementary Table S3. Per sample cost of data acquisition, on a self-run LC-MS platform or 

in a proteomics core facility. (a) Per sample costs associated with reagents (trypsin, 

reducing/alkylating agents, buffers and columns) are estimated assuming approximately 15 

samples per day for 250 days per year. (b) Core facility costs are derived from those advertised 

at the Children’s Hospital of Philadelphia. Core facility costs vary considerably based on volume 

of samples and the affiliation of the researcher submitting the sample. (c) Overnight enzymatic 

digestion is recommended. Over 20 samples can be prepared at a time by a single investigator. 

(d) Service agreements are the primary cost associated with running LC-MS
2
 equipment. 

Factoring a service contract of $15,000/yr adds ~$4 per sample assuming 3750 samples per year 

resulting in a cost of ~$4.57 per sample when using our in-house LC-MS
2
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Supplementary Discussion 

 

Peptide identifications of spectra unique to Mus musculus 

The library spectra unique to M. musculus blood, the only species for which a complete 

protein database is available, were identified to peptides by conventional sequence searching to 

reveal the distribution of the underlying molecules of the library spectra. It is likely that blood 

proteomes from other vertebrate species will follow similar protein distributions. As expected, 

the majority of identifiable spectra from M. musculus blood were derived from subunits  and  

of hemoglobin, serum albumin, -globin, and fibrinogen in addition to a few other proteins 

(Supplementary Fig. S1). Interestingly, over 80% of the spectra could not be identified to the M. 

musculus proteome despite the completeness of the protein sequence database. It is important to 

note that a 20% identification rate is comparable with that of similar experiments using this 

instrument, and that many high-quality spectra were not identified due to various limitations in 

the sequence searching process
61

. 

 

Comparison of scoring functions for the spectral dataset similarity score 

We evaluated the discriminating power of three different scoring functions for the 

spectral dataset similarity score (SDSS). The first one is the dataset dot product: the number of 

query spectra matched to that library entry times the number of replicate spectra from a given 

source used to build that library entry -- summed over all library entries:  

             
∑ [           ] 

√∑ [     ]
 
[     ]  
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where       is the number of spectra in the query dataset   that matches the  -th library 

spectrum, and       is the number of replicates from sample source   contributing to the  -th 

library spectrum. The normalization factor in the denominator scales all possible SDSS values 

from 0 (orthogonal) to 1 (identical profiles). Note that this dataset dot product measures the 

similarity of two datasets, and is similar in formula but different in concept from the spectral dot 

product, which measures the similarity of two spectra. This dot product SDSS accounts for the 

quantitative information in matching fingerprints. Namely, spectra that are more frequently 

found in the dataset used to build the library are also expected to be more frequently found in the 

query dataset. This score will therefore reward similar quantitative profiles of the library and 

query dataset, and penalized dissimilar profiles. Moreover, spectra that are matched more 

frequently will be more heavily weighted.  

The second scoring function we evaluated was the “binary-transformed dot product”:  

                
∑ [                     ] 

√∑ [          ]
 
[          ]  

 

where sgn(.) denotes the signum function: sgn(x) = 1 if x > 0 and and sgn(x) = 0 if x = 0. In other 

words, this scoring function only counts the presence and absence of matches to a particular 

library entry, and does not take into account quantitative information. 

The third scoring function, called the “unique dot,” uses the same formula as the dot 

product SDSS but discards all consensus spectra that originate from multiple species. In other 

words, all library entries owing to merging of replicates from two or more species are ignored 

altogether, with the implicit assumption that these spectra are due to noise or other non-

discriminating molecules.  
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We tested the three scoring functions on two datasets: one of those from flat tick fed on 

mouse blood (MM1.n9 in Table 2 in main text), and a separate dataset of the tiger blood sample 

not used to build the library. Each dataset was bootstrapped 5,000 times, and the score 

histograms of the top scoring species (the correct answer) and the second highest-scoring species 

were plotted (Supplementary Fig. S1).  

From Supplementary Fig. S1, all three scoring functions demonstrate sufficient ability of 

discriminating the right and wrong answer. The “unique dot” SDSS appears to offer the best 

discrimination, and the “binary” score the worst, though the difference is quite small. This 

suggests that the quantitative information afforded by spectral counts appears to augment the 

discriminating power, although for these datasets, the quantitative information was not 

absolutely necessary, as the binary-transformed SDSS was also sufficiently discriminating. This 

is understandable, because distinguishing between blood samples of different organisms 

probably relies more on sequence differences of detected peptides and thus qualitatively different 

spectra, than on the quantities of identical peptides in the sample. However, the quantitative 

information may be more useful in other biological sample fingerprinting applications, such as 

distinguishing different samples from the same organism (e.g. different tissues, different 

biological states).  

The removal of multiple-organism spectra in the library also increases the discrimination 

power, as the “unique-dot” SDSS appears to outperform the “dot” SDSS. Removing multiple-

organism spectra should expectedly elevate the importance of the matches to library spectra that 

can unambiguously identify the sample source. However, this scoring function may not be as 

appropriate when the library contains several phylogenetically close animals. In this hypothetical 

case, many library spectra will be shared among multiple species, and removing all of them may 
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not be advisable. For instance, in the present study, a large fraction of spectra found in the lion 

can also be found in the tiger. While one can still distinguish between these two cats using the 

“unique-dot” score, there may be cases where discarding all shared spectra removes too much 

information, to the point that even the ability to distinguish a cat and a non-cat is lost. The “dot” 

score, on the other hand, retains these shared spectra, and therefore will not be affected by the 

composition of the library. Based on these results, the “unique dot” score is chosen as the SDSS 

function used for blood meal identification as described in the main text. 

 

Identification of blood meal by sequence searching against hemoglobin sequences 

As a benchmark for our spectral matching-based proteome profiling method, the spectral 

datasets from engorged larvae and molted nymphal ticks were searched against a database of 

hemoglobins of M. musculus, P. leucopus and T. striatus, plus expected contaminants by 

conventional sequence searching (Supplementary Methods above). The results show that 

identification of the source of the blood meal from engorged larval ticks was effective using 

methods based on detecting specific blood proteins by sequence searching algorithms 

(Supplementary Table S1). Similar to the results of the proteomic profiling method, larval ticks 

that had fed upon S. carolinensis could also be identified as ticks that had fed upon T. striatus if 

S. carolinensis hemoglobin sequences are not included in the database. However, identification 

of the source of the blood meal from molted nymphal ticks was less effective when peptide 

identification relied upon de novo sequenced hemoglobin subunits (Supplementary Table S2), 

failing to identify the correct source of the blood meal from two ticks that had fed on a lab 

mouse, both ticks that had fed on a chipmunk, and 4 of the 6 ticks that had fed on white-footed 
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mice. For these tick samples, which had been held at room temperature for 5 months or more 

post-molt, no confident identification to any hemoglobin sequences were found.  

 

 

Accessibility and estimated cost 

The spectral matching methodology proposed here is accessible to researchers with and without 

direct access to proteomic technologies. Sample preparation consists of standard laboratory 

protocols, which are also routinely performed by proteomics core facilities for an additional fee. 

Further, the per sample costs for blood samples and test samples are inexpensive relative to many 

other technologies and can be accomplished with either an in-house LC-MS
2
 or through core 

facilities (Supplementary Table S3). 



11 

 

Supplementary Methods 

Unidentified spectral library building 

The software program SpectraST, available as part of the Trans-Proteomic Pipeline suite, 

was adapted to build spectral libraries from unidentified spectra. SpectraST obtains the spectra 

directly from open XML formats such as mzXML, mzData and mzML. The library building 

procedure consists of the following steps. First, spectrum filtering is performed to remove 

unwanted spectra that are likely due to noise. Only spectra meeting all the following criteria are 

kept: precursor m/z being greater than 350 Th, the range of fragment m/z (i.e. m/z difference 

between heaviest and lightest fragment) being greater than 350 Th, having at least 35 peaks, and 

having at least 5% of the total intensity at above the precursor m/z. The last criterion is intended 

to remove all singly-charged precursors, which are much more likely to be from non-peptide 

molecules and therefore not discriminating for the purpose of this application.  

Second, spectra that pass the filters are clustered by similarity using the following 

algorithm. All spectra are first sorted by a measure of signal-to-noise ratio, and clustering 

proceeds from the highest quality to the lowest. A spectrum (the “root”) is chosen from the list in 

that order, and compared to all spectra with precursor m/z within 2.5 Th of that of the root. The 

dot product, a measure of similarity, is calculated for all pairs of spectra compared, in the same 

way as defined in SpectraST
49

. All spectra with dot product greater than 0.7 are considered 

similar to the root and are included in a cluster together with the root. Then, the search for other 

similar spectra proceeds recursively, with all newly added spectra acting as the root in turn. 

Subsequent rounds of recursion use progressively tighter precursor m/z tolerance and dot product 

threshold. For more implementation details of this algorithm, the reader is referred to the source 

code, in particular the file SpectraSTPeakList.cpp. 
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Third, at the end of the process, all spectra belonging to a cluster is merged into a 

consensus spectrum using the same consensus algorithm for identified spectra, described in
39

. 

Spectra belonging to single-member clusters are included in the library but reduced to the most 

intense 150 peaks. The sample source(s) of its originating replicate spectra, together with 

corresponding quantitative information (spectral counts or precursor intensities) are recorded 

with each consensus spectrum.  

 

Identification of library spectra from Mus musculus 

The library spectra unique to Mus musculus blood, the only species for which a complete 

protein database is available, were identified to peptides by conventional sequence searching to 

reveal the distribution of the underlying molecules of the library spectra. Two sequence search 

engines, OMSSA (version 2.1.8)
62

 and X!Tandem with K-score plugin (version 2009.10.01)
63

 

were used with the following search parameters: trypsin specificity on both termini, at most two 

missed internal tryptic cleavages, carbamidomethylation on cysteines as a fixed modification, 

oxidation on methionine as a variable modification, and mass tolerances of +/- 3 Da for 

precursors and +/- 1 Da for product ions. The database was constructed by combining the M. 

musculus sequences in SwissProt from UniProt
64

, and contaminant sequences from I. scapularis 

and porcine trypsin, then appended with an equal-size decoy database generated by random 

shuffling of amino acids between tryptic sites
65

. The results were processed by the Trans 

Proteomic Pipeline (v4.5.2)
54

 using non-parametric model for PeptideProphet
66

 and combined 

using iProphet
67

. The identifications were filtered at an FDR of 1%. 

To validate the clustering algorithm, a larger dataset of 40 runs of a SDS-PAGE 

fractionated protein digest sample of whole M. musculus blood was used. The sequence search 
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engine SEQUEST
68

 was used to search against a database of M. musculus sequences from 

SwissProt. The search parameters were: +/- 2 Da parent monoisotopic mass window, +/- 1 Da 

fragment ion mass window, tryptic cleavage sites, variable methionine oxidation (+16.0 Da) and 

variable C-term carboxymethylation (+57.0 Da). PeptideProphet was used to filter the search 

results at an FDR of 1%. 

 

Sequence searching against hemoglobin sequences 

The spectral datasets from engorged larvae and molted nymphal ticks were searched 

against a database combining de novo sequenced hemoglobin  and  subunits of T. striatus 
27

, 

and P. leucopus and M. musculus hemoglobins (from SwissProt), total proteins from I. 

scapularis (NCBI), and porcine trypsin, then appended with an equal-size decoy database 

generated by random shuffling of amino acids between tryptic sites. The same search engines 

and search parameters were used as for identification of library spectra as described in the above 

paragraph. The search results were similarly processed by TPP, and filtered at FDR 1%. The 

numbers of spectra identified to the hemoglobin sequences unique to each species were counted. 

The species with the greatest number of identifications is taken as the source of the blood meal. 

This procedure was repeated on 1000 bootstrap samples of the same spectral dataset, and the 

fraction of times each species is identified as the source of the blood meal is reported as the 

bootstrap confidence. 
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