Pneumonia is a significant cause of morbidity and mortality in the developing world. Viruses contribute significantly to pneumonia burden, although data for low-income and tropical countries are scarce. The aim of this laboratory-enhanced, hospital-based surveillance was to characterise the epidemiology of respiratory virus infections among refugees living on the Thailand-Myanmar border.
Maela camp provides shelter for ~45,000 refugees. Inside the camp, a humanitarian organisation provides free hospital care in a 158-bed inpatient department (IPD). Between 1st April 2009 and 30th September 2011, all patients admitted to the IPD with a clinical diagnosis of pneumonia were invited to participate. Clinical symptoms and signs were recorded and a nasopharyngeal aspirate (NPA) collected. NPAs were tested for adenoviruses, human metapneumovirus (hMPV), influenza A & B, and RSV by PCR.
Seven hundred eight patient episodes (698 patients) diagnosed as pneumonia during the enhanced surveillance period were included in this analysis. The median patient age was 1 year (range: < 1-70), and 90.4% were aged < 5 years. At least one virus was detected in 53.7% (380/708) of episodes. Virus detection was more common in children aged < 5 years old (<1 year: OR 2.0, 95% CI 1.2-3.4,
Viral nucleic acid was identified in the nasopharynx in half the patients admitted with clinically diagnosed pneumonia. Development of immunisations targeting common respiratory viruses is likely to reduce the incidence of pneumonia in children living refugee camps and similar settings.
Pneumonia remains a leading cause of mortality globally: 4.2 million pneumonia deaths were recorded in 2004 [
Approximately one-third of the worldwide refugee population of 15 million live in camps [
In 2007, the US Centers for Disease Control and Prevention (CDC) and the Shoklo Malaria Research Unit (SMRU) established a respiratory virus surveillance programme in the Burmese refugee population living in Maela camp, Northwest Thailand. The programme included patients admitted to hospital with pneumonia during April 2009-September 2011. The aim of in-patient surveillance was to determine the relative burden of virus-associated pneumonia. The results of 30 months of in-patient surveillance are presented here.
Maela camp is located in rural Tak province approximately 500 km from Bangkok. It is the largest of the nine camps on the Thailand-Myanmar border, housing approximately 45,000 people in a 4 km2 area, and has been in continuous operation since 1984. Karen is the predominant ethnicity in the camp population. General healthcare is provided by the non-governmental organisation Première Urgence–Aide Médicale Internationale (PU-AMI). Camp residents receive World Health Organisation (WHO) Expanded Programme on Immunisation (EPI) immunisations, but immunisations against respiratory pathogens (
From April 2009 to September 2011, laboratory-enhanced respiratory surveillance was undertaken at the in-patient department (IPD) of the Maela PU-AMI hospital. Throughout this period, trained local health workers reviewed IPD admission logs on six days each week to identify patients with an admission diagnosis of pneumonia, including those who were admitted on the seventh day. Health workers invited all pneumonia patients to participate in enhanced surveillance and enrolled all who agreed. For enrolled patients, health workers completed a brief symptoms questionnaire by patient interview and record review, and collected nasopharyngeal aspirates (NPA) as previously described [
Patient episodes were subsequently excluded from analyses if they (a) failed to meet the surveillance case definition for pneumonia (Table
Pneumonia case definitions
| < 5 years | Cough OR difficulty breathing AND Increased respiratory rate* | |
| Cough OR difficulty breathing AND At least one of: Lower chest wall indrawing; nasal flaring; grunting | ||
| Cough OR difficulty breathing AND At least one of: Central cyanosis; inability to feed or vomiting everything; convulsions, lethargy, or unconsciousness | ||
| ≥ 5 years | Fever ≥ 38°C OR history of fever AND Cough OR difficulty breathing AND Abnormal chest examination (e.g. crepitations, asymmetric breath sounds, or dullness to percussion) | |
* Measured over one minute: > 60 if < 2 months of age; > 50 if 2-11 months of age; > 40 if 11-59 months of age.
NPA specimens, in 1 ml viral transport medium (VTM, prepared in-house), were transported daily to the SMRU microbiology laboratory, which is located in the town of Mae Sot, approximately 50 km from Maela. Specimens were placed into an insulated cool box immediately after collection and were transported back to the Mae Sot laboratory within eight hours of collection, where they were stored at−80°C until analysis.
Viral nucleic acid was extracted from thawed NPA-VTM specimens using commercial kits, following the manufacturer’s instructions (QIAamp Viral RNA minikit [Qiagen, Hilden, Germany], April 2009 until September 2010; viral nucleic acid extraction protocol of the MagCore HF16 automated extractor [RBC Bioscience, Taiwan], October 2010 until September 2011). Extracts were analysed by real-time reverse-transcription PCR (rRT-PCR) for adenoviruses, hMPV, influenza viruses (A and B, with typing of influenza A viruses to detect seasonal H1/H3 and pandemic H1 strains), and RSV as described elsewhere [
Clinical and laboratory data were recorded on paper-based case record forms and subsequently entered into an Access 2003 database (Microsoft, Redmond, WA, USA) and systematically checked for errors by comparison with the original case record forms. Data were analysed by Stata/IC version 12.1 (StataCorp, College Station, TX, USA).
Proportions were analysed by chi-squared or Fisher’s exact tests as appropriate. Logistic regression was used to calculate odds ratios (OR) and their 95% confidence intervals (CI). Multivariate models were constructed to determine relationships between age, viral detection, pneumonia severity (<5 years old only), and antimicrobial use prior to admission. Two-tailed
This surveillance program underwent ethical and regulatory review at CDC, and was determined not to meet the definition of research. Local ethical review in Maela was not possible at the commencement of surveillance. However, the surveillance activity was discussed with PU-AMI staff, and all concerns were addressed, prior to the beginning of the project. Verbal consent was obtained from each potential participant, or their parent/legal guardian in the case of children aged <15 years, prior to enrolment in the surveillance programme.
Among all IPD pneumonia admissions, 835 patient episodes were enrolled in enhanced surveillance. After review of the symptom questionnaire, 117 patient episodes were excluded because of failure to meet the case definition and one episode was excluded for a patient who presented twice within 14 days. In three episodes, NPA specimens were not collected and in another six, the specimens were technically inadequate (internal control PCR negative). The remaining 708 patient episodes were included in the following analyses.
A total of 698 individuals were sampled (689 patients with single episodes, eight patients with two episodes, and one with three episodes). The median age at presentation was one year (IQR < 1-2; range < 1 to 70). Six hundred and forty patients (90.4%) were aged < 5 years (Table
Patient demographic details and virus prevalence
| Pneumonia episodes, N (%) | 289 | 351 | 68 |
| 33 (11.4) | 62 (17.7) | 68 (100) | |
| 256 (88.6) | 289 (82.3) | - | |
| Gender, N (%) | |||
| 102 (35.3) | 168 (48.3) | 31 (45.6) | |
| 187 (64.7) | 180 (51.7) | 37 (54.4) | |
| Days unwell at admission review, median (IQR) | 4 (3-7) | 3 (2-6) | 4 (3-7) |
| Antimicrobial use ≤ 14d before admission, N (%) | 133 (46.5) | 129 (37.0) | 22 (33.3) |
| Any virus detected, N (%) | 173 (59.9) | 178 (50.7) | 29 (42.7) |
| 39 (13.5) | 80 (22.8) | 14 (20.6) | |
| 17 (5.9) | 15 (4.3) | 1 (1.5) | |
| 19 (6.6) | 35 (10.0) | 14 (20.6) | |
| 113 (39.1) | 61 (17.4) | 2 (2.9) | |
| 14 (4.8) | 12 (3.4) | 2 (2.9) | |
Viral nucleic acid was detected in 53.7% (380/708) NPA specimens. The rank order of detection was RSV (176, 24.9% of NPA), adenovirus (133, 18.8%), influenza A (58, 8.2%), hMPV (33, 4.7%), and influenza B (10, 1.4%).
Detection of viruses varied considerably by age (Table
Diagnosis of severe or very severe pneumonia in the < 5 year age group was associated with detection of RSV (OR 1.9, 95% CI 1.1-3.2,
Multiple viruses were detected in 4.0% (28/708) specimens. Two viruses were detected in 26 specimens (13 adenovirus + RSV; 8 influenza + RSV; 3 adenovirus plus influenza; 2 adenovirus + hMPV) and three viruses were detected in two specimens (1 adenovirus + influenza + hMPV; 1 adenovirus + influenza + RSV). There were no associations between multiple virus detection with age or severity of pneumonia (data not shown).
Virus detection varied by season. RSV, influenza viruses, and hMPV were all detected in the wet (June–October) and cool (November–February) seasons, whereas adenovirus detection occurred year round and peaked in the late cold and hot (March–May) seasons (Figure
Interestingly, in an age-adjusted analysis, patients who had received an antimicrobial in the two weeks preceding admission were more likely to be RSV PCR positive (AOR 1.7, 95% CI 1.2-2.5,
Seasonal influenza A (H1N1) accounted for 88.0% of all influenza virus detections in 2009 but was not identified in subsequent years. Influenza A (H3N2) detections increased from 0% in 2009 to 73.7% of influenza viruses in 2011. Pandemic influenza A (H1N1 2009) detections peaked in 2010 (41.7% of all influenza virus detections). Influenza B was not found in 2009, but in subsequent years accounted for up to 25.0% of influenza virus detections (Figure
Laboratory-enhanced surveillance has documented the contribution of respiratory viruses to 708 hospitalised clinical pneumonia episodes occurring in a crowded refugee camp on the Thailand-Myanmar border during April 2009 to September 2011. As expected, the vast majority of patients were aged less than five years [
The Maela data add to the scant data on the aetiology of pneumonia in refugee populations. The results are broadly consistent with a similar surveillance programme conducted in two Kenyan refugee camps [
Results from pneumonia aetiology studies from various locations in the developing world have confirmed the high prevalence of virus detection in hospitalised pneumonia episodes in young children [
Influenza viruses were detected in almost 10% of patient episodes of pneumonia. This figure is consistent with previously published data on influenza hospitalisations. Simmerman and Uyeki determined that influenza viruses were detected in 6-14% of hospitalised pneumonia cases in a recent review of East and Southeast Asian data [
The role of adenoviruses in the aetiology of pneumonia remains unclear. Frequent re-infection and persistence in young children makes their detection in NPA specimens at the time of pneumonia diagnosis difficult to interpret [
WHO definitions for clinical pneumonia in childhood were used in our enhanced surveillance in Maela. These definitions were designed to have optimal sensitivity for the diagnosis of potentially life-threatening bacterial infection in resource-poor settings [
The enhanced surveillance system had several limitations. Not all hospitalised pneumonia episodes were captured and therefore it was not possible to calculate virus-specific incidence rates. Estimating the representativeness of the patients enrolled by comparison of enhanced surveillance results with routine surveillance figures is problematic. However, as we note, if a direct comparison is made, enhanced surveillance included 47.8% (640/1,340) of all LRTI episodes identified through routine surveillance in children under five years of age but only 9.2% (68/741) of episodes in patients aged five years or older. Differences in case definitions used in the routine surveillance compared with enhanced surveillance is the most likely explanation for this discrepancy [
The cost of in-patient pneumonia treatment is high. In two recent studies, the estimated average cost per district hospital pneumonia admission was US$99.26 in Kenya and US$490.80 in Thailand [
Viruses were commonly identified in Burmese refugees admitted to hospital with clinically-diagnosed pneumonia. Use of influenza immunisation and the development of vaccines targeting other common respiratory viruses would be likely to reduce the incidence of pneumonia in children living in refugee camps and similar settings.
The authors declare that they have no competing interests.
PT, VC, CT, CD, CP, LO, and FN conceived the surveillance project. NC and CT were responsible for specimen and data collection. WW performed the laboratory work. PT and VC did the data analysis. PT prepared the first draft of the manuscript. All authors reviewed and contributed to revisions of the manuscript. All authors read and approved the final manuscript.
The pre-publication history for this paper can be accessed here:
We are grateful for the hard work of Say Paw and Mallika (SMRU clinic, Maela) and for the support of the clinical staff at the PU-AMI hospital in Maela. This work was supported by a US-CDC cooperative agreement (5U50CI000473). SMRU is part of the Mahidol Oxford University Tropical Medicine Research Unit, supported by the Wellcome Trust of Great Britain.
The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.