
Data-Driven Modeling to Assess Receptivity for Rift
Valley Fever Virus
Christopher M. Barker1,2*, Tianchan Niu2,3, William K. Reisen1,2, David M. Hartley2,3,4

1 Center for Vectorborne Diseases and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis,

California, United States of America, 2 Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America, 3 Division of Integrated

Biodefense, Georgetown University Medical Center, Washington, District of Columbia, United States of America, 4 Department of Microbiology and Immunology,

Georgetown University Medical Center, Washington, District of Columbia, United States of America

Abstract

Rift Valley Fever virus (RVFV) is an enzootic virus that causes extensive morbidity and mortality in domestic ruminants in
Africa, and it has shown the potential to invade other areas such as the Arabian Peninsula. Here, we develop methods for
linking mathematical models to real-world data that could be used for continent-scale risk assessment given adequate data
on local host and vector populations. We have applied the methods to a well-studied agricultural region of California with
w1 million dairy cattle, abundant and competent mosquito vectors, and a permissive climate that has enabled consistent
transmission of West Nile virus and historically other arboviruses. Our results suggest that RVFV outbreaks could occur from
February–November, but would progress slowly during winter–early spring or early fall and be limited spatially to areas with
early increases in vector abundance. Risk was greatest in summer, when the areas at risk broadened to include most of the
dairy farms in the study region, indicating the potential for considerable economic losses if an introduction were to occur.
To assess the threat that RVFV poses to North America, including what-if scenarios for introduction and control strategies,
models such as this one should be an integral part of the process; however, modeling must be paralleled by efforts to
address the numerous remaining gaps in data and knowledge for this system.
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Introduction

Rift Valley fever virus (RVFV; viral family Bunyaviridae, genus

Phlebovirus) is a pathogen that causes febrile illness in domestic

ruminants (sheep, cattle, and goats) and humans throughout Africa

and parts of the Arabian Peninsula [1–3] that may be transmitted

by several genera of mosquitoes [3–6]. Outbreaks often result in

heavy economic costs through loss of livestock, especially when

associated with an incursion into a new area [7,8]. Although never

detected in the Western Hemisphere, RVFV is a threat to human

and livestock health in North America and is included on select

agent lists of the U.S. Department of Health and Human Services

and the U.S. Department of Agriculture [9].

Mosquito species found to be vectors of RVFV with varying

degrees of efficiency in laboratory settings [6,10] are known to be

present throughout much of the U.S.[11], but other aspects of

potential transmission cycles remain inadequately studied. To

properly assess and mitigate the risk posed by a RVFV invasion,

methods are needed to identify areas that are most likely to

support transmission, the time periods when transmission is

expected to pose a risk, and whether an introduced virus could

become established. To date, such questions have been addressed

by only a few analytic methods, including expert elicitation [12],

basic GIS overlays of humans and vectors with a hypothetical host

[13], and pathways analysis [14–16].

Process-based mathematical models provide a useful platform to

coalesce disparate data, make logical assumptions concerning data

gaps, and evaluate a range of potential scenarios. Gaff et al.

developed a dynamical model for RVFV [17] that included

livestock hosts and two genera of mosquitoes, Aedes and Culex, that

respectively were or were not capable vertically transmitting

RVFV. This model’s structure has been extended in several

important ways to 1) accommodate spatial structure through host

or vector movements [18,19], 2) assess potential control methods

[20,21], or 3) include humans [22] or asymptomatic livestock hosts

[23]. These models have resulted in important advances in

modeling RVFV, but their application is limited by the lack of

appropriate data to inform parameters, many of which have been

recycled between models, defined arbitrarily, or borrowed from

literature on other arboviruses that may not apply for RVFV.

In the current study, we apply a unique and generalizable

approach that links real-world data with the mathematical models,

utilizing broadly available national-scale data where possible. To

illustrate the methodology, we consider results for the southern

Central Valley in California, an area with large, well-documented

host and vector populations. We present two model-derived
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transmission metrics that quantify expectations for typical (R0,

[24]) and maximal (E0, [25]) transmission from an initial disease-

free state, and we map these metrics according to the spatial

pattern of vector abundance associated with various land uses. We

also show how these metrics change in time as a function of

temperature, thereby enabling the assessment of seasonal trans-

mission risk. We also highlight several critical data gaps that must

be addressed.

Methods

Study area
California’s Great Central Valley extends for 700 km north to

south through the center of the state and is home to extensive and

varied agricultural lands that include irrigated crops, livestock

operations, natural or restored wetlands, and urbanized areas. In

this study, we considered the southern half of the Central Valley

(Figure 1), which contains very high densities of livestock

(primarily dairy cows, with w1 million cattle within the study

area) interspersed with managed wetlands and multicrop agricul-

ture that can produce large populations of competent vectors (e.g.,

Culex tarsalis). Deer were rare on the valley floor and generally were

restricted to surrounding higher-elevation foothills and mountains,

and sheep typically were moved into the valley for grazing only

during the cooler months of the year when transmission was

expected to be minimal. The area is likely to be climatologically

permissive for RVFV transmission as this is the warmest part of

the valley and supports consistently high transmission of West Nile

virus [26] and, previously, other arboviruses [27]. For the model,

appropriate spatial dimensions were needed for patches that would

represent the heterogeneity in land cover and host and vector

densities at a fine enough scale that populations could be assumed

to be well-mixed, given described ranges of vector movement [28].

To achieve this, we defined a uniform grid of 5|5 km squares

(25 km2) that covered the study area, and all model input variables

were scaled to this grid. All model outputs were calculated by grid

cell for each day of the year.

Data
Temperature. Daily maximum and minimum temperatures

were acquired from the National Aeronautics and Space

Administrations Terrestrial Observation and Prediction System

(TOPS; http:// ecocast.arc.nasa.gov) [29], which uses weather

and ecosystem models to combine ground-based and remotely

sensed inputs to generate multiple measures of environmental

conditions. For this study, the TOPS surfaces (1 km2 resolution)

for daily mean temperatures were averaged for each day of the

year for the most recent 10-year period (2002–2011) and spatially

within each 25 km2 grid cell so that temperatures represented the

typical pattern for each spatial location, summarized in Figure 2.

Vectors. Mosquitoes in the genera Aedes and Culex are

important vectors of RVFV in enzootic areas, and we focused

on two species that are both abundant within our study area

[26,30] and likely to be capable of transmitting RVFV, albeit to

differing degrees [6]. Aedes mosquitoes can be infected with RVFV

either vertically from infected females [31] or horizontally via a

blood meal from an infectious host. We focused on Aedes melanimon

because it has been an important vector of vertically maintained

California encephalitis virus [32], frequently feeds on mammals

[33], and is likely to be a low-competent horizontal vector of

RVFV based on results for the closely related species, Aedes dorsalis

[6]. Culex vectors are able to transmit RVFV horizontally, but not

vertically to their offspring, and here we considered Cx. tarsalis,

which is a principal vector of several encephalitis viruses [34,35],

feeds opportunistically on both birds and mammals [36,37], and is

the most competent laboratory vector of RVFV studied in North

America [6].

Annual patterns for the relative abundance of these vectors

were assigned to each of several broad land use classes

representing a generalization of the narrowly defined single-crop

classes in the most recent USDA Cropland Data Layer for 2011

(Figure 1; http://www.nass.usda.gov/research/Cropland/

SARS1a.htm). Our goal was to represent typical variation in

daily abundance for each of the two mosquito genera in each

land use class based on data from dry ice-baited CDC-style traps

[38] operated by vector control agencies within the study area.

Averaging trap counts spatially or over several years would not

achieve this goal, especially for Aedes populations that hatch

synchronously in response to flooding of eggs, resulting in an

abundance spike when the cohort emerges. Such sharp peaks

occur at similar but slightly different dates each year, with the

result that a multi-year average would smooth the annual spikes

into a rounded peak that is not representative of any year. To

avoid this problem, a small number (3 to 5) of representative

CO2-baited trap sites were identified within each land cover class,

and their time series of trap counts were used to define a

‘‘consensus’’ time series for each class that captured the key

features of its annual pattern (namely, seasonally varying rates of

increase and decrease, and abundance minima and maxima;

Figure 3). To apply these patterns spatially, each spatial grid cell

was characterized by its dominant (i.e., most common) land cover

class, and the relevant abundance patterns for Aedes and Culex

were applied, multiplied by the gonotrophic period to scale the

fraction of vectors that would be host-seeking on a given night to

the total population size and by each grid cell’s respective total

host abundance (cows+birds) as defined below, based on the

assumption that a trap represents one host (also see Mathematical

Appendix Table S2 in Text S1). The scale factor for the

gonotrophic period was used because traps represent only the

fraction of all females that seeks hosts on a given night, equal to

1=(gonotrophic period) on average, but the model requires an

Author Summary

Rift Valley fever virus is a pathogen enzootic to sub-
Saharan Africa, with epidemic transmission occurring
sporadically between mosquitoes and mammals, notably
livestock. The virus is regarded as a global threat to
agriculture and human health because it has proven
capable of expanding its range into western and northern
Africa, Madagascar, and the Arabian Peninsula, and a
recent study has shown that mosquitoes in North America
are capable of transmitting the virus. Here, we used a set
of mathematical equations to formulate a logical repre-
sentation of potential transmission mechanisms, and we
informed the model with real-world data and generalizable
methods to define spatial and temporal variation in
mosquito and host abundance. We applied these methods
in California’s warm, agricultural Central Valley, an area
with a history of mosquito-borne virus transmission and a
hub of California’s dairy industry. Model-derived transmis-
sion estimates indicated broad potential for transient
epidemics that could result in economic losses in livestock
in all but the coldest winter months, but the greatest risk
for intense, sustained transmission occurred during the
summer when both vector abundance and temperatures
were highest. We also highlight critical gaps in the data
available to inform models for Rift Valley fever virus.

Data-Driven Modeling for Rift Valley Fever Virus
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Figure 1. Study area. Map showing the location of the study area within California (left panel), and a map of the study area depicting the dominant
land use within each 5-km grid cell (right panel).
doi:10.1371/journal.pntd.0002515.g001

Figure 2. Seasonal temperature pattern within the study area. Graph showing daily mean temperatures (dark line) and 5th–95th percentiles
(shaded area) for the study area.
doi:10.1371/journal.pntd.0002515.g002

Data-Driven Modeling for Rift Valley Fever Virus
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estimate of the total female population, including those in other

stages of the gonotrophic cycle (e.g., resting or egg-laying).

Livestock. RVFV antibodies and some viral isolates have

been observed in a variety of African mammals, but viremias

sufficient to infect biting vectors have been reported only in cattle,

sheep, and goats [1], although high viremias may also occur in

humans [39]. Our model includes two host populations, with the

first represented by dairy cows considered to be competent for

transmitting RVFV, and the second represented by birds

considered to be incompetent ‘‘sink’’ hosts. Within our study

area, dairy cows were the most abundant ungulates, and we

calculated the total number of cows within each grid cell using

data on dairy sizes obtained from the California Environmental

Protection Agency’s Central Valley Regional Water Quality

Control Board.

Birds. Cx. tarsalis also feeds opportunistically upon birds

[36,37], and we expected birds to be likely alternate hosts to

represent the incompetent class. We acknowledge that Ae.

melanimon also feeds frequently on hares and rabbits (Order

Lagomorpha [33]), but data on their abundance within our study

area were not available. To quantify the abundance of birds, we

considered seven species of birds that are abundant near dairies

and could divert bites from cattle: Red-Winged Blackbirds (Agelaius

phoeniceus), Brown-Headed Cowbirds (Molothrus ater), Brewer’s

Blackbirds (Euphagus cyanocephalus), House Finches (Haemorhous

mexicanus), House Sparrows (Passer domesticus), European Starlings

(Sturnus vulgaris), and Rock Pigeons (Columba livia). Gridded data

from the USGS Breeding Bird Survey (BBS; 21.5 km resolution)

were downscaled to our 5-km grid by calculating a weighted

average of the per-BBS route bird abundance for the species above

within a 10-km buffer around each 5-km grid cell. Next, we

rescaled per-route bird abundance to an estimate of the total birds

within each grid cell by multiplying the per-route values by the

ratio (&4) of estimated areal coverage of BBS routes to the area of

the grid cell. BBS routes consist of 50 stops, spaced 800 m apart,

with observers attempting to detect all birds within a 0.4-km radius

at each stop; assuming they effectively observed half that radius

(see discussion of detection in [40]), the area observed would be

6.28 km2.

Mathematical modeling
Process-based, dynamical mathematical models of virus trans-

mission are built from knowledge of the interactions among virus,

hosts, and vectors. In the case of RVFV in North America, such

issues are uncertain. In the current study we extend previous work

[17,41] to construct a mathematical model of RVFV (Figure 4),

with the following assumptions regarding the anticipated epide-

miology of RVFV in California.

1. Hosts. We consider one prototypical competent host, which

corresponds to domestic ungulates. Incubation periods and

peak viremia in cattle, goat, and sheep species are similar, so

the generic host could be any of these animals. Competent

hosts become infected when fed upon by infectious vectors.

Such hosts may then die from RVFV infection or recover,

whereupon they have lifelong immunity. Incompetent or dead

end hosts may be either mammals or birds, and are fed upon

by vectors but do not become infectious and therefore serve as

a sink for the virus and dampen transmission.

2. Vectors. We included two types of vectors, with the first (typified

by Ae. melanimon) capable of vertical transmission to offspring

and low-level competence for horizontal transmission, and the

second (typified by Cx. tarsalis) being a highly competent

horizontal vector that does not transmit the virus vertically.

Vertical transmission of RVFV has been observed in field-

collected larvae [31], but laboratory data from related viruses

show a complex picture of the efficiency of vertical transmis-

sion. The literature suggests that vertical transmission is a low-

frequency event in nature on average. Therefore, we included

vertical transmission in the model at low rates of occurrence.

3. Vector host selection. Vectors bite either RVFV competent or

incompetent hosts in proportion to total host population size;

i.e., we assume that there is no mosquito feeding preference.

Particularly for Ae. melanimon that feeds primarily on mammals,

this assumption may seem questionable, but the very high

densities of cattle in our study area ensured that they were the

predominant bloodmeal source even with opportunistic feeding

(cattle represented the majority of hosts in 94% of grid cells and

w80% of hosts in 76% of grid cells).

Figure 3. Seasonal mosquito abundance patterns. Realistic
annual patterns for Cx. tarsalis and Ae. melanimon defined using trap
data for each of the dominant land use categories within the study area.
Traps collected Ae. melanimon only in 2 land uses, with the largest
numbers occurring in seasonally flooded wetlands.
doi:10.1371/journal.pntd.0002515.g003

Data-Driven Modeling for Rift Valley Fever Virus

PLOS Neglected Tropical Diseases | www.plosntds.org 4 November 2013 | Volume 7 | Issue 11 | e2515



4. Host states. At any given time, competent hosts are either

susceptible (S) to infection, infected but not infectious (i.e., they

possess a latent infection, E), infectious with RVFV (I), or

immune following recovery from infection (R). If a competent

host survives, after clearing infection, it is assumed to retain

immunity for life.

5. Vertical transmission. Aedes mosquito eggs are either uninfected (P)

or infected (Q) when laid and mature into either susceptible (S)

or infectious (I) adults, respectively.

6. Horizontal transmission. At any given time, adult mosquitoes are

either susceptible (S) to RVFV infection, infected but not

infectious (E, during the extrinsic incubation period), or

infectious with RVFV (I). Once infectious, mosquitoes are

assumed to remain infectious for life.

7. Population dynamics. The growth of all vector and host

populations is logistic and characterized by their respective

rates of birth and non-disease related mortality. Livestock hosts

can die from disease resulting from infection with RVFV.

Mosquito population dynamics are defined by trap data in

relation to land use as described above.

Temperature dependence of the vectors’ extrinsic incubation

rate (i.e., the inverse of the extrinsic incubation period, EIP) and

the gonotrophic cycle length (gonotrophic period, GP) were

modeled based on published data as follows. We digitally extracted

data points for temperatures at which a median EIP could be

estimated from Figure 3 of [42] (26 and 330C) and Figure 1 of [43]

(17 and 280C). Logistic curves were fitted to the proportion of

mosquitoes with disseminated infections over time for experiments

with Ae. fowleri and Ae. taeniorhynchus. To our knowledge, these

studies are the only published experiments that explore the

temperature-vector competence relationship for RVFV. From the

resulting model functions, we estimated the EIP as the median

time to disseminated infection of RVFV in the mosquito. Carrying

out a linear regression on the rate as a function of temperature

resulted in the model: EIP = (0:007084|temperature

{0:103820){1. The relationship between EIP and temperature

also has been studied for Culex mosquitoes [42,44], but heteroge-

neity among experiments and a paucity of comparable data points

precluded construction of an analogous EIP model for this genus.

Therefore, we modeled extrinsic incubation in Culex and Aedes by

the same function. The gonotrophic period (i.e., the number of

days between bloodmeals) was modeled as GP~2z({0:066z

0:018|temperature){1, using a published linear regression

equation for the ovarian maturation rate [45] plus 2 days for

oviposition and locating a bloodmeal host. The environmental

carrying capacity could not be explicitly measured, and for both

vectors, it was approximated daily using the vector abundance for

the following day based on the typical abundance time series

described above. This resulted in the desired inflation and

deflation of the density-dependent birth rates in proportion to

the rate of population growth or shrinkage, respectively, with a

corresponding inverse impact on death rates.

We implemented the full model using a set of ordinary differential

equations (mathematical details appear in the appendix). Using the

methods described in van den Driessche and Watmough [46], we

derived an expression for the basic reproduction ratio, R0, which

represents the average number of secondary infections that arise from

a single infectious individual (vector or host) introduced into a

completely susceptible population[24,47], so that whenR0v1, there

are insufficient new cases per case for propagation and the pathogen

cannot persist in the population. When R0§1, the pathogen is

efficiently transmitted and becomes enzootic; elevated R0 values

indicate that transmission is more intense and that stochastic fadeout

of the pathogen is less likely. For complex models of vectorborne

infections, it has been demonstrated that outbreaks are possible for

R0v1 under certain circumstances [48,49]. Because the model

incorporates both vertical and horizontal transmission, R0 was

written as the sum of the R0 values for each mode of transmission

determined separately,R0~R0(V )zR0(H) [17,18,50]. Details of the

Figure 4. Diagram of the model. Schematic of the SEIR model constructed for Rift Valley fever virus circulation in California. Mosquitoes are
categorized as capable of vertical transmission (Aedes) or not (Culex). For Aedes, adult mosquitoes emerge from uninfected (P) or vertically infected (Q)
eggs. Hosts are categorized as highly competent (livestock) or incompetent (dead-end hosts) for RVFV transmission. See the text for a complete
explanation.
doi:10.1371/journal.pntd.0002515.g004

Data-Driven Modeling for Rift Valley Fever Virus
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R0 computation and a sensitivity analysis of the model appear in the

Mathematical Appendix.

In addition to R0, we computed a recently described, metric,

E0, that quantifies the reactivity, or epidemicity, of the system [25].

E0 represents the maximum number of new infections produced

by an infective individual at a disease free equilibrium, and like

R0, epidemicity is a threshold quantity; when E0w1, transient

epidemics (i.e., outbreaks that may eventually fade out) are

possible regardless of the average system behavior predicted by

R0. When E0v1, transmission, even for brief time periods, is not

expected. Evaluating E0 from our model allows us to investigate

the potential for RVFV outbreaks in areas and times when R0

suggests that efficient transmission is not possible. R0 and E0 are

both functions of the model parameters shown in Mathematical

Appendix Table S1 in Text S1.

Stochastic sampling from biologically relevant ranges of param-

eters was used to assess the sensitivity of R0 and E0 to the model

parameters. The ranges for each parameter are presented in

Mathematical Appendix Table S3 in Text S1. KA and KC , the

vector carrying capacities, were computed from observed data as

described above. Likewise, the EIP and vector GP values were

functions of temperature. We assumed a uniform distribution for

each parameter across ranges shown in Mathematical Appendix

Table S3 in Text S1. The ranges of all the other parameters are

from the references shown in Mathematical Appendix Table S1 in

Text S1. Our model includes V~17 uncertain variables, so

N~200 sets of sampled parameter values were generated by Latin

hypercube sampling following the suggestion of Matala [51] that an

N such that N=Vw10 should suffice for the number of stochastic

samples of complete parameter sets. Partial rank correlation

coefficients (PRCC) were computed across ranges of parameters

described in Mathematical Appendix Table S3 in Text S1 to assess

the significance of each parameter with respect to R0 and E0.

Spatial analysis of temperatures, land cover, and host and vector

abundance was carried out using R version 2.15 [52], ArcGIS 10.0

(ESRI, Redlands, CA, USA), and PostgreSQL 9.0 (http://www.

postgresql.org) databases with added spatial capabilities of

PostGIS (http://postgis.refractions.net). All code for mathematical

modeling was written in R version 2.15 [52].

Results

Potential for establishment
The seasonal patterns for the basic reproductive ratio for RVFV

(R0; Figure 5) indicated that the risk for sustained transmission

increased rapidly by May, with R0 exceeding 1 in the areas with

both cattle and field crops (Figure 5). Initially, these areas at risk

consisted of a small number of grid cells in the center of the study

area and a single cell near the southernmost end of the valley that

could serve as early foci for transmission, and these areas remained

at higher risk than other areas through the summer. Risk was

greatest overall from late June–September, when a much broader

area was at risk for sustained transmission that included grains and

field crops and covered Tulare County, the core of California’s

dairy industry. In all areas, R0 values v1 from October–April

indicate that introductions from late fall–early spring would be

unlikely to become established and that persistence of RVFV

through winter may depend on mechanisms for long-term

maintenance between epidemics (e.g., vertical transmission in

vectors).

Potential for outbreaks
Our estimates of epidemicity for RVFV, E0, were much higher

than the average expectations of R0 (max = 95.3 and 3.2,

respectively) and indicated that transient outbreaks could occur

over a broader spatio-temporal window than that circumscribed

by R0 alone (Figure 6), although the relative seasonal patterns for

Figure 5. Spatio-temporal patterns in the basic reproductive
ratio, R0. Maps (upper panel) showing the mean basic reproductive
ratio, R0 , by month, and a graph of median daily R0 values (lower

panel) by land use class. Dashed lines in the lower panel indicate the 5th

and 95th percentiles for the land use class of the same color. Wetlands
and other grid cells without competent hosts (i.e., dairy cows) are
mapped in gray and were not included in the analysis because
transmission would not be expected in those locations. December is
omitted from the maps because it did not differ meaningfully from
January, with R0 universally v1.
doi:10.1371/journal.pntd.0002515.g005

Data-Driven Modeling for Rift Valley Fever Virus
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the two metrics were strongly correlated (r~0:85,pv0:0001). E0

values w1 indicate that transmission was possible from February–

November in agricultural areas, although the number of cases

probably would remain small for introductions during February–

April or November. The highest transmission potential (Figure 6)

occurred in places and times where cattle were present and vectors

reached high densities. Specifically, E0 values were greatest in

areas dominated by field crops and grains, which generally had the

highest combined concentrations of Culex vectors and cattle in the

study area, although the latter had little impact on epidemicity.

Risk of RVFV transmission in urban areas was somewhat lower,

with the highest level expected during spring, associated with the

typical peak in Culex abundance at that time, followed by a slow

decline in both E0 and vector abundance through the end of the

summer. Orchards and vineyards (trees/grapes) and grasslands

had low risk for epidemics due to their low vector abundance, and

fallow or barren habitats had no risk for outbreaks, even when

cattle were present. In all areas, E0 was closely linked to the

abundance and carrying capacity of vectors, and E0 was greatest

during spring and summer when the abundance of vectors,

primarily Culex, was highest. For the scenarios under study, other

parameters had little impact on E0, resulting in negligible variation

around the average seasonal pattern for each land use class

(Figure 6).

Wetlands
Seasonally-flooded wetlands were not included in our analysis

because the relatively small fraction of the total study area that

they occupied (Figure 1) did not include dairy cattle. However,

these areas deserve special consideration because they were the

only areas where both Aedes and Culex reached high abundance

(Figure 3), making them a reasonable analogue to the dambo

habitats where RVFV is enzootic in east Africa, although the

timing of their flooding is linked to human water management

rather than rainfall. If dairy cattle or other competent hosts were

present, both horizontal and vertical transmission would be

possible, presenting strong potential for both transient epidemics

and establishment. To evaluate this possibility, we calculated E0

and R0 for the wetlands in the study area (Figure 1), with the

addition of 1,000 cattle to each grid cell to simulate the effect of

a moderate-sized dairy adjacent to the wetlands (median dairy

size for the study area~1,140 cattle). Transmission potential

was higher than for other land uses and reflected the abundance

of Culex vectors as before. There were two annual peaks of 186

on June 14 and 489 on September 30 for E0 and 2.84 on June

27 and 4.37 on September 27 for R0.

Sensitivity analysis
Sensitivity analysis revealed that both R0 and E0 were

particularly responsive to the abundance (NA,NC ), carrying

capacity (KA,KC ), and vector competence (rLA,rLC ) of mosquito

vectors. All of these relationships were positive, with the

exception that R0 had a negative correlation with mosquito

abundance due to the density dependence of birth (and

correspondingly, death) rates such that higher numbers of vectors

resulted in smaller values for the K=N ratio, which also limited

R0. R0 was much more sensitive than E0 to variation in

temperature that affected RVFV extrinsic incubation and vector

biting rates, which explained its broader range of values within

each land use class (Figure 5, lower panel). The abundance of

hosts had little effect on either transmission metric. Complete

results for the sensitivity analysis are presented in Mathematical

Appendix Table S3 in Text S1.

Discussion

This study extends previous models of RVFV dynamics [17–

23,53,54] by developing methods for linking our model and

Figure 6. Spatio-temporal patterns of epidemicity, E0. Maps
(upper panel) showing an estimate of the maximal transmission
potential, E0 , by month, and a graph of median daily E0 values (lower

panel) by land use class. Dashed lines in the lower panel indicate the 5th

and 95th percentiles for the land use class of the same color. Wetlands
and other grid cells without competent hosts (i.e., dairy cows) are
mapped in gray and were not included in the analysis because
transmission would not be expected in those locations. December is
omitted from the maps because it did not differ meaningfully from
January, with E0 universally v1.
doi:10.1371/journal.pntd.0002515.g006
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potentially others to real landscapes. We have demonstrated these

methods in a well-studied and potentially RVFV-receptive region

of California with high densities of dairy cattle and mosquitoes and

a history of arbovirus transmission. Where possible, we have

utilized readily available continental-scale data sources, and as a

result, our methods could be employed to broadly assess risk for

RVFV elsewhere in North America, given adequate knowledge of

local patterns in vector and host population dynamics, although

realistically addressing this last point is not a trivial hurdle for any

broad-scale risk assessment.

Our model modifies the parameterization of several earlier

RVFV models [17–20,23] that had the potential to downplay the

role of vertical transmission in Aedes. In these models, the infected

subadult stage (eggs or simply ‘‘aquatic stage’’) arose by applying

the probability of vertical transmission (denoted qA herein) to

infectious adult females (IA). This would be appropriate, except

that it implies that salivary transmission of RVFV by Aedes

females is a necessary condition for vertical transmission to

offspring. These processes occur by parallel infection pathways,

although both require initial passage through the midgut barrier

and a subsequent incubation period. The model we have

presented continues to define infected eggs (QA) as originating

from infectious females (IA), which allows for the reasonable

assumption that the incubation period for horizontal and vertical

transmission are equal. However, we rescaled the parameter qA

by the vector competence parameter rLA to match our

understanding of the natural definition of qA, equal to the per

capita probability of infection in offspring given that a female

mosquito feeds on an infectious host (See Mathematical

Appendix, Equation 2). Despite the conceptual aspects, previous

models have assumed larger values for this vertical transmission

parameter (most commonly 0.05) compared to the 0.001 we have

chosen here based on the rarity of isolations from field-collected

immature mosquitoes [31] and null findings in the laboratory

[5,55–57], which would negate some of the potential downward

bias in model outcomes.

Previous dynamical models for RVFV have evaluated trans-

mission outcomes for single parameter sets, generally combined

with sensitivity analysis, but have not focused on realistic spatio-

temporal variation in transmission risk for RVFV. One recent

exception included two sets of parameters for ‘‘dry’’ vs. ‘‘wet’’

seasons [23], resulting in R0 values of 0.80 and 2.28, respectively,

which were within the range of our estimates (0.23–3.24). The

range for E0 was much narrower (1.84–10.57 compared to our

0.18–95.27), which is probably due to our broader range of

parameters, particularly the data-driven seasonal variation and

inequality of the abundance and carrying capacity of vectors in

our model. Unlike in RVFV-enzootic areas of sub-Saharan Africa

[53,58], California’s rainfall occurs during the coolest months of

the year and does not directly drive the population dynamics of

most mosquitoes, so the deliberate distribution of surface water by

humans (e.g., in irrigated agriculture and wetlands) creates and

maintains aquatic mosquito habitats, and therefore transmission is

expected to be greatest during the warm, ‘‘dry’’ season when both

vector abundance and temperatures are high. R0 values from

single-patch [17] and metapopulation models for RVFV [19]

(0:04{3:74 and &0{3:68, respectively) also agreed well with our

estimates, although the ranges in these studies were calculated

from parameter sets randomly drawn from uniform distributions

rather than ‘‘real-world’’ scenarios.

We focused on two important transmission metrics, R0 and E0,

to convey the average and maximal expectations for transmission

in initially disease-free, immunologically nave populations. Such a

scenario is appropriate for the Western Hemisphere, which has no

history of RVFV transmission, and these metrics were useful for

defining the spatio-temporal range over which an introduced virus

could cause outbreaks and the relative variation in risk over a

typical year, which are driven primarily by seasonal patterns in

vector abundance and temperature.

Our model-based estimates suggest that the risk for an RVFV

outbreak – if it were to be introduced – should be a concern for

California’s dairy industry during all but the coldest winter

months of December and January and is highest during the warm

spring and summer seasons in the Central Valley. Epidemic risk

increases rapidly once the abundance of mosquitoes begins to

increase, typically in March–April, and E0 has shown that the

potential for RVFV circulation begins earlier and lasts longer

than would be suggested by an analysis informed by R0 alone.

The theoretical threshold of 1.0 for R0 should be viewed with

caution as an absolute limit for transmission, especially for vector-

borne diseases [48], and its values depend on the models and

methods chosen for computation [59]. However, we believe the

relative patterns are more important than the exact numerical

values for determining when and where the risk for RVFV

outbreaks would be highest.

In parameterizing the model, we were confronted with many

gaps in knowledge and data. This contrasts with our recent study

[20] that illustrated a similar methodology for WNV, a system

where the competent vectors are well-known and previous studies

could be invoked to estimate the EIP and biting rates as functions

of environmental temperature. For RVFV, the competent North

American vectors are only partially known [6], and the data

available for quantifying extrinsic incubation rates at different

temperatures are scanty and based on colonized mosquitoes

[42,43]. Similarly, there is little data available for North American

Aedes species on the variation in biting rates with temperature; here

we have used a model based on egg maturation rates in Culex

mosquitoes [45] and applied it to both genera of RVFV vectors.

This is complicated by fact that Aedes may take multiple partial

blood meals during a gonotrophic cycle, so a rate based on ovarian

development periods may understate the frequency of vector-host

contact.

In our model, we assumed that the vectors feed on the two types

of hosts represented by cattle and birds at rates proportional to

their availability. Most studies on Cx. tarsalis have found a broad

host range, including mammals, with a greater number of blood

meals taken on avian hosts compared to mammalian hosts

[33,36,37,60–64]. These patterns appear to be a function of host

availability and possibly other factors such as body size or

defensive behaviors. Studies utilizing forage ratios to relate feeding

to proportionate availability have found that passerines were often

underrepresented in relation to their densities [36,63,65], while

cattle were frequently the most common – and sometimes

overrepresented – mammalian host [36,37,60,61,65,66]. Studies

on Ae. melanimon have indicated a consistent preference for feeding

on mammals over birds (w90% of total blood meals;

[33,60,62,66,67]). In our study area, cows generally constituted

a high proportion of the total hosts in each area (i.e., cows

represented w50% and w90% of all hosts in 94.5% and 59.7% of

the areas modeled, respectively), which meant that the opportu-

nistic feeding assumption resulted in consistently high rates of

biting on cattle for both species. The impacts of host preferences

on the potential for RVFV transmission is an interesting topic for

consideration in future modeling studies.

To understand the potential role of Aedes, Culex, and possibly

other genera in the transmission of RVFV or other pathogens to

cattle, we need a better understanding of heterogeneities in biting

pressure from the various mosquito species. Other studies have

Data-Driven Modeling for Rift Valley Fever Virus

PLOS Neglected Tropical Diseases | www.plosntds.org 8 November 2013 | Volume 7 | Issue 11 | e2515



shown promise in this regard, in the use of antibodies to salivary

antigens as biomarkers for vector exposure (e.g., [68–72]) and

specifically in characterization of the sialotranscriptome for Cx.

tarsalis [73].

There are also substantial uncertainties in the viral transmission

cycle should RVFV find its way into North America. Which

wildlife species would serve as competent hosts is a key unknown.

White-tailed deer are very abundant in the eastern US and have

been hypothesized as potential wildlife carriers in North America

[13], but the ability of these animals to become infected and

develop viremias high enough to infect biting vectors remains

undocumented. The potential role of lagomorphs (hares and

rabbits) is also unknown, although these are important in the

transmission cycles of several bunyaviruses in the family Bunyavir-

idae in California [30,34]. Our study therefore did not include

wildlife hosts.

Despite the potential for RVFV outbreaks, it is unclear whether

the virus could persist between years to become enzootic in the

U.S. This uncertainty is due in part to the numerous gaps in the

data available to inform model parameters described above, but

also to the seasonality of temperatures and vector populations that

ensure that conditions are never constant. Additional study is

needed within a stochastic modeling framework to understand the

range of potential invasion mechanisms (e.g., mosquitoes vs.

human or animal hosts), as well as the potential mechanisms for

RVFV persistence and whether they could permit the virus to

avoid the possibility of stochastic fadeout during North America’s

winter. Host and vector movements will be important for short-

term spread of RVFV [18,19], but their necessity for interannual

persistence will depend in part on whether the African paradigm

of inter-epizootic maintenance in vertically infected mosquitoes

holds true. If vertical transmision turns out to be an inadequate

persistence mechanism in North American Aedes or Culex,

movement could increase the likelihood of RVFV persistence by

bringing infectious vectors and hosts into contact with new

susceptible subpopulations [54]. Data on livestock movement are

limited, but new Bayesian methods are giving hope that more can

be done with incomplete data [74].

Conclusion
We have developed novel, generalizable methods to link

mathematical models for RVFV with broad-scale spatio-temporal

data for realistic landscapes. These methods could be useful for

prioritizing when and where to focus control strategies (e.g., vector

control or cattle vaccination) during an invasion. Many gaps in

both data and knowledge remain, but this is an important step

toward understanding the potential seasonal transmission cycles of

RVFV and other vectorborne pathogens that may invade

temperate North America.

Supporting Information

Text S1 Mathematical appendix describing the model, including

definitions for state variables and parameters and results for

sensitivity analysis.

(PDF)
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