

Interlibrary Loans and Journal Article Requests

Notice Warning Concerning Copyright Restrictions:

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One specified condition is that the photocopy or reproduction is not to be *“used for any purpose other than private study, scholarship, or research.”* If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use,” that user may be liable for copyright infringement.

Upon receipt of this reproduction of the publication you have requested, you understand that the publication may be protected by copyright law. You also understand that you are expected to comply with copyright law and to limit your use to one for private study, scholarship, or research and not to systematically reproduce or in any way make available multiple copies of the publication.

The Stephen B. Thacker CDC Library reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Terms and Conditions for items sent by e-mail:

The contents of the attached document may be protected by copyright law. The [CDC copyright policy](#) outlines the responsibilities and guidance related to the reproduction of copyrighted materials at CDC. If the document is protected by copyright law, the following restrictions apply:

- You may print only one paper copy, from which you may not make further copies, except as maybe allowed by law.
- You may not make further electronic copies or convert the file into any other format.
- You may not cut and paste or otherwise alter the text.

Electromyography Signal Analysis of Knee Flexor and Extensor Muscles in Potential Knee Musculoskeletal Disorders during Roofing

Amrita Dutta¹; Scott P. Breloff²; Fei Dai³; Erik W. Sinsel⁴; Christopher M. Warren⁵; Robert E. Carey⁶; and John Z. Wu⁷

¹Graduate Research Assistant, Dept. of Civil and Environmental Engineering, West Virginia Univ., Morgantown, WV. E-mail: amdutta@mix.wvu.edu

²Biomedical Research Engineer, National Institute for Occupational Safety and Health, Morgantown, WV. E-mail: sbreloff@cdc.gov

³Associate Professor, Dept. of Civil and Environmental Engineering, West Virginia Univ., Morgantown, WV. E-mail: fei.dai@mail.wvu.edu

⁴Computer Scientist, National Institute for Occupational Safety and Health, Morgantown, WV. E-mail: ESinsel@cdc.gov

⁵Mechanical Engineer, National Institute for Occupational Safety and Health, Morgantown, WV. E-mail: cpw4@cdc.gov

⁶Mechanical Engineer, National Institute for Occupational Safety and Health, Morgantown, WV. E-mail: ohn7@cdc.gov.

⁷Senior Research Biomechanical Engineer, National Institute for Occupational Safety and Health, Morgantown, WV. E-mail: ozw8@cdc.gov

ABSTRACT

Awkward and extreme kneeling postures required during shingle installation on sloped rooftops generates large muscular tension on lower extremities of residential roofers. This study assessed the effects of kneeling posture and roof slope on the peak activations of knee flexor (biceps femoris and semitendinosus) and extensor (rectus femoris, vastus lateralis, and vastus medialis) muscles that are potential risk indicators of knee musculoskeletal disorders (MSD) in shingle installation. Using surface electromyography (EMG), the authors collected maximum normalized EMG signals from the above-mentioned muscles of seven subjects who mimicked a shingle installation task with kneeling on a slope-configurable wooden platform. The results suggested a significant association of the roof slope, kneeling posture, and their interaction with the peak muscle activation. Except for the vastus medialis muscle of the right knee, significant increase in the peak normalized EMG was observed for all flexor and extensor muscles during shingle installation on the sloped roof surface. Significant interaction between the slope and posture was observed for the flexor muscles of the right knee and vastus medialis muscle of the left knee. Therefore, the large muscle activations during kneeling in shingle installation on high-pitched rooftops should be given particular attention as it might lead to development of the knee MSD among residential roofers.

INTRODUCTION

Residential roofers spend a large amount of time in awkward kneeling postures while performing shingling activities on sloped rooftops. The large muscular tension generated by awkward and extreme kneeling postures is commonly associated with knee musculoskeletal disorders (MSD) (Kaushik and Charpe 2008). Although knee joint kinematics and compressive loads in kneeling have been previously studied in arthroplasty and ergonomics research (Kingston et al. 2016), limited information is available on the activation of lower limb muscles

during kneeling in shingle installation on a sloped surface. Specifically, it is unclear if the combined effect of an awkward kneeling posture and a sloped roof surface on the peak activation of lower limb muscles contributes to the development of lower extremity MSDs during the performance of kneeling shingle installation. This knowledge is important as these muscles are the greatest contributors to peak knee joint contact forces and thus are major factors in knee joint degeneration or osteoarthritis (Andriacchi and Favre 2014). This study examined the impact of the extreme kneeling posture and sloped roof surface—two residential roofing work-related factors—on the peak activation of knee flexor and extensor muscles as a potential that leads to knee MSD during shingle installation.

BACKGROUND

State of practice

Awkward kneeling and repetitive motion have been proven to be risk factors of knee MSD (Hofer et al. 2011). As roofers encounter both of these factors, there is a high incident rate of MSD injuries among roofers (Wang et al 2015). According to the *2018 base rates by business type and classification code* published by the Washington State Department of Labor and Industries, the insurance premium composite base rate for roofers is the highest (\$7.03) among all building construction trades (Washington DOL & I 2018). In spite of this, there are very few ergonomic guidelines to protect residential roofers. In the United States, safety and health organizations such as the Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) have promoted some general ergonomic practices to minimize the MSD risk among construction roofers. For example, NIOSH has suggested using simple and inexpensive tools, such as an auto-feed screw gun with an extension arm, a kneeling creeper and knee pads to minimize the stress on knees during construction tasks (Albers and Estill 2007). OSHA has marketed training programs (10-hour and 30-hour) and provided educational tools (eTools, eMatrix, v-Tools) (OSHA 2019). However, these guidelines are generic. They are neither specific for knee injury prevention nor designed for the tasks performed on sloped roof surfaces and hence may not be applicable for the work setting of the residential roofing industry.

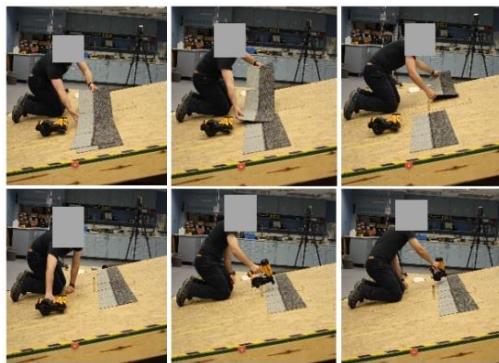
State of research

Although abundant research has been conducted on fatal injuries among roofers caused by falls from height, few studies assessed the MSD risk factors to suggest interventions. Among the few studies, Choi and Fredericks (2008) investigated the impact of surface slope on roofers' shingling frequency. Kingston et al. (2016) assessed the peak activation of eight bilateral lower limb muscles during high flexion kneeling and transitional movement tasks performed on a level surface. Wang et al. (2017) examined the influence of roof slope, working technique, and working pace in kneeling and stooped postures on the development of low back disorders among roofers. Lee et al. (2017) assessed wearable sensors to facilitate data collection of roofers' heart rate, energy expenditure, metabolic equivalents, and sleep efficiency that might be associated with MSD developments. Wearable EMG sensors have been used to evaluate construction workers' muscle fatigue (Jebelli and Lee 2019). Despite these efforts, lower extremities have not been systematically evaluated and the to-date findings were not necessarily related to the lower extremity MSD risk associated with kneeling on a sloped roof surface. Until now, the knowledge regarding the peak muscular activity of knee postural muscles during shingle installation on a

sloped roof surface is still missing in literature. The activation of the knee postural muscles is anatomically responsible for the flexion and extension of the legs during kneeling and repetitive motion in a dynamic task. These muscles become highly activated as they produce force that is greater than their normal force generation capability, which is associated with MSD (Kingston et al. 2016).

PROBLEM STATEMENT AND RESEARCH OBJECTIVE

Awkward kneeling postures may overload the muscle tissues of the lower extremity. Repetitive and cumulative muscle overloading without enough recovery time can cause muscle strains. These factors by themselves or combined may cause MSD such as knee joint degeneration, knee osteoarthritis and anterior cruciate ligament (ACL) injuries (Andriacchi and Favre 2014). On sloped roof surfaces, larger activation of the lower extremity muscles is required to maintain the body balance than that on a level work condition. However, a systematic evaluation of the activation of knee postural muscles during shingle installation while kneeling on sloped roof surfaces is still lacking. This knowledge is vital to develop effective interventions so that muscle overloading might be reduced for the prevention of knee MSD among roofers. Therefore, the objective of this research is to assess the effects of kneeling posture and roof slope on the peak activation of knee flexor and extensor muscles in a shingle installation task for the purpose of suggesting if kneeling while shingling on a sloped roof surface may lead to development of the knee MSD among residential roofers due to overloading of the muscles.


Figure 1. Static kneeling

EXPERIMENT AND IMPLEMENTATION

Variables

Two roofing work-related factors that may potentially cause the increased knee postural muscle activity were considered: roof slope and kneeling posture. Three roof slopes— 0° , 15° and 30° —were chosen as these roof angles are commonly used residential roofing (National Contractors 2019). Two kneeling postures—static and dynamic—were considered to represent typical kneeling techniques residential roofers utilize during a shingle installation task. The static condition represented a highly flexed kneeling position when roofers flex their knees and trunk and put their non-nailing hand on the roof surface while holding the nail gun with negligible movement in the lower limb, as illustrated in Figure 1. Dynamic kneeling—involved rigorous lateral movement—required the roofers to perform the entire shingle installation task including placing and nailing shingles, as shown in Figure 2. To identify the potential knee MSD risk, peak

normalized activations of the knee muscles were recorded with surface EMG and compared between the different combinations of slope and kneeling posture. Five bilateral (10 total) knee postural muscles—biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL) and vastus medialis (VM)—were selected as they are the primary flexor and extensor muscles of the knee. Peak activations of these muscles collected with wearable surface EMG system have been considered as risk indicators in this study, as activations of these muscles can contribute to peak knee joint contact force and high knee joint contact force is associated with knee MSD (Andriacchi and Favre 2014).

Figure 2. Dynamic kneeling

Participants

Seven subjects [26.1 years (± 5.6 years), 180.2 cm (± 6.1 cm), and 99.7 kg (± 27.6 kg)] with no history of MSD participated in the study. The protocol was approved by the Institutional Review Board (IRB) of NIOSH and West Virginia University.

Instruments and data collection

All the subjects simulated a kneeling shingle installation on a 1.2m×1.6m custom-made adjustable wood platform (Figure 3). The platform was connected to a hydraulic lift that could adjust the wood platform between slope angles ranging from 0° to 30°. A surface EMG system (Noraxon Desktop Direct Transmission System with myoMUSCLE Master software, Arizona, USA) was used to record the muscular activation from surface EMG Ag/AgCl electrodes placed on the palpated muscle bellies at a rate of 1,000 Hz.

Figure 3. Roof platform

During the experiment session, the subjects performed the aforementioned simulation of

kneeling static and dynamic shingle installation tasks. The kneeling static and dynamic shingle installation trials were completed on the wood platform at three slopes—0°, 15°, and 30°—which resulted in a total of 6 (2 posture×3 slope) tasks. The subjects performed 5 trials of each condition. The experiment was performed in the NIOSH (Morgantown, WV) biomechanics laboratory.

Data processing

To remove the DC bias, the EMG signals were filtered using a 2nd order Butterworth high pass filter with a cut off frequency of 20 Hz and then low pass filtered with cutoff frequency 500 Hz. The EMG signals were then rectified and further smoothed using a moving average filter with a window of 3 data points approach. As the maximum voluntary contraction (MVC) data of the muscles were not available, for each subject, the EMG signal of each muscle was normalized to the average of the maximum EMG signals of all trials to ensure fair comparison.

Data analysis

To measure the impact of the factors (slope and posture) on the peak normalized knee muscle activation, a univariate ANOVA technique was employed. Normality of residuals, constant variance of residuals and independence of observations were evaluated for all response variables using a graphical approach (Freund et al. 2010). Tukey Post-hoc analysis was performed on the factors (slope and posture) to further analyze where the significant difference existed among different levels of the factors. The *p*-value was set at 0.05 and all tests were performed in Minitab 19 (Minitab, Inc.).

RESULTS

The effects of the factors were different for both knees. Therefore, the results were presented and discussed separately: Table 1 (left knee) and Table 2 (right knee). Bold texts indicate significant effects of the factors (slope and posture) on the response variables (EMG values of the muscles).

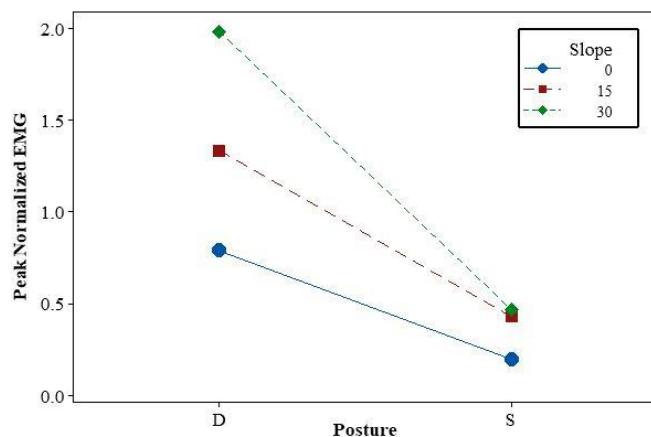
Table 1. Effects of the Factors for the Left Knee

Factors	ANOVA				
	BF	RF	ST	VL	VM
Slope	0.343 (0.3)	0.001 (0.5)	0.011 (0.4)	<0.001(0.6)	<0.001 (0.6)
Posture	<0.001(0.6)	<0.001 (0.6)	<0.001 (0.7)	<0.001 (0.5)	<0.001 (0.7)
Slope*Posture	0.121(0.4)	0.676 (0.9)	0.091 (0.4)	0.118 (0.9)	0.019 (0.8)

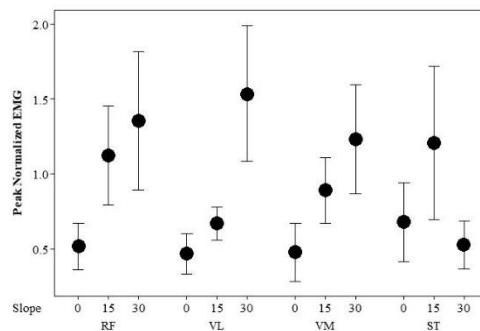
Note: Bold numbers indicate significant *p* values. Effect sizes are provided in the parenthesis.

Analysis of the left knee

Effect of Slope-Posture Interaction


For the left knee, Table 1 indicated a statistically significant interaction between slope and posture for only the VM muscle. For both of the static and dynamic kneeling postures, as roof slope increased, the peak normalized muscle activation increased (Figure 4). Post-hoc analysis revealed that, during the dynamic kneeling posture (D), the peak normalized muscle activation at

30° slope [1.98 (mean) \pm 1.80 (standard deviation)] was significantly larger than that at 0° (0.77 \pm 1.02) and 15° (1.33 \pm 1.01) slopes. For the static kneeling (S), there was no significant difference among the slopes. These results suggested a potentially larger MSD risk at sloped roof surfaces during the dynamic shingle installation compared to the deep flexed static kneeling.


Table 2. Effects of the Factors for the Right Knee

Factors	ANOVA				
	BF	RF	ST	VL	VM
Slope	0.007 (0.4)	0.684 (0.2)	0.776 (0.2)	0.007 (0.4)	<0.001 (0.5)
Posture	<0.001 (0.9)	<0.001 (0.5)	<0.001 (0.7)	<0.001 (0.5)	0.056 (0.3)
Slope*Posture	0.002 (0.4)	0.718 (0.2)	0.015 (0.7)	0.107 (0.5)	.0160 (0.7)

Note: Bold numbers indicate significant p values. Effect sizes are provided in the parenthesis.

Figure 4. Interaction effect of slope and posture on the peak normalized muscle activation of the vastus medialis

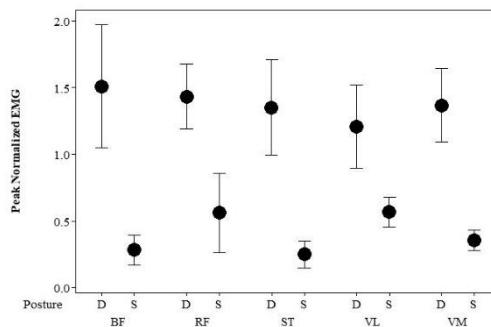


Figure 5. Effect of slope on the peak normalized muscle activation (Left)

Effect of Slope

Statistically significant effect of slope was observed for all muscles except the BF (Table 1). For all muscles except ST, larger muscle activation was observed as roof slope increased. Post hoc analysis suggested that the peak normalized muscle activation of RF muscle at 15° and 30° slopes (1.13 \pm 1.30 and 1.36 \pm 1.90 respectively) were significantly larger than that at 0° slope (0.52 \pm 0.60). For the VL muscles, the peak normalized muscle activation at 30° slope (1.54 \pm 1.80) was significantly larger than that at 0° (0.47 \pm 0.50) and 15° (0.67 \pm 0.40) slopes. For the VM

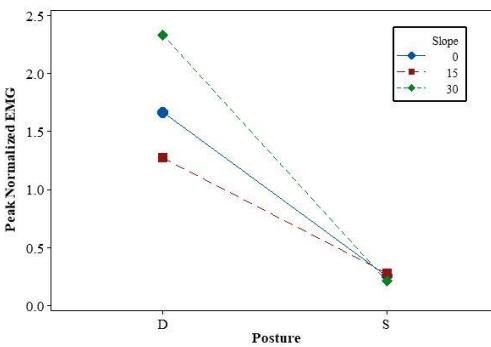
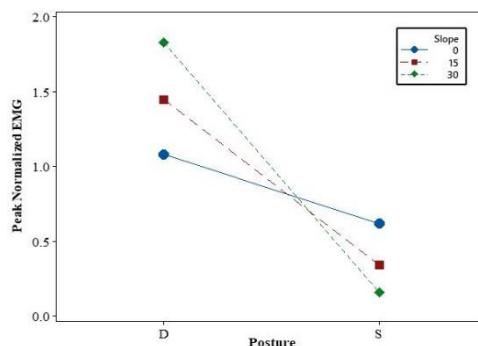

muscle, the peak normalized muscle activation at 30° slope (1.23 ± 1.50) was significantly higher than that at 0° (0.49 ± 0.80) slope. But for the ST muscle, the peak normalized muscle activation at 30° slope (0.53 ± 0.60) was significantly lower than that at 15° slope (1.20 ± 2.10) (Figure 5).

Figure 6. Effect of posture on the peak normalized muscle activation (Left)

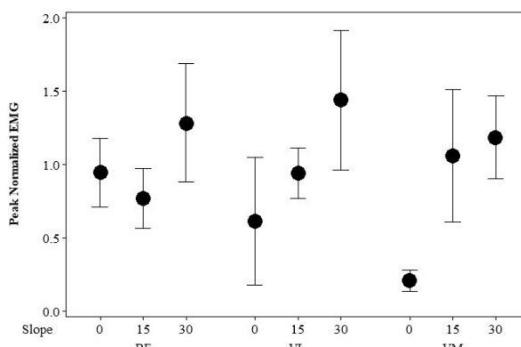
Effect of Posture

Statistically significant effect of posture was observed for all flexor and extensor muscles (Table 1). Post hoc examination revealed that the peak normalized muscle activation of all knee postural muscles was significantly higher in the dynamic kneeling (D) than the static kneeling (S) condition (Figure 6).

Figure 7. Interaction effect of slope and posture on the peak normalized muscle activation of biceps femoris (Right)


Analysis of the right knee

Effect of Slope- Posture Interaction


Statistically significant interaction effect of slope and posture was observed for the BF and ST muscles of the right knee (Table 2). During the dynamic kneeling posture (D), for the BF muscle, the peak normalized muscle activation at 30° slope (2.33 ± 1.80) was significantly larger than that at 0° (1.67 ± 0.85) and 15° (1.28 ± 0.90) slopes (Figure 7). For the ST muscle, the peak normalized muscle activation at 30° slope (1.83 ± 2.50) was significantly larger than that at 0° slope (1.09 ± 0.70) (Figure 8). In general, for all roof slopes, the peak normalized muscle activation was significantly larger in the dynamic kneeling posture (D) than that in the static kneeling (S) for these two muscles.

Effect of Slope

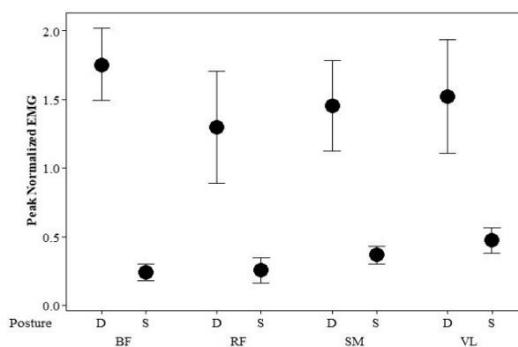

Statistically significant effect of slope was observed for all muscles except the RF and ST muscles (Table 2). In general, as roof slope increased, the peak normalized muscle activation increased. Post hoc analysis revealed that for the BF and VL muscles, the peak normalized muscle activation at 30° slope (BF=1.30±1.60, VL= 1.45±1.90) were significantly larger than at 15° (BF=0.78±0.80) and 0° slopes (VL=0.62±1.80). For the VM muscle, the peak normalized muscle activation at 15° (1.06±1.80) and 30° (1.20±1.10) slopes were significantly larger than at 0° (0.21±0.20) slope (Figure 9).

Figure 8. Interaction effect of slope and posture on the peak normalized muscle activation of semitendinosus (Right)

Figure 9. Effect of slope on peak normalized muscle activation (Right)

Figure 10. Effect of posture on peak normalized muscle activation (Right)

Effect of Posture

Statistically significant effect of posture was observed for all muscles except VM (Table 2).

Post hoc analysis suggested that the peak normalized muscle activation of all knee postural muscles was significantly larger in the dynamic kneeling than in the static kneeling condition (Figure 10).

DISCUSSION

The current study examined the peak activation of the knee flexor and extensor muscles to understand the effect of two residential roofing work-related factors—slope and kneeling posture—as potential risk factors of knee MSD during a kneeling shingle installation task. The experimental results suggested that, roof slope, kneeling posture and their interaction significantly affect the peak activation of knee flexor muscles (Tables 1 and 2). Based on these findings, it is understood that roofers become exposed to potential knee MSD risks when they perform a kneeling shingle installation task on a sloped roof surface. One possible reason might be that, as the roof slope increases, a larger force is needed to raise the body's center of mass for maintaining its balance. Also, due to the repetitive lateral movement of the lower limbs during kneeling shingle installation, the knee joint angle changes frequently. The repetitive change in the joint angle also alters the muscle length and affects the force generation capacity of the muscles (Ha and Han 2017). During the performance of a kneeling sloped shingle installation task, as the roof slope increases, the knee flexion decreases because the participants need to adjust their thighs to incline more towards the rooftop surface. As the knee flexion decreases, the length of the muscles increases (Lieber and Boakes 1988). According to the force-length relationship, when the muscle is stretched or shortened beyond its resting length due to an action of the muscle, the ability to produce the maximum active tension generated in the muscle decreases (Kuriki et al. 2012). This might be the reason of the larger peak muscle activation on a sloped surface during a kneeling shingle installation.

In the static kneeing posture, the participants had negligible movement in the lower limbs. However, in the dynamic kneeing posture, the participants were placing and nailing shingles which involved greater awkward rotation and a large range of motion among the lower limbs. For this reason, the length of the muscles also deviated from the ideal resting length which could affect the force generation capability of the muscle. Thereby the knee muscles would need to recruit more motor units by the means of an increased muscular activation to generate the required amount of force to complete the kneeling shingle installation process. The increased muscle activation can lead to muscle overloading, and the repetitive and cumulative overloading of the muscles can be associated with MSD—such as knee joint degeneration, patellofemoral pain and osteoarthritis—if the knee muscles are not given enough recovery time. Hence, proper interventions need be developed to minimize and possibility prevent the awkward knee rotations and cumulative muscle overloading. Possible solutions might be using knee pads, wearable assist devices and knee savers specifically designed for residential roofers during the performance of sloped shingle installation task. However, further experimental studies are required to determine if the inclusion of these interventions can in fact reduce the awkward knee rotations and cumulative muscle overloading that is commonly associated with knee MSD.

CONCLUSION AND FUTURE WORK

This study assessed the effects of roof slope and kneeling posture as potential risk factors of knee MSD development among residential roofers during a kneeling shingle installation task. From the experimental kneeling shingle installation tasks performed in a laboratory setting, the peak normalized muscle activation of ten knee postural muscles were collected and analyzed as

risk indicators. Overall, this study confirmed that the potential knee MSD risk of awkward postures and repetitive motions encountered during residential roofing do indeed increase knee postural muscular demand compared to a level surface. The awkward knee rotations involved in the dynamic kneeling on a sloped surface influence the muscle length which alters the ability to generate the required muscle force to complete the task. The change in the length of the knee muscles due to the extreme posture incites a larger muscle activation, which may cause knee MSD. The findings provided useful information to understand the knee MSD risk in kneeling sloped shingle installation roofing task, which can be helpful to promote interventions for preventing knee MSD among roofers. By statistically measuring the knee muscles exposures to roofing work-related risk factors, this study will also contribute to developing biomechanical models for risk analysis of knee joint. Future work will explore the effect of slope and kneeling posture on the combined activation of all knee postural muscles that will facilitate in-depth understanding of the knee MSD risk. Interventions (knee pad, assistive device) will be tested in a real construction site with the participation of real roofers of a large sample size.

DISCLAIMER

The findings and conclusions in this paper are those of the authors and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention.

REFERENCES

Albers, J., and Estill, C. F. (2007). "Simple solutions; ergonomics for construction workers." *The National Institute for Occupational Safety and Health (NIOSH)*.

Andriacchi, T. P., and Favre, J. (2014). "The nature of in vivo mechanical signals that influence cartilage health and progression to knee osteoarthritis." *Current rheumatology reports*, 16(11), 463.

Choi, S., and Fredericks, T. (2008). "Surface slope effects on shingling frequency and postural balance in a simulated roofing task." *Ergonomics*, 51(3), 330-344.

Freund, J., Rudolf, Mohr, L., Donna, and Wilson, J., William (2010). "Statistical Methods, 3rd edition." ELSEVIER.

Ha, M., and Han, D. (2017). "The relationship between knee joint angle and knee flexor and extensor muscle strength." *Journal of physical therapy science*, 29(4), 662-664.

Hofer, J. K., Gejo, R., McGarry, M. H., and Lee, T. Q. (2011). "Effects on tibiofemoral biomechanics from kneeling." *Clinical Biomechanics*, 26(6), 605-611.

Jebelli, H., and Lee, S. (2019). "Feasibility of Wearable Electromyography (EMG) to Assess Construction Workers' Muscle Fatigue." *Advances in Informatics and Computing in Civil and Construction Engineering*, Springer, 181-187.

Kaushik, V., and Charpe, N. A. (2008). "Effect of body posture on stress experienced by worker." *Studies on Home and Community Science*, 2(1), 1-5.

Kingston, D. C., Tennant, L. M., Chong, H. C., and Acker, S. M. (2016). "Peak activation of lower limb musculature during high flexion kneeling and transitional movements." *Ergonomics*, 59(9), 1215-1223.

Kuriki, H. U., De Azevedo, F. M., Takahashi, L. S. O., Mello, E. M., de Faria Negrão Filho, R., and Alves, N. (2012). "The relationship between electromyography and muscle force." *EMG Methods for evaluating muscle and nerve function*, Intechopen.

Lee, W., Lin, K.-Y., Seto, E., and Migliaccio, G. C. (2017). "Wearable sensors for monitoring

on-duty and off-duty worker physiological status and activities in construction." *Automation in Construction*, 83, 341-353.

Lieber, R. L., and Boakes, J. L. (1988). "Sarcomere length and joint kinematics during torque production in frog hindlimb." *American Journal of Physiology-Cell Physiology*, 254(6), C759-C768.

National Contractors, I., (NCINC). (2019). "<http://www.nationalcontractors.net/specialty-services-roof-low-slope.html>." (7/8/2019).

OSHA (2019). "(Occupational Safety and Health Administration), (<https://www.osha.gov/SLTC/ergonomics/training.html>).)" (7/8/2019).

Wang, D., Dai, F., Ning, X., Dong, R. G., and Wu, J. Z. (2017). "Assessing Work-Related Risk Factors on Low Back Disorders among Roofing Workers." *Journal of Construction Engineering and Management*, 143(7), 04017026.

Washington DOL & I (2018). "Rates for Worker's Compensation: 2018 base rates by business type and classification code." [<http://www.lni.wa.gov/ClaimsIns/Files/Rates/2018RatesBusTypeClassCode.pdf>](http://www.lni.wa.gov/ClaimsIns/Files/Rates/2018RatesBusTypeClassCode.pdf). (7/10/2019)

CONSTRUCTION RESEARCH CONGRESS 2020

Safety, Workforce, and Education

SELECTED PAPERS FROM THE CONSTRUCTION
RESEARCH CONGRESS 2020

March 8–10, 2020
Tempe, Arizona

SPONSORED BY

Arizona State University
Construction Research Council
Construction Institute of the
American Society of Civil Engineers

EDITED BY

Mounir El Asmar, Ph.D.
David Grau, Ph.D.
Pingbo Tang, Ph.D.

Published by the American Society of Civil Engineers

Published by American Society of Civil Engineers
1801 Alexander Bell Drive
Reston, Virginia, 20191-4382
www.asce.org/publications | ascelibrary.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. The information contained in these materials should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing such information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be requested by sending an e-mail to permissions@asce.org or by locating a title in ASCE's Civil Engineering Database (<http://cedb.asce.org>) or ASCE Library (<http://ascelibrary.org>) and using the "Permissions" link.

Errata: Errata, if any, can be found at <https://doi.org/10.1061/9780784482872>

Copyright © 2020 by the American Society of Civil Engineers.
All Rights Reserved.

ISBN 978-0-7844-8287-2 (PDF)

Manufactured in the United States of America.

Preface

The Construction Research Congress (CRC) 2020 Organizing Committee, Arizona State University (ASU), the Construction Research Council, and the Construction Institute of the American Society of Civil Engineers (ASCE) are all pleased to present the CRC 2020 Proceedings. CRC is one of the prime international conferences in the area of construction engineering and management; it is held every two years, providing one university the privilege to serve and host our peers from around the globe to facilitate an interactive exchange of ideas and research findings. CRC 2020 was hosted by Arizona State University (ASU) and its Del E. Webb School of Construction, in Tempe, Arizona, on March 8-10, 2020. Tempe is in the Phoenix metropolitan area, the fifth most populous city in the United States. It is home to the flagship campus of ASU, the nation's largest university by enrolment.

The theme for this conference is "*Construction Research and Innovation to Transform Society.*" As the built environment, including civil, industrial, building, and cyber infrastructure, evolves to support sustainable and resilient communities of the future, the construction industry will need to evolve. New infrastructure system developments are already transforming society in terms of safety, health, economics, and quality of life. A global network of construction stakeholders gathered at this event to share the state-of-the-art in research and practice for tackling the challenges of the 21st-century construction industry. This premier conference also provided an opportunity to inspire the next generation of construction leaders, emphasizing an interdisciplinary approach to research and innovation.

The Conference Proceedings contain a record number of 481 peer-reviewed technical papers, which stemmed from almost 900 abstract submissions. All submissions went through a two-step review process with a minimum of two external reviewers per paper, by a scientific committee of more than 500 international construction experts. The work

was presented at the conference in a variety of formats including short talks and posters. The resulting proceedings are divided into four volumes according to the following areas:

- Volume 1: Infrastructure Systems and Sustainability (101 papers)
- Volume 2: Computer Applications in Construction (143 papers)
- Volume 3: Safety, Workforce, and Education (90 papers)
- Volume 4: Project Management and Controls, Materials, and Contracts (147 papers)

On behalf of the Organizing Committee, ASU, the Construction Research Council and the ASCE Construction Institute, I hope you enjoy these CRC 2020 proceedings documenting our intellectually-stimulating conference.

Mounir El Asmar, Ph.D.
Conference Chair
Arizona State University

Acknowledgments

The editors would like to thank and recognize each and every person who volunteered their time, effort, and expertise to make CRC 2020 a successful conference. CRC 2020 could not have happened without the leadership and support of the following individuals:

Conference Chair:

Mounir El Asmar, Arizona State University

Conference Co-Chairs:

Samuel Ariaratnam, Arizona State University
Anthony Lamanna, Arizona State University

Technical Committee Co-Chairs:

Pingbo Tang, Arizona State University
David Grau, Arizona State University

Social Program Co-Chairs:

Kristen Parrish, Arizona State University
Wanda Dalla Costa, Arizona State University

Communications and Logistics Chair:

Steven Ayer, Arizona State University

Pre-Conference Activities Chair:

G. Edward Gibson, Jr., Arizona State University

Student Activities Co-Chairs:

Namho Cho, Arizona State University
Zhe Sun, Arizona State University

Track Chairs:

Construction Scheduling, Estimating, Economics, and Controls

Mani Golparvar-Fard, University of Illinois at Urbana-Champaign
Gunnar Lucko, Catholic University of America
Wes Collins, Auburn University

Project and Organizational Management and Planning

Cristina Torres-Machi, University of Colorado Boulder
Timo Hartmann, Technische Universität Berlin
Tariq Sami Abdelhamid, Michigan State University

Infrastructure Systems and Sustainability

Kasey M. Faust, The University of Texas at Austin
Kalyan R. Piratla, Clemson University
Elie Azar, Khalifa University

Construction Education

Sinem Mollaoglu, Michigan State University
 Yong Bai, Marquette University
 Tripp Shealy, Virginia Polytechnic Institute and State University

Health, Safety, and Workforce Issues

Ken-Yu Lin, University of Washington
 Jun Ahn, University of South Australia
 Alex Albert, North Carolina State University
 Zia Ud Din, University of Houston

Track: Contracting, Project Delivery, and Legal Issues

Christofer Harper, Colorado State University
 Islam H. El-adaway, Missouri University of Science and Technology
 Giovanni Migliaccio, University of Washington

Engineering and Materials Design, Quality, and Value Management

Ellie Fini, Arizona State University
 Jorge Rueda-Benavides, Auburn University
 Issam Sourour, American University of Beirut

Computer Applications and Simulation, Advanced Technologies, and Data Analytics

Javier Irizarry, Georgia Institute of Technology
 H. David Jeong, Texas A&M University
 Yongcheol Lee, Louisiana State University
 Robert Le, Clemson University
 Sungjin Kim, University of Alabama
 Hubu Cai, Purdue University

ASU Staff, School of Sustainable Engineering and the Built Environment:

Lisa Hogle	Susan Garrison	Judy Reedy
Simon Roberts	Barbara Weeman	Meg Pratt
Alan Short	Kayla Vestal	Melanie Ford Bishop
Matthew Eicher	Michael Sever	Jennifer Jones
Elizabeth Dover	Alicia Stiers	

Graduate Student Volunteers:

Abdullatif Abdallah	Rita Kassis	Alireza Samieadel
Khaled Aldossari	Bala Sai Krishna Paladugu	Verena Schneider
Vartenie Aramali	Niti Patadia	Ying Shi
Lucien El Asmar	Karan Patil	Kieren Smith
Jeffrey Feghaly	Vizard Patrick	Yanyu Wang
Hamdi Hamad	Tiyasa Ray	Jinding Xing
Salwan Jaafer		

Technical Committee Members:

Abbas Rashidi	Hashem Izadi Moud	Pinghe Sun
Abdullah Alsharef	Hesham Osman	Piyush Pradhananga
Abdullah Kaya	Hexu Liu	Pouria Haji

Abid Hasan	Hiam Khoury	Pouria Hajikarimi
Adel Francis	Hirushie Karunathilake	Qian Huang
Adi Smadi	Hongjo Kim	Qingchun Li
Ahmad Momeni	Hongping Yuan	Qiuchen Lu
Ahmed Abdel Aziz	Hongtao Dang	Rachael Sherman
Ahmed Abdelaty	Hossein Nasrazadani	Raed Jarrah
Ahmed Senouci	Houtan Jebelli	Rafiq Choudhry
Albert Thomas	Huakang Liang	Rahimi A. Rahman
Aleksejs Prozuments	Huaquan Ying	Ralph Tayeh
Alfonso Bastias	Hubo Cai	Ran Ren
Ali A. Karakhan	Hung-Lin Chi	Rayan Assaad
Ali Lahouti	Hussein Kassem	Reza Akhavian
Ali Touran	Hyun Woo Lee	Ricardo Eiris Pereira
Alireza Adibfar	Ibukun Awolusi	Ricardo Eris
Alireza Borhani	Idris Jeelani	Rita Awwad
Alireza Samieadel	Ifeanyi Okpala	Robert Amor
Alireza Shojaei	J M Taylor	Robert Leicht
Amal Bakchan	Jake Smithwick	Romana Markovic
Amirali Shalwani	Jamil Uddin	Roy Sturgill
Amirhosein Jafari	Jason Hailer	Rui Liu
Amirul Islam	Jason Lucas	Ruichuan Zhang
Amr Elsayegh	Jee Woong Park	Runhe Zhu
Amy Javernick-Will	Jeff Kim	S M Jamil Uddin
Anandh K S	Jeffrey Feghaly	Sadra Fardhosseini
Anatolijs Borodinecs	Jennifer Lather	Saeed Rokooei
Andrei Sleptchenko	Jessica Kaminsky	Sagata Bhawani
Andrew Hayes	Jiansong Zhang	Sajed Sadati
Andrew Tracy	Jia-Rui Lin	Sakib Khan
Angelo Garcia	Jiawei Chen	Salam Khalife
Anh Chau	Jin Ouk Choi	Saleh Abu Dabous
Anisha Deria	Jin Zhu	Salman Azhar
Anthony Perrenoud	Jing Du	Salwa Beheiry
Anthony Sparkling	Jing Wen	Samaneh Zolfagharian
Anusree Saseendran	Jingwen Wang	Samar Younes
Arash Karimzadeh	Jochen Teizer	Sandeep Langar
Arash Taghinezhad	John Armstrong	Sanguk Han
Arash Taghinezhadbilandi	John Cribbs	Selorm Emmanuel Adukpo
Arezou Sadoughi	John Gambatese	Sepehr Alizadehsalehi
Arif Mohaimin Sadri	John Sobanjo	Sepehr Sabeti
Armin Rahimi-Golkhandan	Joonoh Seo	Seyed Ehsan Zahed

Arthur Antoine	Joseph Louis	Shangjia Dong
Ashish Asutosh	Joseph Shrestha	Shantanu Kumar
Atefeh Mohammadpour	Jun Wang	Shanyue Guan
Babak Memarian	Justin K.W. Yeoh	Sharareh Kermanshachi
Baiherula Abula	Juyeong Choi	Sheng Xu
Bala Sai Krishna Paladugu	K Prasanna	Sherif Mostafa
Baris Salman	Kaijian Liu	Shilong Ge
Behzad Esmaeili	Kanghyeok Yang	Shuai Li
Behzad Rouhanizadeh	Kasim Alomari	Shuang Dong
Benjamin Bowers	Katherine Madson	Shuangliang Tai
Bharadwaj Mantha	Ke Chen	Shuoqi Wang
Bilal Ayub	Kenneth Sands	Siddharth Banerjee
Bing Han	Kereshmeh Afsari	Siddharth Bhandari
Bingsheng Liu	Kevin Han	Sivakumar Palaniappan
Bon-Gang Hwang	Khalid Osman	Siyuan Song
Borja Garcia de Soto	Khang Dang	Sogand Hasanzadeh
Brian Guo	Khashayar Asadi	Somik Ghosh
Brian Lines	Khawaja Mateen Mazher	Soowon Chang
Brooke Baugher	Kishor Shrestha	Sreeganesh Reddy Yerri
Bryan Franz	Krishna Kisi	Sungjoon Suk
Carolina Recart	Kristal Metro	Susan Bogus
Caroline Clevenger	Kristen Cetin	Taewoo Ko
Casie Venable	Kristen Parrish	Tao Zhou
Changquan He	Kyungki Kim	Tarek Hegazy
Chao Xiao	Laura Montalbán-Domingo	Tariq Umar
Chau Le	Lauren Redden	Tatiana García-Segura
Cheng Zhang	Lauryn Spearing	Ting Wang
Chenxi Yuan	Lei Hou	Ting-Kwei Wang
Chi Tian	Liang Wang	Tiyasa Ray
Chris Cox	Linlin Xie	Tom Leathem
Christopher Rausch	Liu Jiang	Ulises Techera
Chukwuma Nnaji	Liyaning Tang	Vahid Balali
Chuma Nnaji	Lizhen Huang	Vamsi Sai Kalasapudi
Clifton Farnsworth	Long Chen	Velmurugan Ashokkumar
Cristina Perez	Lu Zhang	Vivien Luo
Cristina Poleacovschi	Lucien El Asmar	Wael Alruqi
Da Hu	Lufan Wang	Weiwei Chen
Da Li	M. Ammar Alzarrad	Wenda Nofera
Dan Chong	M. Scott Stanford	Wensheng Lin
Daniel Oldham	Mahshad Kazem-Zadeh	Wenxin Shen

Daniel Paes	Makram Bou Hatoum	Wenying Ji
Deng Milan	Malak Al-Hattab	Wesley Donald
Devendra Patel	Malak Hattab	Wilfredo Torres Calderon
Dezhi Li	Maria Calahorra	William O'Brien
Ding Liu	Marjan Sadeghi	Wonil Lee
Don Schafer	Mary Semaan	Xi Wang
Dong Zhao	Masoud Gheisari	Xiang Xie
Dongping Cao	Mathew Stanford	Xiaodong Yang
Dulcy Abraham	Mazdak Nik-Bakht	Xiaomei Deng
Durva Gupta	Mehdi Zadshir	Xiaowei Luo
Dylan Hardison	Mehrdad Arashpour	Xiaoxiang Xue
Ebrahim Eldamnhoury	Meiqing Fu	Xiaoxiao Xu
Ebrahim Karan	Meltem Duva	Xiaozhi Ma
Edward Jaselskis	Michael Perez	Xin Xu
Elnaz Safapour	Michele Herrmann	Xinghua Gao
Emerson A. M. Ferreira	Mike Kagioglou	Xingzhou Guo
Endong Wang	Mike Lanotte	Xinran Yu
Eric Wetzel	Milad Afzalan	Xinyi Song
Esra Trepçi	Milagros Pinto	Xuan Hu
Estacio Pereira	Min Lin	Xuan Li
Eugenio Pellicer	Mingqiang Liu	Xuan Lv
Eunhwa Yang	Minjae Shin	Yang Zou
Eva Agapaki	Moatassem Abdallah	Yangming Shi
Evan Bingham	Mohamad Hajj Hassan	Yanyu Wang
F. Jordan Srour	Mohamad Razkenari	Yelda Turkan
Fadi Castronovo	Mohamed Abdul Nabi	Yeritza Perez
Fahad Ul Hassan	Mohamed Eid	Yi Jiang
Faisal Kabir	Mohamed Elzomor	Yifeng Tian
Faizan Shafique	Mohamed Ouf	Yilong Han
Fan Zhang	Mohamed-Asem AbdulMalak	Ying Hong
Fangzheng Lin	Mohammad Ilbeigi	Yitong Li
Farah Demachkieh	Mohammad Raoufi	Yongtao Tan
Farnaz Khaghani	Mohammad Sadra Fardhosseini	Yongwei Shan
Farook Hamzeh	Mohammadreza Daneshvar	Younghan Jung
Faxi Yuan	Mohammadsoroush Tafazzoli	Youngjib Ham
Fei Dai	Mohammed Mehany	Yuan Chen
Fei Han	Mohsen Foroughi Sabzevar	Yuanxin Zhang
Fei Ying	Mohsen Goodarzi	Yudi Chen
Felipe Araya	Mohsen Hatami	Yue Teng
Fernanda Leite	Mojtaba Noghabaei	Yulong Li

Fopefoluwa Bademosi	Morteza Nazari-Heris	Yunping Liang
Francisco Villena Manzanares	Mostafa Batouli	Yuqing Hu
Frank Boukamp	Mostafa Namian	Zamaan Al-Shabbani
Frederick Paige	Mounir El Asmar	Zhe Sun
Gabriel Dadi	Mu'awiya Abubakar	Zhen Lei
Gary Moynihan	Nai-Wen Chi	Zheng Yang
Gasser Ali	Namgyun Kim	Zhengbo Zou
Ge Ou	Namho Cho	Zhenyu Zhang
George Berghorn	Nan Li	Zhili Gao
George Saad	Nanda Rios	Zhiyang Lin
Ghada Gad	Nawari O. Nawari	Zhongming Xiang
Ghassan Chehab	Nicholas Tymvios	Zhujing Zhang
Glenda Mayo	Nima Gerami Seresht	Zhuoya Shi
Glenn Ballard	Ning Wang	
Guijun Li	Nipesh Pradhananga	
Guillermo Mejía	Nipun Nath	
Hainan Chen	Novi Bramono	
Haiyan Xie	Ola Alsaffar	
Hala Nassereddine	Olugbenro Ogunrinde	
Hamed Alikhani	Pan Lu	
Hamed Farahmand	Pedram Ghannad	
Hamid Abdirad	Pejman Rezakhani	
Han Luo	Phuong Nguyen	
Hanliang Fu	Pin-Chao Liao	
Hariharan Naganathan	Pingbo Tang	
Harshit Shukla	Yihai Fang	

Contents

Health, Safety, and Workforce Issues

Safety in Facility Management: The Project Is Closed Out—Now What?	1
Nicholas Tymvios, Glenda Mayo, and Jake Smithwick	
Construction Workers' Long Term Health Impacts among Different Trades.....	11
Ding Liu, Ziyu Jin, and John Gambatese	
How to Improve Workforce Development and Sustainability in Construction.....	21
Ali A. Karakhan, John Gambatese, Denise R. Simmons, and Chukwuma Nnaji	
Construction Workers' Safety Behavior: A Path through Safety Leadership	31
Yunfeng Liu, Xueqing Wang, Xing Liu, and Xiaowei Shi	
Identification of Construction Safety Risks Based on Text Mining and LIBSVM Method.....	40
Yuqing Xu, Guangbin Wang, Chen Xia, and Dongping Cao	
Understanding the Influence of Perceived Productivity Pressures on Perceptions of Risk among Construction Workers.....	49
Wael M. Alruqi and Siddharth Bhandari	
Construction Hazard Recognition: Themes in Scientific Research	58
Siddharth Bhandari, Alex Albert, and Matthew R. Hallowell	
Enhancing Deep Neural Network-Based Trajectory Prediction: Fine-Tuning and Inherent Movement-Driven Post-Processing	67
Daeho Kim, Houtan Jebelli, SangHyun Lee, and Vineet R. Kamat	
An Interactive Simulation Approach for an Ergonomic-Driven Workplace Design in Off-Site Construction Facilities	76
Ahmed Zaalouk and SangHyeok Han	
Monitoring Fatigue in Construction Workers Using Wearable Sensors	86
Surya Anuradha Garimella, Ahmed Senouci, and Kyungki Kim	
Overcoming Physical Obstacles with Four-Wheeled Hand Carts: An Evidence-Based Ergonomics Guideline for the Commercial Roofing Trade.....	95
Zhenyu Zhang and Ken-Yu Lin	
Evaluating the Effectiveness of Worker Safety Vests on Drivers' Visual Attention.....	105
Dylan Hardison, Anne Dickerson, Brian Sylcott, and Kong Lee	

Pre-Service Fatigue Screening for Construction Labor through Hybrid Kinematic-EEG Signal Processing and Workload Assessments	114
Jiayu Chen, Xiaowei Luo, and Heng Li	
Wearable Tactile System for Improved Hazard Perception in Construction Sites	120
Sayan Sakhakarmi and JeeWoong Park	
Electromyography Signal Analysis of Knee Flexor and Extensor Muscles in Potential Knee Musculoskeletal Disorders during Roofing.....	129
Amrita Dutta, Scott P. Breloff, Fei Dai, Erik W. Sinsel, Christopher M. Warren, Robert E. Carey, and John Z. Wu	
Multi-Level Assessment of Occupational Stress in the Field Using a Wearable EEG Headset	140
Houtan Jebelli, Mahmoud Habibnezhad, Mohammad Mahdi Khalili, Mohammad Sadra Fardhosseini, and Sanghyun Lee	
C-Suite Gender Composition in the Engineering and Construction Industry.....	149
Paul J. Hickey and Qingbin Cui	
A Methodology for Analyzing Information Needs in Construction	157
Qingting Xiang, Xiaowei Luo, Gui Ye, Xiaoli Gong, and Jinjing Ke	
Advancing Best Practices for Safety in Residential Construction.....	165
Jason Lucas, Dennis Bausman, Marchell Magxaka, and Tanin Haidary	
Critical Literature Review on the Diversity and Inclusion of Women and Ethnic Minorities in Construction and Civil Engineering Industry and Education	175
Saba Nikkhah Manesh, Jin Ouk Choi, and Pramen Shrestha	
Identification of Safety Hazards Using Wearable EEG.....	185
JungHo Jeon, Hubo Cai, Denny Yu, and Xin Xu	
Spatiotemporal Characteristics and Behavioral Factors of Fatal Construction Accidents in China, 2012–2018	195
Changquan He, Guangshe Jia, Hongjun Zhang, and Kanran Ding	
Role of Safety Stressors on Proactive and Prosocial Safety Behaviors	204
Lipeng Fu, Xueqing Wang, Dan Wang, and Yadong Zhao	
Evaluating the Effectiveness of Toolbox Talks on Safety Awareness among Highway Maintenance Crews	213
Zamaan Al-Shabbani, Roy Sturgill, and Gabriel Dadi	
Persistence of Women in the Construction Industry	222
Amy King Lewis and Yongwei Shan	

Research into the Psychosocial Safety Climate of Engineering Construction Projects	231
Linlin Xie, Guixin Lin, Carol Hon, Bo Xia, and Martin Skitmore	
Commute and Labour Productivity: Inner City Construction Sites.....	239
Daniel Alejandro Chaparro and Fei Ying	
Influence of Critical Variables on Prefrontal Cortex Activity in Hazard Search	250
Qing-Wen Zhang and Pin-Chao Liao	
Owners' Safety Management Behaviors in Construction.....	258
Linyao Ma, Peiyao Zhang, Nan Li, and Dongping Fang	
Identifying the Factors Influencing Hazard Recognition Capability of Construction Workers	268
Mu'awiya Abubakar, Yahaya Makarfi Ibrahim, Kabir Bala, Ahmed Doko Ibrahim, and Muhammad Abdullahi	
Work-Related Fatalities Analysis through Energy Source Recognition	279
Siyuan Song, Ibukun Awolusi, and Zhehan Jiang	
Relationships among Dimensions of Human Factors Climate in Construction.....	289
Katie S. Welfare and Matthew R. Hallowell	
Challenges to Workforce Resiliency in Rural Communities: An Analysis of State Departments of Transportation in U.S. District 6	299
Kristal Metro, Susan M. Bogus, and Christofer Harper	
Impact of Worker Fatigue on Hazard Recognition Skills	306
Ulises Techera, Siddharth Bhandari, Matthew Hallowell, and Ray Littlejohn	
Using Qualitative Methods to Understand Risk-Reward Balance and Its Impact on Safety Risk Taking by Construction Workers	315
Mohammed Azeez and John Gambatese	
Diversity and Inclusion of Business Enterprises: A Comparative Analysis of Programs Used by Disadvantaged Business Enterprises	326
Hongtao Dang and Jennifer Shane	
Assessing Worker Health and Well-Being in Construction: Case of Seattle	336
Nihar Trivedi, Maitreyi Yellapragada, and Ken-Yu Lin	
Comparison of Safety Cultures and Performances between the Construction Industries in the United States and Canada: A Case Study of Texas and Ontario	346
Linzhuo Wei, Ruifang Yang, Yuting Chen, Arash Shahi, Mahdi Safa, Awad Hanna, and Brenda McCabe	

Emotional Labor and Job Burnout of the Construction Project Managers: The Mediating Effect of Work-to-Family Conflict	356
Yingying Yao and Lianying Zhang	
Perspectives of Contractors and Insurance Companies on Construction Safety Practices: Case of a Middle Eastern Developing Country.....	366
Makram Bou Hatoum, Farook Hamzeh, and Hiam Khoury	
Exploring the Association among Dimensions of Safety Climate and Learning Organization Climate.....	375
Henrietta Baker, Simon Smith, Matthew Hallowell, and David Oswald	
Towards Point Cloud and Model-Based Urban Façade Inspection: Challenges in the Urban Façade Inspection Process	385
Zhuoya Shi and Semih Ergan	
Improving Safety Performance in Construction Using Eye-Tracking, Visual Data Analytics, and Virtual Reality	395
Idris Jeelani, Alex Albert, and Kevin Han	
Application of Virtual Reality to Perform Ergonomic Risk Assessment in Industrialized Construction: Experiment Design	405
Regina Dias Barkokebas, Chelsea Ritter, Xinming Li, and Mohamed Al-Hussein	
Assessing the Potential Health Hazards of Workers of Demolition Sector	414
D. J. Patel and D. A. Patel	
How May Risk Tolerance, Cognitive Appraisal, and Outcome Expectancy Motivate Risk-Taking Behavior? The Implication of Risk Compensation through Multi-Sensor Mixed-Reality System.....	424
Sogand Hasanzadeh and Jesus M. De La Garza	
Factors Contributing Building Reconstruction and Renovation Challenges: A Case Study after April 2015 Gorkha Earthquake.....	434
Krishna P. Kisi, Rujan Kayastha, Nipesh Pradhananga, Joseph Shrestha, and Dibangar Khoteja	
Tackling Weaknesses in the Implementation of Construction Safety Management Practices.....	443
Bhavana Pandit, Yashwardhan Patil, and Alex Albert	
Recognition of Construction Workers' Physical Fatigue Based on Gait Patterns Driven from Three-Axis Accelerometer Embedded in a Smartphone.....	453
Mohammad Sadra Fardhosseini, Mahmoud Habibnezhad, Houtan Jebelli, Giovanni Migliaccio, Hyun Woo Lee, and Jay Puckett	

Improving for Construction Safety Design: Ontology Model of a Knowledge System for the Prevention of Falls.....	463
Hyunsoung Park and Rui Liu	
Exploring the Relationship between Mindfulness and Personality to Improve Construction Safety and Work Performance.....	472
Tomay Solomon and Behzad Esmaeili	
Understanding the Role of Social Influence on Construction Safety Using an Ego-Centric Network Approach.....	481
Shraddha Shrestha, Nipesh Pradhananga, and Arif Mohaimin Sadri	
Leveraging Accident Investigation Reports as Leading Indicators of Construction Safety Using Text Classification	490
Shraddha Shrestha, Syed Ahnaf Morshed, Nipesh Pradhananga, and Xuan Lv	
Working-Memory Load as a Factor Determining the Safety Performance of Construction Workers	499
Gentian Liko, Behzad Esmaeili, Sogand Hasanzadeh, Michael D. Dodd, and Rebecca Brock	
The Role of Work Experience on Hazard Identification: Assessing the Mediating Effect of Inattention under Fall-Hazard Conditions	509
Olugbemi Aroke, Behzad Esmaeili, Sogand Hasanzadeh, Michael D. Dodd, and Rebecca Brock	
Health and Safety Issues in Post-Disaster Waste Management: A Case Study in Nepal.....	520
Gabriella Santi Kasabdj, Piyush Pradhananga, and Mohamed Elzomor	
Construction Workforce Challenges and Solutions: A National Study of the Roofing Sector in the United States	529
Hasini Hiranya Delvinne, Kristen Hurtado, Jake Smithwick, Brian Lines, and Kenneth Sullivan	
Awareness Regarding Risks of Drugs and Substance Abuse among Construction Workers	538
Anisha Deria and Yong-Cheol Lee	
Construction Safety Training: Barriers, Challenges, and Opportunities	547
Abdullah Alsharef, Alex Albert, Edward Jaselskis, and Siddharth Bhandari	
Construction Worker Posture Estimation Using OpenPose.....	556
Aanuoluwapo Ojelade and Frederick Paige	
Virtual Reality Postural Training for Construction	565
Aanuoluwapo Ojelade and Frederick Paige	

The Pedagogical Value of Virtual Reality Training for Electrical Workers on Energy Storage and Microgrid Systems.....	574
Xiaohui Wang and John I. Messner	

Role of Safety Attitude: Impact on Hazard Recognition and Safety Risk Perception.....	583
Davood Kashmiri, Farshid Taherpour, Mostafa Namian, and Ebrahim Ghiasvand	

Safety Performance of a Fatigued Construction Worker	591
Farshid Taherpour, Davood Kashmiri, Mostafa Namian, and Ebrahim Ghiasvand	

Exploring the Relationship between Visual Search Patterns and Hazard Recognition Abilities	599
Qingwen Xu and Pin-Chao Liao	

Evaluation of Air Pollutants in Nonroad Diesel Construction Equipment Cabs.....	608
Phil Lewis and Sherif El Khouly	

Incident-Induced Congestion and Truck Diversion Strategies Evaluation: State-of-the-Art and Future Challenges.....	616
Samar Younes, Amirsaman Mahdavian, Haluk Laman, and Amr Oloufa	

Construction Education

Using Field of View and Eye Tracking for Feedback Generation in an Augmented Virtuality Safety Training.....	625
Samed Bükrü, Mario Wolf, Olga Golovina, and Jochen Teizer	

The Typical and Ideal Engineer, as Seen by Our Students	633
Giovanna Scalone, Ken Yasuhara, Regina Y. Lee, Cristina Poleacovschi, and Jessica Kaminsky	

Cyclical Construction Workforce Shortage: An Evaluation of the Current Shortage in Western North Carolina	643
Ahmed Jalil Al-Bayati, Mohammadsoroush Tafazzoli, David D. York, and Tariq Umar	

Capstone Course Design in Construction Management	651
Yupeng Luo and Brad A. Hyatt	

Analyzing Citation Metrics in Civil Engineering with Focus on Construction Engineering and Management.....	660
Islam H. El-Adaway, Gasser G. Ali, Rayan Assaad, Amr Elsayegh, and Ibrahim S. Abotaleb	

International Service Learning for Engineering and Construction Engineering and Management Education.....	669
Anthony D. Songer and Karen R. Breitkreuz	

Measuring Impact of a Construction Industry Lecture Series.....	678
Evan Bingham, Justin Weidman, and James Smith	
Assessing the Need for Infrastructure Education within Construction Related Curriculum.....	688
Clifton B. Farnsworth, Mohammed Hashem Mehany, and Evan Bingham	
Construction Management and Engineering Technology Students' Career Resiliency and the Role of Self-Efficacy	697
Anthony E. Sparkling and Anne M. Lucietto	
Students' Time Perceptions on Mastering Construction Content in Different Educational Models.....	708
Saeed Rokooei, Krishna Kisi, and Alireza Shojaei	
Influencing Factors on Recruitment and Retention of Women in Construction Education: A Literature Review.....	717
Amy King Lewis and Yongwei Shan	
Standardized Test Scores as an Indicator of Success for Problem-Based Learning	726
Michele Herrmann	
An Automated Grading Method for Activity-on-Node Calculations to Support Construction Management Education.....	733
Ran Ren, Jiansong Zhang, and Yunfeng Chen	
Prioritizing Operational Considerations of Crane Operator Training for Modular Integrated Construction.....	743
Qianru Du, Hung Lin Chi, Xiao Li, and Geoffrey Q. P. Shen	
The Effectiveness of Engineering Workshops on Attracting Hispanic Female Students to Construction Career Paths	753
Elnaz Safapour and Sharareh Kermanshachi	
Piloting Interdisciplinary Learning Measurement for Sustainable Built Environments	763
Sinem Mollaoglu, Suk-Kyung Kim, Jun-Hyun Kim, Eva Kassens-Noor, and Rabia Faizan	
Hiring Native American Faculty in Engineering and Construction: Challenges from an Institutional Perspective	773
Fernanda Cruz Rios, Mounir El Asmar, David Grau, and Kristen Parrish	
A Review of Virtual Field Trip Applications in Construction Education.....	782
Jing Wen and Masoud Gheisari	
Exploratory Analysis on Students' Valued Skills in the Construction Industry	791
Lucien El Asmar, Anthony Lamanna, and Matthew Eicher	

Information Systems Curriculum for Construction Management Education.....	800
Ralph Tayeh, Fopefoluwa Bademosi, and Raja R. A. Issa	
Investigation of the Barriers and Their Overcoming Solutions to Women's Involvement in the U.S. Construction Industry	810
Maikweyana Tapia, Elnaz Safapour, Sharareh Kermanshachi, and Reza Akhavian	
What Does a Construction Manager Look Like? Perceptions of Hispanic High School Students and Parents.....	819
Anusree Saseendran, Mohammadreza Ostadalimakhmalbaf, Edelmiro Escamilla, Mohammad Abdulsalam Alsofiani, Ibukun Awolusi, John Nichols, Donna Farland-Smith, and Aditya Agrawal	
Enhancing Virtual Site Visits via Bi-Directional Coordination between Construction Sites and Classrooms	829
Johnson Olayiwola, Abiola Akanmu, and Zahra Moghimi	