
Graduate Theses, Dissertations, and Problem Reports 

2007 

Aerosol generation and entrainment model for cough simulations Aerosol generation and entrainment model for cough simulations 

Cem Ersahin 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Ersahin, Cem, "Aerosol generation and entrainment model for cough simulations" (2007). Graduate 
Theses, Dissertations, and Problem Reports. 2765. 
https://researchrepository.wvu.edu/etd/2765 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2765?utm_source=researchrepository.wvu.edu%2Fetd%2F2765&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Aerosol Generation and Entrainment Model 

for Cough Simulations 

Cem Ersahin 
 
 

Dissertation submitted to the 
College of Engineering and Mineral Resources 

at West Virginia University 
in partial fulfillment of the requirements 

for the degree of 
 
 

Doctor of Philosophy 
in 

Mechanical Engineering 
 
 

Dr. Ismail B. Celik, Chair 
Dr. Ibrahim Yavuz, Co-chair 

Dr. Omur Cinar Elci 
Dr. Wade Huebsch 
Dr. William Lindsley 
Dr. Andrei Smirnov 

 
 

Mechanical and Aerospace Engineering Department 
West Virginia University 

 
 

Morgantown, West Virginia 
    2007 

 
 

Keywords: Aerosol Generation, Cough Simulation, Biofluids, 
Computational Fluid Dynamics 

 
Copyright 2007 Cem Ersahin 



ABSTRACT 

 
Aerosol Generation and Entrainment Model for 

Cough Simulations 

Cem Ersahin 

 

The airborne transmission of diseases is of great concern to the public 

health community. The possible spread of infectious disease by aerosols is of 

particular concern among health-care workers and emergency responders, 

who face a much greater risk of exposure to these hazards than does the 

general public.  Some diseases, such as influenza, spread by dissemination 

and inhalation of aerosols of small droplet nuclei that are generated by 

coughing and remain airborne for an extended time. For that reason a better 

understanding of the generation of aerosols is important. Therefore, the main 

objective of this study is to investigate the flow dynamics and the aerosol 

generation during coughing. This research aims to develop a fairly simple yet 

an accurate model for the flow simulation in the upper respiratory tract, 

mainly in the larynx, and the number and size distribution of the aerosols 

generated during coughing.  

In order to provide a more complete analysis tool, a secondary 

objective is to develop a simple reduced order model for the purpose of 

simulating the air flow and particle dynamics in the larynx. To this end a 



pseudo two-dimensional model (PTM) has been developed and run for 

several cases including, sinusoidal laminar and low Reynolds number flow 

cases including breathing and coughing. The comparison of the PTM model 

results with FLUENT has shown that the PTM model is capable of producing 

accurate results within a fraction of execution time needed for the multi-

dimensional FLUENT’s model.  

The aerosol generation and entrainment model (AGEM) is integrated 

into this validated one-dimensional model. This is done by utilizing a one 

dimensional turbulent kinetic energy equation. AGEM is then employed to 

calculate the aerosol formations during a cough, which is simulated by the 

one dimensional flow solver. The final size distribution of the aerosol droplets 

is calculated and these findings are compared with laboratory measurements. 

It is shown that, with appropriate model coefficients, it is possible to obtain 

size distribution of aerosols that is consistent with the experimental findings. 

A parametric study by variation of physical properties of the mucus has also 

been carried out. The results show some interesting trend with changing 

surface tension and varying cough signals. 

This study may be considered as a step towards a more complete 

understanding of aerosol generation mechanisms by coughing, which in turn 

lead to airborne transmission of diseases. The simulation tools developed 

should serve the scientist to do more parametric studies in a fairly quick 

manner and investigate the aerosol dispersion in the confined areas as well 

as studying particle deposition patterns within the upper respiratory track. 
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  CHAPTER 1:  

INTRODUCTION 

"Science is the most reliable guide in life", M.K. Ataturk 

The main goal of this study is to develop computational tools to 

investigate the flow dynamics and the aerosol generation during coughing. 

This research aims to develop a fairly simple yet an accurate model for the 

flow simulation in the upper respiratory tract, mainly in the larynx, and the 

number and size distribution of the aerosols generated during coughing.  

Extend of this study will constitute investigation of the interrelationship 

between aerosol particles and spread of contiguous disease among the 

population, and also possible diseases such as larynx cancer in the human 

upper respiratory tract. The study was conducted using computational 

models that were validated against available experimental and numerical 

data in the literature [1,2]. The experiments conducted at the National 

Institute for Occupational Safety and Health (NIOSH) [3,4,5,6] was used for 

the validation purpose of the numerical model. The secondary objective of 

this study is to compute the particle deposition patterns in the larynx as a 

function of air flow and geometry of the larynx. The larynx is selected 

because it is believed to be the most critical sections in the upper human 

airways. This section also plays a significant role in aerosol generation by 

cough. Moreover, significant factors that may increase the risk of such 

diseases could be related to size, shape and density of these aerosol 

particles, as well as their composition. A particular question is whether the 
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high risk is affected more by the amount of deposition or by the physico-

chemical characteristics of the particles.  

Both multi-dimensional Computational Fluid Dynamics (CFD) models 

such as FLUENT (FLUENT, Inc., Lebanon, NH) and simplified lumped models 

(e.g. transient pseudo two-dimensional model, PTM) are used. The latter is 

necessary for two reasons; i) to be able to include compliant walls, i.e. area 

change as a function of time in the respiratory tract especially near the 

glottis, ii) to be able to study the effect of many parameters in a reasonable 

amount of time. It should be noted that multi-dimensional transient models 

consume extensive amount of execution time.  

Although this study is limited to the simulation in the larynx, it is 

possible to extend the methodology to include other parts of the respiratory 

system. This will give the opportunity to obtain more detailed and more 

realistic simulation results which will be combined together with similar 

studies, such as, aerosol transmission of infectious diseases during coughing 

or sneezing; prediction and optimization of inhaled therapies, and entire 

dynamic aerosol transport processes, and drug delivery procedures. Also in 

this study, the source for the aerosols during a cough is assumed to be the 

laryngeal part of the upper respiratory tract. It should be noted that in a real 

cough the main source of the aerosols is from the bronchi and only a smaller 

portion is from the rest of the respiratory tract. 

In order to create a time efficient yet accurate tool, (especially, when 

a parametric study is in question), there should be an additional simplified 

model. Due to the unique shape of the larynx, the geometry was kept simple 

to obtain a practical yet accurate solution. Considering the moving walls and 

unsteady flow conditions and time consuming aerosol breakup process, the 

only acceptable approach is believed to be the implementation of simplified 

physics and geometry in the simulations. The complex system is simplified by 
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assuming to be axially symmetric with a reconstructed (not calculated 

directly) flow field. This approach requires many input parameters from 

three-dimensional simulations to relate the flow field to the flow conditions 

and geometry of the system. This method is shown to be accurate enough to 

produce similar results to those of obtained from a multi-dimensional solver, 

such as FLUENT, in a fraction of a time [7,8]. 

In the first phase of the study, the coughing condition in the larynx 

has been simulated. The coughing conditions were generated by the use of 

experimental data obtained from NIOSH [3,4,5]. The flowrate versus time 

data was used to obtain the pressure variation at the lung side of the larynx. 

The simulations were carried out with the one-dimensional code and FLUENT. 

While the axial variation of mean velocity, pressure and density was 

investigated in the one-dimensional code, the velocity field was generated in 

FLUENT, and particles were introduced. The mucus was entrained during the 

cough at the subglottis and the number and size distribution of aerosols 

calculated. 

In the second phase of the study the air flow characteristics and 

particle deposition patterns in the larynx were studied. In this stage a 

pseudo-two-dimensional transient flow model was employed, where the one 

dimensional flow was solved and then the two-dimensional flow field was 

reconstructed with the empirical relations depending on the flow regime. 

Quartz particles at different sizes were injected into the system and the 

deposition patterns of the particles were studied during normal breathing 

conditions [7]. The preliminary findings for the particle deposition in the 

larynx are given in Appendix A. 

The experience gained and the tools generated up to this stage of the 

study are anticipated to be the stepping stones of the future studies and will 

help to develop a complete transient model for the flow simulation and 
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particle tracking in the anatomically represented larynx and later in the entire 

upper human respiratory tract. This complete model for the human 

respiratory tract is aimed to be a practical tool for the medical scientists to 

simulate different breathing conditions, coughing and sneezing and observe 

the aerosol generation during cough and spread of these aerosols in the 

surrounding of the effected person, and particle deposition patterns, and 

study/examine epidemiological relations with particles, as well as drug 

transfer to the lungs. 
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  CHAPTER 2:  

LITERATURE REVIEW 

“The things I want to know are in books; my best friend is 
the man who'll get me a book I ain’t read”, A. Lincoln 

2.1 Flow Dynamics in Upper Respiratory Tract 

The larynx is a special section of the upper respiratory tract and its 

main role is to create phonation and a protective barrier before the lower 

respiratory tract (Fig.2.1) [9]. As an organ, the larynx has a unique dynamic 

feature which cannot be found in the other parts of the human body [10]. 

The larynx has a three dimensional flexibility and continuous active 

movements that effect air flow dynamics. The complex muscular structure of 

the larynx is also shown in Figure 2.2 [11]. 

Besides smoking and alcohol, occupational exposures play a role in the 

etiology of laryngeal disorders, especially cancer, which is one of the most 

common types of cancer in the Eastern Europe and Mediterranean region 

[12]. It is believed that the tissue interaction with particles suspended in air 

increase the risk of cancer. It is anticipated that the rate of aerosol 

generation during cough is proportional to the amount of aerosol deposition 

during breathing. Therefore, the deposition behavior of solid particulate 

matter inside the larynx of a human gains a significant importance (Fig.2.3) 

[13]. Figure 2.3 shows that a significant portion of the particles deposited in 

the larynx having diameters less than 1 mμ . In the light of this observation it 
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is deemed necessary to focus this study on understandings of the air flow 

characteristics and particle deposition patterns in the larynx.  

 

Figure 2.1: Schematic sections of the human larynx [9].  

 

Figure 2.2: The right half of the larynx in midsagittal section showing 

the cartilages and the vestibular and vocal ligaments [11]. 

6 



 

Figure 2.3: Variation of deposition fraction with aerodynamic 

diameter (Phalen [13]). 

Flow simulation and particle tracking within the human respiratory 

system has important applications to inhalation toxicology and aerosol 

medicine. Particularly, the larynx has an important role in the development of 

the flow field in the airways and is prone to one of the most common cancer 

types due to the particle deposition [14]. Therefore, the distributions of 

inhaled particles within the larynx enhances the epidemiological concerns 

[15,16]. There have been numerous analytical, experimental and numerical 

studies concerning air flow and particulate transport processes within the 

upper airways and the larynx (See [7] for a review). Previous studies 

reported that occupational exposure to particulate matter, including silica, 

cotton dust, PAH and diesel exhaust, played a role in the etiology of laryngeal 

cancer [17,18]. 

One of the difficulties encountered in modeling of the larynx is its 

moving boundaries. The transient nature of the respiratory system makes 

the complete simulation of the larynx very difficult, which results in two 

classes of studies in the literature; (1) steady flow simulations with moving 

boundaries decoupled from the transients and transient simulations with non-

moving boundaries; (2) reduced lumped models focusing on the transients. 
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The proposed methodology is a hybrid of these two approaches and is 

capable of handling moving-boundaries. The pseudo two-dimensional nature 

of the method makes the simulation of transient flows more robust and 

allows for extensive parametric study. Hence, it will also be possible to 

capture the wave mechanics in the system under the transient flow 

conditions. The same method can also be adapted to compressible flows, 

which may be required in extreme cases where the glottal opening is nearly 

or completely closed.  

Accurate description of the flow field in the larynx is the prerequisite 

step for the particle tracking and calculating the deposition behavior of the 

particles. After determining the flow field as a function of time and space in a 

complete cycle, the particles can be introduced into the system during the 

inhalation. These particles can then be traced and the deposition locations 

recorded. This in turn can be used to calculate histograms and probabilities 

of deposition in specific regions in the larynx. In what follows the proposed 

methodology for studying the particle deposition pattern in the larynx under 

various conditions is briefly described. 

There have been numerous experimental, numerical and theoretical 

studies focusing on the human upper respiratory track and especially on the 

larynx to understand the flow dynamics and particle deposition patterns [13-

16,19-23]. These studies reveal the flow dynamics in the respiratory tract 

and are used to better understand the detailed mechanisms involved. 

However most of these studies exclude the exhalation part of the breathing 

cycle from the inhalation part, or the inhalation is taken into consideration as 

a constant flow through the system, or the geometry of the respiratory tract 

is assumed to be a circular pipe. In the current study the geometry changes 

and transient flow is taken into consideration. Moreover, the inhalation part 

of the breathing cycle is not excluded from the exhalation.  
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There are different flow regimes present in the flow through the 

larynx. The flow upstream of the glottis (supraglottic during inhaling and 

subglottic during exhaling) can be considered laminar, whereas the flow 

downstream (subglottic during inhaling and supraglottic during exhaling) of 

the glottis is turbulent and requires accurate turbulence modeling [19]. 

Although, there are opposing views like Ertbruggen et al. [20], that the flow 

is laminar throughout the larynx, there are reasons to believe that the former 

to be true from our own experience in this subject [7]. This can also be seen 

from the numerical simulation of the flow during coughing conditions [8]. 

This view is also supported by the study of Alipour et al. [19], Gemci et al. 

[21, 22], and Renotte et al. [23]. To be able to account for this complex flow 

regimes a widely accepted and validated CFD code, namely FLUENT, is used 

in conjunction with a pseudo two-dimensional code, which was developed in 

house. As to our knowledge, there is no attempt in implementing moving 

boundaries to the study of the flow in the larynx. There are other studies on 

this subject using the KIVA code [20,21]. Although KIVA is very capable of 

solving a problem like this [24,25,26], the lack of documentation and the 

pre- and post-processing modules, has discouraged the current researcher in 

using this code. Some researchers also used the FLUENT code to tackle this 

problem. However, even in this case they only investigated several instances 

of the larynx geometry, separately [23].  

As it can be seen from the literature there are many studies on the 

flow field and particle deposition patterns in the upper respiratory tract in 

detail. However, each one of these studies is concentrated on one portion of 

the whole picture and neglects the rest of the picture due to the very 

complex nature of the system. As it is explained before, the geometry of the 

larynx is very complex and moreover moving boundaries during the normal 

operating conditions makes it even more problematical to model. The 

transient and reciprocating/pulsative behavior of the flow is another 

challenging issue in the complex geometry of the respiratory system. This 

study is an attempt to alleviate some of the short comings of previous 
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studies by including inhaling and exhaling as well as coughing processes. 

Moreover a simple one-dimensional model is developed that can be used 

easily for parametric study hence for diagnostics of certain diseases. 

In addition to the flow simulation in the respiratory tract and aerosol 

generation model for the cough a preliminary study was conducted to see the 

behavior of the deposition of particles under various breathing condition. For 

particle tracking a subroutine, which is previously developed by Hu [37], is 

included into the pseudo two-dimensional model. In this approach the 

Lagrangian method is used, where each particle or parcel is tracked 

individually and the particle deposition on the larynx wall is recorded, which 

is believed to be an important parameter in the occurance of laryngeal 

cancer. The turbulence model of choice in this research is the low-Re k ε−  

RNG model, which seems to be a better alternative than the standard k ε−  

or RNG k ε−  models according to Yavuz et al. [24], as used in previous 

studies [19,20].  

2.2 Particle Generation Studies 

There have been numerous experimental studies in the literature to 

model the break-up frequency of large bubbles or drops since late 1940’s 

[27]. In many of these experiments the measurements of the time evolution 

of the drop size were taken in stirred tanks or turbulent pipe flows 

[28,29,30]. However, the difficulty in the stirred tank model is that the 

turbulence cannot be characterized very well due to the inhomogeneity in the 

turbulence arising from the presence of impeller blades.  

Martinez-Bazan et al. [31,32], have utilized a completely different 

setup than the previous researchers in order to minimize the inhomogeneity 

in the turbulence and to satisfy the isotropy condition in the turbulence. They 

injected air bubbles into a water jet at the same mean velocity so that only 
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the turbulence would affect the break up process. They have developed a 

model for the frequency (g ) of the break-up process as a function of the 

original bubble diameter ( ) and dissipation rate (D ε ) (Eqn. 2-1). 

( )
( ) σβ ε

ρ
ε

−
=

2 3 12

, g

D
D

g D K
D

............................................(2-1) 

where  and gK β  are empirical constants, and σ  is the surface tension. The 

plot of this equation can be seen in Figure 2.4 for their experimental 

conditions (See Table 2.1). The relation given in Equation 2-1 is used in the 

present model to calculate the break up frequency of each droplet. The 

selection of this relation is made due to the well defined final form of the 

breakup frequency relation for this type of breakup process in addition to the 

experimental conditions. As explained earlier, the experiment is set up in 

such a way that only effect of turbulence is taken into consideration. This 

direct relation of turbulence and the breakup frequency is proper in this 

present approach since the effect of flow is transferred to the aerosol 

generation and entrainment models through the solution of turbulent kinetic 

energy. 

 

Table 2.1. Experimental parameters of Martinez-Bazan et al. 

Variable Value Unit 

β  8.2 - 

gK  0.25 - 

σ  0.5 N m 

ρ  1.225 3kg m  

ε  2000 2 3m s  

11 



 

Figure 2.4: Normalized break-up frequency ( maxg g , max 1769g = ) 

with respect to normalized bubble diameter ( cD D ). 
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  CHAPTER 3:  

COMPUTATIONAL MODEL 

 “Yes, we have to divide up our time like that, between our 
politics and our equations. But to me our equations are far 
more important, for politics are only a matter of present 
concern. A mathematical equation stands forever”, A. 
Einstein 

3.1 Pseudo Two-Dimensional Flow Model 

In this pseudo two-dimensional study, a simplifying assumption has 

been made for the three-dimensional flow within the larynx to calculate the 

average velocity. Although, the actual system is not axisymmetric, for the 

purpose of obtaining a simple algorithm for estimating the particle 

distribution in the larynx, an axisymmetric assumption was necessary. 

3.1.1 One-Dimensional Model  

The flow is governed by the continuity (Eqn. 3-1) and momentum 

equations (Eqn. 3-2), which can be written as follows for a quasi-two-

dimensional flow. 

( )A m
t x

ρ∂ ∂
= −

∂ ∂
..................................................................(3-1) 

( ) 1
2 f

m P
um A C u u

t x x
∂ ∂ ∂

= − − −
∂ ∂ ∂

ρ .....................................(3-2) 
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where ρ=m uA  and  is the friction coefficient which is defined as a 

function of Reynolds number (Eqn. 

fC

3-3). As it can be seen from this relation 

the friction coefficient consists of three different functions. First function 

covers the laminar regime, last covers the turbulent regime, and the second 

is the linear combination of the other two for the transitional regime. 

⎧ <
⎪

= < <⎨
⎪ >⎩ 0.25

16
Re

0.316
Re

Re 2000
2000 Re 4000

Re 4000
fC b ...........................................(3-3) 

where ( ) ( )− −= + −Re 2000 Re 2000
2000 20000.0397 0.008 1b . 

We let ρ= =F Au m and write the momentum equation as; 

rhs

F P
F A

t x
∂ ∂

= −
∂ ∂

................................................................(3-4) 

where  represents all the terms involving convection, diffusion, and 

friction. 

rhsF

Numerical Method 

For the numerical solution of the momentum equation the pressure-

correction method is employed as proposed by MacCormack [34] and 

implemented by Tatli [1] and Celik et al. [2]. First, an approximate value for 

 is calculated without the influence of pressure. This step is called the 

predictor step and given as the following (Eqn. 

F̂

n

3-5). 

= + Δˆ n
rhsF F tF ..................................................................(3-5) 
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where superscript  denotes the previous time step. n

Then, the correction step is applied (Eqn. 3-6). 

(* ˆ
2

n n
rhs rhs

t
F F F F

Δ
= + + )n

ˆ

.....................................................(3-6) 

where  is the right hand side of Equation ˆn
rhsF 3-4 without the pressure 

evaluated using F . 

If we had included the pressure we would have had  

( )
1

1 ˆ
2

n
n n n

rhs rhs

t P
F F F F tA

x

+
+ Δ ∂

= + + − Δ
∂

..................................(3-7) 

Here superscript  denotes the current time level. We subtract 

Equation 

1n +

3-6 from Equation 3-7 to obtain; 

+
+ ∂

− = −Δ
∂

1
1 *

n
n P

F F tA
x

.......................................................(3-8) 

We assume that if the pressure field is correct, +1nF  should satisfy the 

continuity equation (Eqn. 3-1), i.e. 

( ) ( )1n A
F

x t

ρ+ ∂∂
= −

∂ ∂
...........................................................(3-9) 

Taking the derivative of Equation 3-8 with respect to  and using 

Equation 

x

3-9 yields an equation for pressure; 

15 



( )1 *ˆ1n AP F
A

x x t x t

ρ+ ⎡ ⎤∂⎛ ⎞∂ ∂ ∂
= +⎢⎜ ⎟∂ ∂ Δ ∂ ∂⎢ ⎥⎝ ⎠ ⎣ ⎦

⎥ ........................................(3-10) 

Equation 3-10 corresponds to the Poisson equation for pressure in 

quasi-two-dimensional flows. The derivative of the density with respect to 

time can be approximated explicitly (Eqn. 3-11). 

1n n

t t
ρ ρ ρ −∂ −

=
∂ Δ

..................................................................(3-11) 

After the pressure field calculation Equation 3-8 is used to calculate 

 from  field. Equation 1nF + *F 3-10 is discretized using the finite volume 

method (FVM). Equations 3-1 and 3-4 are solved using the MacCormack [35, 

36] method. More details of these derivations and application can be found 

elsewhere [1,2]. 

3.1.2 Two-Dimensional Velocity Field Reconstruction 

After calculating the average velocity along the axial direction, a two-

dimensional velocity field is constructed. An assumed velocity profile has 

been applied which can handle the recirculating region by using certain 

empirical coefficients tuned according to the results obtained using FLUENT 

runs. The parameters used in the velocity profile are defined as functions of 

Reynolds number.  

It has been noted that during the inhalation and exhalation upstream 

of the glottal opening of the larynx, a laminar velocity profile exists and 

downstream of the glottal opening, the flow becomes a thin jet around the 

centerline with a recirculation zone next to it. Considering that the flow 

changes its direction in a cycle, upstream and downstream switches when 

the flow is reversed. In order to capture this behavior, two different velocity 
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profiles have been applied and selected depending on the direction of the 

flow. In the upstream region, a parabolic velocity profile (Eq. 3-12) is applied 

for the axial velocity component. The radial velocity is then related to the 

angle of the jet besides the axial velocity in such a way that velocity vectors 

are parallel to the centerline at the centerline and parallel to the jet border as 

they approach the recirculation region. Here, 

max

1
n

ru r
u R

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

.................................................................(3-12) 

where  is the axial velocity at point ,  is the maximum velocity at the 

centerline,  is the distance from the center, R  is radius of the larynx, and 

 is 2 and 0.  for, the laminar regime and turbulent regime, respectively. 

The radial velocity is calculated from 

ru r maxu

r

n 1

max tanr

r
v u

R
θ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
R ...........................................................(3-13) 

where θR  is the angle of the wall at the specific axial location at , and =r R

RR
r θ⎛ ⎞

⎟ 0⎜
⎝ ⎠

 becomes zero at the center (r = ). 

Downstream of the glottal opening, Eqs. 3-12 and 3-13 are used in the 

jet flow where  is replaced by R jetR  as the radius of the jet. For the 

recirculation region, potential flow (Eq. 3-14) has been solved on a 

transformed domain and mapped back onto the physical domain in such a 

way that the velocity field corresponds to the stream function ψ  determined 

from . m
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( )εε ηη ηψ ψ ε η η ψ ψ η∇ = + + = −2 2 2 2
x y xx ......................................(3-14) 

The velocity components are calculated from 
ψ∂

=
∂

u
y

 and 
ψ∂

= −
∂

v
x

; 

the dimensionless coordinates are defined as ε =
x

Rx
 and η

−
= j

−
et

jetR R

r R

rx

; and 

the boundary conditions are defined so that the streamlines follow the 

boundaries of the recirculation region. Turbulence fluctuations in the 

magnitude of 10% of the average velocity are also added on the velocity field 

in order to imitate the turbulent flow. 

Equation for the radius of the jet is calculated from Eq.3-15 by 

considering the reattachment length ( ) of the flow, which depends on the 

Reynolds number of the flow. 

( ) ( ) ⎛ ⎞
= + − ⎜ ⎟

⎝ ⎠

2

jet cr cr
r

x
R x R R R

x
.............................................(3-15) 

where  is the radius of the glottal opening and  is the reattachment 

length. Note that to maintain simplicity we use a two-dimensional stream 

function on a given x-r plane, then revolve this field around the centerline.  

crR rx

3.2 Droplet Model 

3.2.1 Droplet Entrainment Model 

The role of droplet entrainment model (DEM) is to calculate the total 

amount of mucus (phlegm) to be entrained into the system. This model only 
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determines the total amount of mucus entrained into the system, and does 

not take break-up process and size distribution into consideration. 

The wall of the respiratory tract is assumed to be partially covered 

with mucus at a certain thickness depending on age, gender and health 

condition of the person. It is assumed that this mucus is locally homogenous. 

It should be noted that the particles deposited during the breathing process 

are also be included in this mucus. Therefore physical properties of the 

mucus depend on the particle content. However, this mixture is taken as a 

homogenous mixture without considering two-phase substance and effective 

values for these physical properties are used. The thickness of the mucus 

and the fraction of the area covered with mucus are two of the unknowns at 

this stage of the study. Therefore these two parameters should be obtained 

in further studies and updated as needed. 

There is a certain film thickness of the mucus which is held by the 

surface tension of the mucus. The shear stress on the wall of the larynx can 

be calculated from the solution of the one-dimensional velocity. In this 

approach the effect of flow is felt on the mucus layer in terms of kinetic 

energy. In the case of droplets there is a critical diameter ( ), at which the 

shear stress (deformation forces, 

cD

τ ) acting on the droplet is equal to the 

surface tension (confinement forces, crτ ) of the droplets. As the deformation 

force exceeds the confinement forces the droplet breaks up into smaller 

droplets. The droplets with larger diameter are prone to break-up into 

daughter droplets [39]. 

Similarly, a relation for a film may be used, where the critical diameter 

is replaced by critical thickness, cδ . At this critical thickness the surface 

tension and the shear stress should be in balance and this is called critical 

stress and represented by τ . Therefore, it is expected that when the shear 

stress exceeds the surface tension some of the mucus will be entrained into 

19 



the system until a new balance is attained. The amount of mucus is going to 

be calculated by this model. A schematic representation of the proposed 

model is given in Figure 3.1 as a visual representation of DEM. In this figure, 

δ, τ  and τcr represent, film thickness of the mucus layer, shear stress on the 

layer and critical shear stress of the mucus surface, respectively. D is the 

diameter of the respiratory tract and v’ and k represent the turbulence flow 

fluctuations in terms of turbulent kinetic energy. 

 

δ 

v' ∼k 

τw

τcr

D 

Mucus Layer 

Flow 

 

 

Figure 3.1: Schematic representation of droplet entrainment model.

The aim of this model is to calculate the rate of entrainment amount 

( ). For the development of this model it is assumed that the entrainment 

amount will depend on the physical parameters given in Table 

E

E3.1. The  is 

assumed to be a function of characteristic length, entrainment velocity, shear 

stress and critical shear stress (Eqn. 3-16). 

( )τ τ= , , ,ch e w cr

dE
f L V

dt
........................................................(3-16) 
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Table 3.1. Variables used in droplet entrainment model (DEM). 

Variable Definition Unit 

E  Entrainment 3m  

D  Diameter m  

maxk  Turbulent kinetic energy 2 2m s  

τw  Shear stress 2N m  

τ cr  Critical shear stress 2N m  

ε  Fraction of the mucus layer - 

Cε  Model constant - 

n Model constant (n=2) - 

The Laursen formula for sediment discharge, which is used to calculate 

the total discharge in sediment transportation [40,41], is modified to 

calculate the entrainment during the cough. The entrainment rate is taken to 

be proportional to diameter of the respiratory tract (D), turbulent kinetic 

energy (k), which represents the entrainment velocity, shear stress (τw) and 

critical shear stress (τcr). Rearranging these variables and introducing two 

model constants (Cε and n) and a coefficient (ε) which defines the fraction of 

area covered with mucus to the inner surface area of the upper respiratory 

tract,  can be expressed as;  E

ε
τ

ε
τ

⎛ ⎞
= ⎜

⎝ ⎠

2

max 1
2

n

w
A

cr

dE D
C k

dt
− ⎟ .............................................(3-17) 

Selection of the model coefficients and the unknown physical 

properties, such as, the fraction of the area covered with mucus, is done in a 

way that the total amount of the entrainment matches the total amount of 

the aerosol generated during a cough measured experimentally. In this 
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entrainment model, only the net entrainment is taken into consideration. 

During the entrainment and in the other sub models the deposition of the 

aerosols on the trachea is neglected. Therefore, the amount of mucus is 

entrained in a real life would be more than what is calculated with this 

model, however the difference of the aerosols would be depositing on the 

respiratory tract before they make it out of the system.  

However, by considering the critical diameter concept in the break-up 

process it should be clear that shear stress should be greater than a certain 

value (τcr ) and the driving force should be the difference between the shear 

force and the critical shear force (τ − τw cr ). Therefore for numerical 

application Equation 3-17 is modified to read;  

ε
τ

ε τ τ
τ

τ τ

⎧ ⎫⎛ ⎞
⎪ ⎪− >⎜ ⎟= ⎨ ⎬⎝ ⎠
⎪ ⎪

≤⎩ ⎭

2

max 1
2

0

n

w
A

cr

cr

D
C kdE

dt
cr ..............................(3-18) 

The trend of the entrainment rate versus shear stress is plotted in 

Figure 3.2 As it is seen from the figure, until the critical shear stress is 

reached, the entrainment amount remains at zero and after exceeding this 

value the amount of entrainment increases with increasing shear stress on 

the mucus.  

The wall shear stress τw involved in Eqn. 3-18 can be calculated from;  

u
n

τ μ ∂
= −

∂
.........................................................................(3-19) 
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Figure 3.2: Plot of entrainment versus shear stress, Eqn. 3-18. 

where μ  is the molecular viscosity, u  is the velocity component tangent to 

the wall and n  is the direction normal to the wall. However this relation 

requires the reconstruction of the two-dimensional flow field and this brings 

extra burden into the solution whereas an equivalent approach may be 

introduced to eliminate this step. Therefore, the shear stress acting on the 

mucus lining of the respiratory tract can be written in terms of wall shear 

stress and could easily be calculated from the one-dimensional flow solution. 

This approach eliminates the reconstruction of the two-dimensional flow field 

which speeds up the calculations without any significant loss of the accuracy 

in the present model.  

τ ρ= 2

2
f

w a

C
U vg ....................................................................(3-20) 

Equation 3-20 relates the wall shear stress to the friction, density and 

average velocity of the flow, which are already available through the one-

dimensional flow solver. Wall shear stress is calculated using this relation 
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with the assumption of zero mucus velocity. In other words, the velocity of 

the mucus on the wall is very small compared to that of air passing through. 

In addition to the calculation of the shear stress, the value of critical 

shear stress is needed. This requires another empirical relation. The critical 

shear stress is the force to overcome to rip some portion of the mucus from 

the wall. It depends on the physical properties of the mucus. Critical shear 

force may be written in terms of density, viscosity and surface tension, and 

the thickness of the mucus (Eqn. 3-22). The selection of variables is the 

basic assumption of the model development (Table 3.2). 

(τ σ δ μ μ= , , ,cr airf ) ............................................................(3-21) 

The functional relation between critical shear stress and these 

variables is written as follows (Eqn. 3-22). 

τ

σ
τ

δ
μ

μ
=

⎛ ⎞⎛ ⎞
⎜⎜ ⎟

⎝ ⎠ ⎝ ⎠

1
2

Recr

air

We
C ⎟ ........................................................(3-22) 

where We and Re are Weber and Reynolds numbers and defined as ρ σ2Du  

and ρ μDu , respectively. The other variables used in this relation are given 

in Table 3.2.  

Table 3.2. Variables used in critical shear stress calculation. 

Variable Definition Unit 

δ  Film thickness m  

σ  Surface tension N m  

ρ  Density 3kg m  

μ  Viscosity kg ms  
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3.2.2 Droplet Generation Model 

The droplet entrainment model described above calculates the amount 

of mucus to be stripped of the walls as a bulk material. Droplet generation 

model (DGM) takes the turbulence into consideration and determines the 

sizes of the drops formed (Figure 3.3). The maximum diameter of the 

droplets formed is function of surface tension and the thickness of the 

mucus, the dissipation rate of the turbulent kinetic energy and turbulent 

length scale as given by [44];  

σ
ε

δ
−=

⎧ ⎫⎪ ⎪⎛ ⎞
⎨ ⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭

3
5

2
5

max min ,BD C ⎬tur

maxD n

................................................(3-23) 

 

Dp

 

Figure 3.3: Schematic representation of droplet generation model. 

If the total amount of mucus entrained, , and the maximum drop 

size,  are known, then the total number of droplets, , can be 

calculated from the following relation.  

E

( )π

⎡ ⎤
⎢= ⎢
⎢ ⎥⎢ ⎥

max
2

4
3 2

D

E
n ⎥

⎥ .................................................................(3-24) 
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In this calculation all the droplets are assumed to have the same 

diameter and the total volume of the drops formed is equal to the total 

entrainment amount. Since the total number of drops has to be integer, a 

small modification is needed. One way of resolving this issue is rounding the 

total number of drops to the next smallest integer. In this case, the 

maximum particle diameter should be decreased slightly. This is done as 

follows; 

π
′ =max 4

3

2
E

D
n

..................................................................(3-25) 

The relations 3-24 and 3-25 give the number of droplets to be 

entrained from the wall and the initial diameter of these droplets, 

respectively. 

 

3.2.3 Droplet Breakup Model 

Although the droplet breakup can occur in different ways, it is very 

common to assume a binary droplet breakup process and has been shown 

that it agrees well with the experimental measurements [45-47]. During a 

binary breakup process the mother droplet is divided into two daughter 

droplets. The process of binary droplet breakup process is shown in Figure 

3.4.  
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Dp

 

Figure 3.4: Schematic representation of binary droplet breakup 

model. 

The sizes of the daughter droplets are less likely to be the same size. 

Therefore, the size of one of the daughter droplet is first calculated and the 

complementary daughter size is then obtained relatively in such a way that 

the total mass is conserved. The sizes of the daughter droplets cannot be 

larger than the maximum drop size and smaller than the minimum drop size. 

The break up process continues until the minimum droplet size is obtained. 

This is represented in Figure 3.4 with the green arrows. Once the minimum 

size of droplets is reached, the breakup process stops (red arrow) and the 

droplets maintain their size until the rest of the simulation. Minimum drop 

size is a function of physical properties of the fluid making the droplet and 

the flow parameters and it is defined as: 

3
2

1
min

12
D

D
σ ε

βρ
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.............................................................(3-26) 

where ε  is the turbulent dissipation rate of the air flow, σ  and ρ  are surface 

tension and density of the mucus fluid, respectively, D is the diameter of the 

mother droplet, and β  is an empirical coefficient which is obtained 

experimentally to be 8.2 [31,32]. 
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Knowing the mother droplet diameter and the minimum possible 

droplet diameter with those mucus properties and at certain flow conditions, 

the diameter of the first daughter droplet can be calculated. At this time a 

random function is utilized in order to estimate the diameter of the first 

droplet. A pseudo-random number is generated within the range of 

[ ]min motherD D−

)

 and this number is assigned as the diameter of the first 

daughter droplet. Then the complementary daughter drop size is found as; 

(
1

3 3 3
mincomplementaryD D= − D .................................................(3-27) 

which satisfies the conservation of mass during a break-up process. 

3.2.4 Droplet Breakup Frequency 

Droplet breakup frequency depends on a characteristic length and a 

characteristic velocity. Obviously, droplet diameter can be selected as the 

characteristic length. However, the characteristic velocity can be defined as a 

function of droplet physical properties and the relative velocity, i.e. the 

difference between droplet velocity and fluid velocity. Calculation of the 

relative velocity is not trivial therefore a formulation is sought in measurable 

quantities. In this case the relative velocity is written as a function of the 

dissipation rate and the droplet diameter by following Kolmogorov’s universal 

theory [31], which leads to the frequency equation shown below:  

( ) σβ ε
ρ

= −
2
3

0
0

12breakup gf K d
d 0d .......................................(3-28) 

where  is found to be 0.25, experimentally, and gK 8.2β =  [31,32]. The 

value of d  is equal to the diameter of the mother droplet. New values of  0 0d
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were updated after each binary breakup. In a more general model the 

relative velocity could be calculated directly from the equations of motion. 

Once a droplet is broken-up into daughter droplets, the mother droplet 

is set as inactive such that it disappears from the system and is ignored in 

the rest of the calculations. At the time of this break-up, the present 

simulation time is set as the birth time for the daughter droplets, as well as 

the life spans for each droplet is assigned by using the inverse of Equation 

3-28. Thus each droplet has information about their life span in other words 

their break-up time. Once this time is attained, each daughter droplet 

becomes mother droplets and the break-up process continues until the 

simulation is over or the minimum droplet size is reached by every droplet in 

the system. 

3.2.5 Turbulent Kinetic Energy Equation 

Integration of the aerosol generation and the entrainment model into 

the one-dimensional flow field requires information about dissipation rate and 

turbulent kinetic energy from the main flow solver. This information is passed 

to the model through the solution of a one-dimensional integral turbulent 

kinetic energy equation.  

Essentially, the solution of turbulent kinetic energy equation and 

passing the results to the model calculations is the most important 

interaction between the one-dimensional flow solver and the droplet models.  

The derivation of the integral turbulent kinetic energy equation can be 

found elsewhere [33]. Here, the final form of the integral turbulent kinetic 

energy equation is shown (Eqn. 3-29). 
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( ) k k
w e

k kA xk uAk A uAk A G D
t x

ρ ρ ρ ρ ρ∂ ∂⎛ ⎞ ⎛ ⎞Δ = − Γ − − Γ + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠x
∂
∂

........(3-29) 

where k represents the turbulent kinetic energy, ρ  and u are density and 

average flow velocity, respectively, A is the cross-sectional area normal to 

the flow direction and Γ  is the effective viscosity defined as: k

t
k

tur

νν
σ

Γ = + .......................................................................(3-30) 

here ν  is the molecular viscosity and tν  is turbulent eddy viscosity and turσ  is 

a kind turbulence Prandtl-Schmidt numbers which is taken as 1 in this study. 

Turbulent viscosity is calculated from: 

t C uν tν = ..........................................................................(3-31) 

where Cν  is the model coefficient and  is a turbulent length scale, which is 

taken to be proportional to the boundary layer thickness. Model coefficient is 

C

t

r set equal to 0.5 and the turbulent length scale is taken as 0.1 of the 

radius. 

G and D denote turbulent kinetic energy generation and dissipation, 

respectively, and they are calculated from: 

w lateral t
uG uA Au
x

τ μ ∂
= +

∂
.........................................................(3-32) 

3 2

D
t

kD C A xρ= Δ .................................................................(3-33) 

30 



where DC  is a model coefficient and taken as 2 and  is the turbulent length 

scale and taken as 0.1 of the radius. It should be noted that the values cited 

above for the model coefficients are not selected arbitrarily. This selection 

process was based on the past literature on turbulent flow models and some 

arbitration performed during this study.  

t

Wall shear stress in generation term is defined as: 

2

2
f

w t av

Cu u
r g

ρ
τ μ ∂

= ≅
∂

............................................................(3-34) 

The approach outlined above eliminates the need for the 

reconstruction of the two-dimensional flow field. This, in turn, improves the 

efficiency of the solver by decreasing the computational time in addition to 

the errors arising in the reconstruction process. The one-dimensional solver 

is based on the lumped model and it solves the integral one-dimensional 

continuity and momentum equations. Solution of the turbulent kinetic energy 

equation based on this lumped model is more proper than indirectly 

obtaining the information through the reconstructed flow field, which may 

include other inaccuracies.  
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  CHAPTER 4:  

APPLICATIONS 

“I am a great believer in luck, and I find the harder I work 
the more I have of it.” T. Jefferson 

4.1 Flow Field Calculations 

The pseudo two-dimensional larynx flow (PTL) model has been verified 

and compared with the FLUENT results for two cases; a laminar case and a 

low Reynolds number turbulent case. Then, the PTL model was applied to the 

actual geometry in a human respiratory system. The Reynolds number based 

on the maximum average velocity and glottal opening, are calculated as 

1200, 3000, and 15000 for the laminar, low Reynolds number turbulent case, 

and the breathing case, respectively.  

The methodology of a pressure-correction algorithm, in conjunction 

with a projection method, has been employed for obtaining the average 

velocity within upper airways. It has already been shown that this approach 

presented promising results for a one-dimensional flow problem [36]. This 

approach has initially been applied to a steady converging-diverging nozzle 

flow and the results have been compared with the analytical solution [1]. It 

was shown that the solution was reasonably accurate. In the present study, 

the validated code for steady flow has first been applied to the same 

converging diverging nozzle with oscillatory boundary conditions. Then it has 

been applied to the larynx geometry with a pressure boundary condition 
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(P=1 atm) at the inlet and a sinusoidal boundary condition at the outlet 

[2,7]. The results obtained with these boundary conditions are compared 

with the two-dimensional flow field results obtained for the same conditions 

using the FLUENT CFD software package [7]. The results lead to the 

application of more realistic boundary conditions relevant to a human 

respiratory cycle. These boundary conditions are oscillatory but different than 

the simple sinusoidal boundary conditions.  

The geometry used in this study (Fig.4.1) is a simplified version of the 

actual larynx, with the axisymmetric assumption. The dimensions and the 

ratios are obtained from several references, and the figures obtained from 

these references have been digitized by the known dimensions of certain 

locations. The dimensions used in the simulations are for an average male 

human larynx with an average glottal opening. 

The PTL model calculations are carried out on a uniform staggered 

grid. The grid points in the axial and radial directions are 41 and 21, 

respectively. For the FLUENT case, an unstructured grid with 2746 cells was 

used. 

 

Figure 4.1: Geometry of the system used in the simulations. 
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4.1.1 Laminar Flow Case 

In this case, at the inlet of the larynx (supraglottic area), which is the 

mouth side, atmospheric pressure is applied. At the exit (subglottic area), 

which is the lung side, pressure is oscillated around the atmospheric pressure 

as seen in Figure 4.2.  

 

Figure 4.2: Sinusoidal pressure variation at the boundaries. 

Comparing the mass flowrate of both methods is the first constraint. 

Mass flowrate variation in one complete cycle has shown that the present 

model agrees quiet well with the FLUENT results with a maximum of 10%  

difference (Fig. 4.3). The axial velocity and pressure profiles along the axial 

direction are compared in Figures 4.4 and 4.5. These figures show a very 

good agreement with the FLUENT results. 

The two-dimensional velocity profiles were also compared to check the 

performance of the PTL model. For this comparison, the velocity profiles were 

recorded at several axial locations and plotted in Figures 4.6 - 4.8. The 

velocity profiles obtained by the PTL model also show a good agreement with 

the FLUENT results at points B and C (Fig. 4.6,4.7), however, at point D the 
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same level of agreement could not be achieved (Fig. 4.8). See Fig. 4.1 for 

relative locations of the axial points B, C, and D. 
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Figure 4.3: Mass flowrate variation in one complete cycle for laminar 

case. 

 

 

0 2 

Figure 4.4:. Axial velocity variation at centerline with time along axial 

direction for laminar case. 
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Figure 4.5: Pressure variation with time along axial direction for 

laminar case by (a) present model and (b) FLUENT. 
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Figure 4.6: Velocity profiles at point B for laminar case by (a) present 

model and (b) FLUENT. 
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Figure 4.7: Velocity profiles at point C for laminar case by (a) present 

model and (b) FLUENT. 
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Figure 4.8: Velocity profiles at point D for laminar case by (a) present 

model and (b) FLUENT. 
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4.1.2 Low Reynolds Number Turbulent Flow Case 

The mass flowrate from the present model and that of the FLUENT 

calculations also agrees well for low Reynolds number turbulent flow case. In 

FLUENT calculations the renormalization Group Theory (RNG) εk −  model 

with low Reynolds number correction was employed. (Fig. 4.9).  

The pressure profiles along the axial direction depicted in 4.10 also 

show a very good agreement between the present model and the FLUENT 

results. As it is seen from this figure, the sharp pressure gradient in the axial 

direction at various time steps can be captured very well. 

The velocity profiles obtained by the PTL model for the low Reynolds 

number turbulent flow case show similar agreement with the FLUENT 

calculations as in the laminar case (Figs. 4.11 - 4.13).  
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Figure 4.9: Mass flowrate variation in one complete cycle for low 

Reynolds number turbulent flow case. 
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Figure 4.10: Pressure variation with time along axial direction for low 

Reynolds number turbulent case by (a) present model and (b) 

FLUENT. 
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Figure 4.11: Velocity profiles at point B for low Reynolds number 

turbulent case by (a) present model and (b) FLUENT. 
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Figure 4.12: Velocity profiles at point C for low Reynolds number 

turbulent case by (a) present model and (b) FLUENT. 
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Figure 4.13: Velocity profiles at point D for low Reynolds number 

turbulent case by (a) present model and (b) FLUENT. 
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4.2 Respiratory Cycle 

For this case, the trend of the pressure variation with time has been 

obtained from the medical literature [13]. As can be seen from Figure 4.14, 

the realistic pressure profile significantly differs from a sinusoidal wave. 

Although it changes between a minimum and a maximum, the change is not 

symmetric, due to the nature of the respiratory cycle. It should also be noted 

that there are some moments where the pressure at both ends are equal 

which is called the resting period. This pressure cycle is applied to generate 

air flow to closely represent the flow physics in the larynx. 
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Figure 4.14: Realistic pressure variation at the boundaries. 

Although, the main goal was to simulate the actual respiratory cycle, 

using a pressure drop led to too high velocities at the glottal opening. 

Therefore, the same boundary condition function has been applied with a 

lower pressure drop in order to obtain acceptable velocities at the glottal 

opening. Figure 4.15 shows the mass flowrate variation for one complete 

cycle. Here, the total inhalation and exhalation air volumes are compared to 

check conservation of mass in the system. 
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The axial velocity profiles along the axial direction at different time 

steps are plotted in Fig. 4.16.  The velocity profiles along axial direction 

shows the same trend as the other two cases with a higher maximum 

velocity. 

 

Figure 4.15:Mass flowrate variation in one complete cycle for 

breathing case. 
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Figure 4.16: Axial velocity variation at centerline with time along 

axial direction for breathing case. 
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4.3 Cough Simulations 

4.3.1 One-Dimensional Flow Analysis 

After simulating the breathing conditions with PTL model, the next step 

has been the simulation of the coughing conditions. In this study only one 

dimensional analysis is conducted on the improved geometry based on three-

dimensional scan data obtained from NIOSH [49]. The reconstruction of the 

two-dimensional flow field during the cough is left for a future study.  

In the cough simulations the required boundary condition is obtained 

from the data provided by NIOSH [3]. The researchers at NIOSH conducted 

some experiments on coughing [4,5]. Five people have been used and each 

person coughed three times ending up in fifteen different coughing 

conditions. The data is available in flowrate versus time format as can be 

seen in Figure 4.17. 

It is seen from Figure 4.17 all the flowrate curves show a similar trend 

with some minor differences. There is a peak in the flowrate at the early 

stages of the coughing than it decreases and finally reaches approximately to 

zero. One of the coughing conditions has been selected for the simulations as 

shown in Figure 4.18.  

The extracted data on flowrate has been used to calculate the pressure 

boundary condition at the lung side. The relation between pressure drop and 

the flowrate is postulated as; 

2P mΔ ∝ ..........................................................................(4-1) 
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Figure 4.17: Coughing data obtained from NIOSH [5]. 

 

Figure 4.18: Extracted coughing data obtained from NIOSH. 
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By using the relation above (Eqn. 4-1) the following pressure trend is 

obtained as the boundary condition (Fig. 4.19). 

 

Figure 4.19: Pressure boundary conditions for cough simulations. 

Using the pressure variation shown in Figure 4.19, the simulations 

have been carried out and the following results are obtained. In Figure 4.20, 

the variation of the effective radius is seen along the axial direction. The 

effective radius is defined as the equivalent radius of a circular cross section 

having the same area of the actual cross section at that axial location. 

In Figure 4.21 the variation of pressure can be seen at the peak of the 

cough. There is a significant pressure gradient in the axial direction. This 

behavior can also be seen in the FLUENT simulations of the same case 

(Section 4.3.2). Figure 4.22 shows the variation of the axial mean velocity 

along the axial direction. As expected, the velocity reaches its maximum 

value at the glottal opening.  
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Figure 4.20: Radius versus axial direction. 

 

 

Figure 4.21: Pressure versus axial direction during cough at time=0.2 

seconds after the cough begins. 

50 



 

Figure 4.22: Axial mean velocity versus axial direction during cough 

at time=0.2 seconds after the cough begins. 

4.3.2 Three-Dimensional Flow Analysis 

Coughing and particle dispersion during cough is also simulated using 

FLUENT. The first step in these simulations was to generate a suitable grid 

for the larynx geometry. Gambit is used to generate such a grid. The three 

dimensional scan data was modified and refined so that it could be used in 

Gambit. Some sharp gradients in the geometry are smoothened in such a 

way that a reasonably smooth grid could have been generated. The surface 

mesh of the generated 200  grid is given in Figure ,000 4.23. 

 

Figure 4.23: 200K Mesh generated by Gambit for FLUENT. 
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After generating a grid a trial run is carried out in FLUENT where 

constant pressure boundary conditions are used on both boundaries. After 

this trial run, the same boundary conditions are employed as in the PTL 

model (Fig. 4.19). 

RNG k ε−  model is used as the turbulence model in the cough 

simulations. The time step is 1 1 30−×
60

, and the residuals for mass and 

momentum are set to 1 1 −×  with maximum inner iterations of 1000. It is 

observed that at some time levels it was not possible to achieve this level of 

convergence. However, the overall accuracy of these simulations are seemed 

to be sufficient for the purpose. 

The pressure contours at the peak of the cough is plotted in Figure 

4.24. It can be seen from the figure that there is a significant pressure 

gradient through the glottis. This behavior is also seen in the one-

dimensional analysis. 

Velocity contours are shown in Figure 4.25. In Figures 4.26 and 4.27, 

the streamlines and velocity vectors are also shown. The jet formation can 

easily be seen from these figures downstream of the glottis. 

The turbulent kinetic energy is plotted in Figure 4.28. There are some 

regions where the turbulent kinetic energy has significantly large values 

although it is almost zero in most of the regions. This appears to be a good 

representation of the transitional flow regime from laminar to turbulent in the 

larynx. 
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Figure 4.24: Pressure contours at the peak of the cough. 

 

Figure 4.25: Velocity contours at the peak of the cough. 

 

Figure 4.26: Velocity contours and streamlines at the peak of the 

cough. 
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Figure 4.27: Velocity contour and velocity vectors at the peak of the 

cough by FLUENT. 

 

Figure 4.28: Turbulent kinetic energy at the peak of the cough by 

FLUENT. 

The flow field is recorded at certain axial locations during the 

simulations. The locations, at which the two-dimensional velocity field is 

recorded and the streamlines with velocity contours at these locations, are 

depicted in Figure 4.29. 
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Figure 4.29: Streamlines with velocity contours at the given axial 

locations. 

Figure 4.29 shows that the flow is quite regular upstream of the glottis 

but is very complicated with many recirculation regions observed 

downstream of the glottis.  

A further step in this simulation is the injection of the particles to the 

system and recording the deposition patterns during the exhalation process. 

The injections of the particles are carried out in such a way that they 

represent the particles which will be entrained during the cough. For this 

purpose four lines are defined in the FLUENT in the subglottic region at  

apart from each other and the injection took place only until the peak of the 

cough and then it was stopped. In a more detailed study, these lines may be 

replaced by a surface, which covers the whole subglottic region, to represent 

90o
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a more realistic entrainment, and the injections may be defined as given in 

the proposed droplet model. The physical properties of the particles and the 

injection parameters are given in Table 4.1 and Table 4.2., respectively. 

 

Table 4.1. Physical properties, of the particles injected. 

Property Value 

Particle Type Quartz 

Particle Density 32650kg m  

Particle Diameter 1 mμ  

Table 4.2. Injection properties. 

Parameter Value 

Injection Rate 1mg s  

Injection Period 0.012 s  

Total Injection Mass 12mg  

In the simulations all the particles that hit the wall are assumed to be 

depositing on the wall. According this assumption it is found that circa half of 

the particles left the system whereas, the other half deposited on the walls of 

the respiratory tract (Table 4.3). 

Table 4.3. Results of particle tracking from FLUENT simulations. 

Property Value 

Injected Particles 920  

Particles Left 465 

Deposited Particles 454 
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4.4 Kinetic Energy Calculations 

The kinetic energy equation is solved in a pipe flow by both PTL model 

and FLUENT. The pipe radius is taken as the larynx radius at the largest cross 

section. The calculated kinetic energy from the PTL model is compared with 

the results obtained from FLUENT on various planes at different axial 

locations. Then the three-dimensional FLUENT results are integrated over the 

cross-sectional area perpendicular to the axial direction to obtain an average 

kinetic energy. The PTL model coefficients are tuned to match the FLUENT 

results. The comparison is done at three different Reynolds numbers and two 

of these comparisons are plotted in Figure 4.30.  

After the model coefficients are tuned to match the cases mentioned 

above they are fixed at those values through out the study. This tuning is 

done in such a way that the best match is encountered at higher Reynolds 

numbers. In this way the turbulent kinetic energy prediction has higher 

accuracy at higher Reynolds number, where we encounter more entrainment. 

The PTL model coefficients used are given in Table 4.4. 

Table 4.4. Model coefficients used in turbulent kinetic energy equation. 

Variable Definition Value 

turσ
 Turbulent model coefficient 1 

Cν  Turbulent viscosity model 
coefficient 

0.5 

t  Turbulent length scale 0.1 R 

DC  Dissipation model constant 2 
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(b) 

Figure 4.30: Comparison of turbulent kinetic energy obtained from 

the model and FLUENT at a) Re=2400; and b) Re=3800. 
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4.5 Aerosol Generation 

The aerosol generation model is integrated with the one-dimensional 

flow solver through the solution of the turbulent kinetic energy equation. The 

model constants in the turbulent kinetic energy equation are tuned by 

comparison with the FLUENT results. The tuning of the model coefficients in 

the aerosol generation and entrainment model are done with the only 

experimental data available in hand. The coefficients are adjusted in such a 

way that the final aerosol size distribution matches the experimental 

measurements. The experimental data is given in Figure 4.31. 
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Figure 4.31: Measured averaged aerosol size distribution during 

cough (The vertical axis is the concentration of aerosol) [5]. 

The aerosol size distribution obtained by the proposed model is given 

in Figure 4.32. It can be from the figures that, the model can produce similar 

results to the experimental measurements. 
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Figure 4.32: Averaged aerosol size distribution during a cough. 

The aerosol size distribution obtained by the model given above is the 

average of the twelve different aerosol distributions for twelve different 

cough signals, excluding subject three (Figure 4.17). In order to see the 

effects of different cough signals, three different size distributions is given for 

three different coughs with their average aerosol size in the following figures 

(Figure 4.33). 
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(a) 

 

(b) 
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(c) 

Figure 4.33: Aerosol size distribution during, (a) second cough of first 

subject; (b) first cough of fourth subject; (c) third cough of fifth 

subject. 

Since these cough signals were approximately equal to each other, it 

was expected to obtain similar results for each cough signal. All three 

simulation results for three different coughs are plotted in Figure 4.34, for a 

better comparison. The random function, used in the binary droplet breakup 

mechanism, also has an effect on this similarity but not on the exact size 

distribution pattern. It should be noted that, for the same coughing signal it 

is possible to obtain slightly different aerosol distribution every time the 

simulation is done. In Figure 4.35, the difference of the aerosol size 

distribution among three cases is given. In this figure the vertical axis is 

given as a difference between the numbers for each cough and the average 

droplet size distribution. Figure 4.35 shows clearly that each cough cycle 

generates a different aerosol distribution. 
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Figure 4.34: Aerosol size distribution for all three coughs. 

 

Figure 4.35: Difference between the aerosol size distribution for all 

three coughs and the average size distribution. 
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In order to see the effect of random function during the break up 

process, the same cough signal is used three times to simulate the same 

cough. The aerosol size distribution curves for these three consecutive 

coughs are given in Figures 4.36 and 4.37. Figure 4.36 shows the three 

distribution curves for these three runs, while Figure 4.37 shows the 

difference between the individual distribution and the average size 

distribution. As it can be seen form the figures, the random function has an 

effect on the size distribution of the aerosols as expected. This effect in 

addition to the variation in the cough signal adds up to produce slightly 

different distribution patterns from cough to cough as shown in the 

previously. 

 

Figure 4.36: Effect of random function on the same cough signal. 
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Figure 4.37: Difference between the aerosol size distribution for the 

same cough in different runs. 

One of the subjects (Subject three, Figure 4.17) used in the 

experimental measurements had a health condition and produced a different 

cough signal than the other subjects. Since this signal was far from the 

others, it was not included in the averaging process in order to keep the 

standard deviation as low as possible. However, this cough signal is also 

simulated and the aerosol size distribution obtained is shown in Figure 4.38. 

 Since the strength of the cough is not as strong as the others, it was 

expected that a much less number of aerosol would be generated with a size 

distribution shifted towards bigger droplets since the turbulent kinetic energy 

would be expected lower in this case than the others. This expected result 

can be seen in the figure clearly. 
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Figure 4.38: Aerosol size distribution during first cough of third 

subject. 

A further step in this study is to investigate some parametrical study. 

The effect of the physical properties of the mucus is investigated and it is 

found that, the effect of the surface tension is the largest among the other 

physical properties. The density, viscosity and surface tension has been 

varied in the simulations and it has been noted that the effect of density and 

viscosity is much less than that of surface tension. In Figure 4.39., the 

aerosol size distribution is given for three different values of the surface 

tension.  

As it can be seen from the figures, the surface tension effects the 

distribution significantly. And this effect is in the direction of the 

expectations. When the surface tension decreases, the number of aerosols 
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increases since it is easier for them to break, and the size distribution shifts 

left, which gives smaller aerosol size distribution. When the surface tension 

increases, the opposite effect is observed.  

The reason for the density and viscosity having less effect on the final 

result can be explained as follows. The density mainly goes into the 

calculations in the break-up frequency equations, and compared to the other 

terms in this equation in does not have too much effect on the final result. 

Similarly, viscosity goes into the equations in the critical shear stress 

calculations as a ratio to the viscosity of air. Since the ratio is already small, 

the change in the viscosity does not have a big impact on the final result.  

 

(a) 
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(b) 

 

(c) 

Figure 4.39: Aerosol size distribution for various surface tension 

values. (a) 0.1σ, (b) σ  and (c) 10σ. 
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4.6 Consecutive Coughing 

Several consecutive coughs are simulated. In this rapid consecutive 

coughing, there is no breathing period between the coughs. Two different 

types of cough cycles have been simulated. The boundary conditions used for 

these simulations are given in Figures 4.40 and 4.41. In the first one the 

same cough signal is repeated four times (Figure 4.40) and in the second one 

the magnitude of the cough is decreased from one cough to another (Figure 

4.41). 

 

 

Figure 4.40: Boundary condition for consecutive coughs (same 

strength). 
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Figure 4.41: Boundary condition for consecutive coughs (decreasing 

strength). 

The size distribution of the aerosol generated after these coughs are 

given in Figures 4.42 and 4.43. In the first case, where the same cough 

signal is repeated four times, almost the same size distribution is obtained 

with a shift in the number of droplets for each aerosol size (Fig. 4.42). 

However, during the second case where the cough strength decreases from 

cough the cough, the size distribution shifts towards to larger aerosol size 

(Fig. 4.43). This is expected, since it has been shown that as the cough 

strength decreases the aerosol size distribution shifts toward larger sizes. 

Therefore in Figure 4.43 the effect of both the strong and weak coughs can 

be seen. 
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Figure 4.42: Accumulated aerosol size distribution after coughs (same 

strength). 
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Figure 4.43: Accumulated aerosol size distribution after coughs 

(decreasing strength). 

 

4.7 Aerosol Generation during a Child’s Cough 

The cough simulation has also been carried out in an anatomical 

pediatric upper airway. This model is generated based on the three 

dimensional scan of a child’s cadaver [55]. The geometry of the upper 

respiratory tract for a child is given in Figure 4.44. The one dimensional 

geometry corresponding to this respiratory tract is also given in Figure 4.45. 

In this one dimensional representation the cross sectional area of the real 

geometry is calculated and an effective diameter is calculated to represent 

the actual geometry in an equivalent circular pipe. 

For this geometry, the same coughing signal as in the other coughing 

cases with a lower magnitude is used. The magnitude of the pressure is 
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decreased four times to match the flow rate of the cough. The variation of 

velocity in the axial direction at the peak of the cough and the variation of 

volumetric flowrate with time for the given boundary conditions are plotted in 

Figures 4.46 and 4.47, respectively. 

      

 

Figure 4.44: Upper respiratory tract of a child [55]. 

 

 

Figure 4.45: One-dimensional geometry for child’s respiratory tract. 
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Figure 4.46: Axial velocity variation at the peak of the cough. 

 

Figure 4.47: Variation of flowrate with time. 
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Figure 4.48: Averaged aerosol size distribution during a child’s cough. 

With the pediatric upper airway geometry and given conditions the 

aerosol distribution during the cough is obtained. It should be noted that 

except for the geometry and the boundary conditions all the other 

parameters, physical properties and model coefficients are kept constant in 

this child’s cough simulation case. The aerosol size distribution is given in 

Figure 4.48. The cough simulation in this geometry provided a narrower 

range of aerosols than the previously used geometry and conditions. The 

total volume of the aerosols generated during the cough of the child is 0.062 

ml, which is composed of 2.6 million droplets, while during the adult’s cough 

the total number of aerosols generated is 4.2 million droplets, which make up 

0.087 ml. Although it is difficult to comment on the accuracy of the results 

obtained for pediatric upper airways, the trend of the size distribution curve 

is consistent with the previously obtained curves. The reason for a smaller 

maximum aerosol size can be explained by the smaller diameter of the 

trachea, which may cause smaller initial droplets to be entrained initially to 
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start with. On the other hand the larger minimum droplet size can be 

explained by the lower peak velocity in the airways compared to the 

previously used geometry. The lower velocity leads to lower turbulent kinetic 

energy, which in turn leads to fewer breakup processes for the droplets. 

Though, it is not unexpected to obtain a different size distribution for a 

significantly different geometry, it is necessary to validate the model against 

experimental data before any definite conclusions can be drawn. 
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  CHAPTER 5:  

CONCLUSIONS AND RECOMMENDATIONS 

Optimist: "The glass is half full" 
Pessimist: "The glass is half empty" 
Engineer: "That glass is twice as large as it needs to be" 
 

5.1 Conclusions 

This research aims to develop a fairly simple yet an accurate model for 

the flow simulation as well as aerosol generation during coughing in the 

upper respiratory tract, mainly in the larynx, and the number and size 

distribution of the aerosols generated during coughing.  This objective is 

important since some diseases, such as influenza, spread by dissemination 

and inhalation of aerosols of small droplet nuclei that are generated by 

coughing and remain airborne for an extended time. For that reason a better 

understanding of the generation of aerosols is important.  

In this study aerosol generation, entrainment and breakup sub-models 

have been developed and integrated into the one-dimensional flow solver 

and successfully tested on some realistic cases. After tuning the model 

coefficients and using the available physical data, these models have 

provided consistent results with the experimental measurements. 

In addition to the comparison with available experimental data, a 

parametric study has been performed to see the effect of physical 

77 



parameters on the aerosol particle size distribution generated as a result of 

coughing. 

Breathing and coughing conditions have been simulated successfully 

by PTM and FLUENT and the results are compared. It was also shown that 

the pseudo-two-dimensional model (PTM) produces acceptable results within 

a fraction of execution time of a multi-dimensional commercial CFD software 

FLUENT. The decrease in the total execution time when PTM is compared to 

the FLUENT, makes PTM a practical parametric study tool.  

Moreover a preliminary study for particle deposition during breathing 

was conducted. During breathing simulations particles are injected into the 

system and their depositions patterns are obtained. The particle deposition 

patterns obtained within and in the vicinity of larynx agree with those found 

in the literature. These patterns may explain higher probability of cancer 

occurrence in the larynx. 

 

5.2 Recommendations 

With the aerosol generation and entrainment model developed in this 

study, the size distribution of the aerosols during cough can be calculated. 

This size distribution resulting from a cough may be used as the source term 

or as the boundary condition in investigation of the dispersion of the aerosol 

particles in a confined environment. The aerosol generation model can be 

used to represent the sick person’s coughs and further models can be 

developed to track the dispersion of these aerosols in the confined room. 
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Physical properties of the mucus should be studied further and the 

corresponding model parameters in the mathematical models should be 

refined. Model prediction will improve if the coefficients can be tuned against 

more detailed experimental data.  

Including the physico-chemical interaction between the deposited 

particles, mucus and the respiratory tract should results in better physical 

representation. These in turn can be studied in more detailed to investigate 

the relationship between the particle deposition patterns and the occurrence 

of laryngeal cancer. 
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APPENDIX A 

Particle Deposition during Breathing 

A preliminary study of particle deposition in the respiratory tract has 

been done as a starting point for a future study. In this study, first particles 

are introduced into the system to observe the trajectories of the particles and 

the distribution of the deposited particles. Particles are tracked by the use of 

subroutine developed by Hu [37,48]. In this case the realistic boundary 

conditions (Sec. 4.2), have been applied at the subglottis (Fig. 4.14). 

Quartz particles are injected into the system and are tracked, with a 

density of 2650 μ  and 5s  in two different sizes, namely 1kg μ . A total 

number of 16500 particles are randomly injected at the inlet into the system 

and as soon as the particles have a contact with the wall of the larynx, they 

are assumed to deposit on the wall. The distribution of the particles on the 

wall is obtained in this way. This type of boundary condition is also not very 

representative since in the real life there exist physical interaction between 

the particles and walls, which would affect the efficiency of the particle 

deposition. However, as a preliminary study for a future work has been 

implemented here to show the capability of capturing the pseudo two-

dimensional flow field and producing acceptable results with those suggested 

in the literature. 
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Distribution of the 1μ  particles shows that, 55% of the particles are 

deposited on the larynx and 84% of the deposited particles deposit in the 

supraglottic area and 16% of them deposit in the subglottic area. This ratio 

slightly changes for 5 μ  particles and 50% of the particles are deposited on 

the larynx and 89% of the deposited particles deposit supraglottic area and 

11% of them deposit the subglottic area.  

The deposited particle distribution is also investigated in several layers 

of the larynx as shown in Figure A.1 and the particle distribution among 

these layers are plotted as normalized histograms in Figure A.2. These 

results were compared with the numerical study carried out by Katz et al. 

[15] for inspiratory flow conditions, which is actually too restrictive as 

particles is transported back as shown in our study. Nevertheless results 

obtained by the present study are found to be in good agreement with their 

study. The details of this study can be found elsewhere, Ersahin et al. [7].  
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Figure A.1: Layers of the larynx. 

 

88 



0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5

1 micron
5 micron

 

Figure A.2: Distribution of deposited particles among the sub-regions. 

As it can be seen from Figure A.2, in both cases the particles give 

similar distribution. The reason for this similar distribution is that the Stokes 

number for both particle sizes is above or close to 1. Stokes number is 

defined as the ratio of the particle relaxation time to the inertial time scale. 

Inertial time scale is calculated by dividing the characteristic length scale of 

the flow by the velocity scale, and the particle relaxation time is defined as 
2 18pdρ μ

52.90 10

. For cases, where the Stokes number is larger than 1, particles will 

continue in a straight line as the fluid turns around the obstacles. The inertial 

time scale of particles is found to be −×

10

 s. The corresponding particle 

relaxation time scales are 1.47 5−× 43.68 10 and −×  s for 1μ  and 5 μ  

particles, respectively. These values leads to St=12 for 5 μ  and St=0.5 for 

1μ  particles. The time scale explains why there is very little difference 

between the deposition patterns of small and larger particles. The expected 

difference between dispersion and deposition of different size particle could 

only be detected when there is sufficient time for the particles to adapt to the 

local fluid motion. Another factor in seemingly atypical results could be the 

large deposition surface intervals selected for the histogram. If these 

intervals were smaller one could possibly see a shift in maximum deposition 

area for different size particles. It should also be mentioned that resolution of 
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fine scale fluid turbulence was not adequate in this pseudo-one dimensional 

fluid model. It seems that the random turbulent fluctuations that will effect 

primarily the fine particles need to be incorporated in the model e.g. via 

isotropic assumption (( ) )fluid fluid rms fluid
u t u u= + . 
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APPENDIX B 

Sensitivity Analysis for Entrainment Model 

The sediment discharge in rivers can be calculated by measurement of 

discharge at certain time intervals and plotting these values against the total 

fluid discharge and a best line can be fit to these experimental 

measurements and the resulting curve is called the sediment transport 

curve. An example for this curve is given in Figure A.3, where the sediment 

discharge of Colarado river is plotted against the water discharge. 

 

Figure A.3: Sediment transport curve, Colorado River, Arizona [40]. 
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An analogy to sediment discharge in rivers can be applied to the total 

discharge of mucus during a cough in the upper respiratory tract. For this 

purpose, the total entrainment can be plotted against the velocity of the air 

flow through the trachea. In this approach, the entrainment of mucus is 

equivalent to the sediment discharge in the river and the velocity can be 

taken as the flowrate by assuming constant area of the trachea and constant 

density of the fluid, which in turn, gives the same trend as the flowrate with 

a constant factor of area of the trachea times the density of the fluid. For this 

plot, a range of velocity is selected and the shear stresses at these velocities 

are calculated. The shear stress is plugged into the entrainment equation 

(Eqn. 3-17) and the total entrainment is calculated.  
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Figure A.4: Total entrainment versus velocity in the trachea. 
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As it is seen in Figure A.4, the total entrainment calculated by the 

model equation (Eqn. 3-17) gives a similar trend as in the experimentally 

obtained sediment discharge curve (Fig. A.3). This approach shows that, the 

trend of the entrainment amount calculated by the proposed model agrees 

with the experimentally obtained sediment discharge qualitatively. For a 

quantitative comparison, measurements in a setup representing the upper 

respiratory tract covered with mucus are required. 
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APPENDIX C 

 

Manual for the Solver 

Introduction 

This code is based on previously developed one-dimensional lumped 

model. The details of this one-dimensional solver can be found elsewhere 

[2]. The previously developed Fortran77 code is translated into Fortran90 

subroutine, so that this solver can be used in conjunction with other 

subroutines easily. All the equations and the method is kept the same during 

the translation. The main purpose for this translation is to be able to develop 

a more modular and easy to handle program. With this approach, by 

including or excluding particular modules, the program can easily be used 

just to solve a one-dimensional flow or all the other features can be included. 

Director Structure 

Two subfolders are required in the running directory of the program. 

One of them is input and the other one is output. Input files required for the 

run should be located in the input directory and the output files will be 

created (or replaced, if there are any) in the output directory.  
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Input Files 

There are four input files required and must exist in the input directory 

for a successful execution.  These are ASCII files which can be opened and 

edited bye any text editor. However, extra precaution should be used while 

editing these files. Any unintentional change in this file may cause a run time 

error which prevents the program running as expected. 

Input.dat is the main input file, which keeps the run parameters for 

the code. Type of run (restart or not), number of iterations, time step, etc. 

are kept in this file. This file may be updated as necessary by keeping the 

exact same format. There may be more than one value on each line. In this 

case only the first value will be taken into consideration and the rest will be 

ignored. On each line after the value itself, the variable name as used in the 

program and a brief explanation is provided for clarity.  Number of blank 

lines and comment lines should be kept as they are. Adding or removing 

even a blank line would cause a run time error or a wrong value to be taken 

as an input. 

Physical.dat file is where the physical properties of the fluid are kept. 

If any physical property should be changed, the modification should be done 

in this file. Many physical.dat files can be kept in the same folder with 

extension of the name of the fluid, and can be replaced by input.dat for a 

quick change of the fluid in the system. The original library of the fluids in 

the input folder includes water and air. 

Third one is the curve.dat file. This file contains the radius variation of 

the geometry along the axial direction. It has two columns, left being the 

axial direction and right column is the radius at that axial location. The 

number of data in this file should match the nxmax variable in Parameters 

module. If the data number is more than nxmax, the remaining lines are 
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ignored. If nxmax is larger than the number of data in this file, it causes a 

run time error and the program halts. 

The last input file is the PGEM.dat file. This file holds the model 

coefficient and physical properties for the aerosol generation and 

entrainment model. The modification can be done as in the other two files. 

The physical properties, density, surface tension etc, are for the dispersed 

phase. This is different from the physical.dat file.  

 

Output Files 

All the output files are written to output folder. There are many output 

files already created by default. The number of files can be increased and 

decreased by modifying the Printout subroutine in the auxiliary module of the 

code. Most of these output files are for transient files and there are some for 

the final converged solution. Please note that existing of final files does not 

guaranteed a converge solution. Convergence of a solution is the 

responsibility of the user. The frequency of the printout can be adjusted in 

the input file with the parameters number of frames. The default value is 200 

and regardless of the iteration number (assuming iteration number larger 

than 200) 200 transient results are written out. Therefore, the frequency of 

the print out is iteration number/200. The output files are written in Tecplot 

format by default. 

Layout Files 

For each output file created by default, there exists a layout file. These 

layout files are kept in the layouts folder. Opening any layout files opens the 

related output file from the output folder and sets the predefined layout 
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scheme for this particular file. Although this folder is not required for the 

program to execute successfully, it is highly recommended that all the 

layouts files are kept in layout folder for quick access and simplicity of each 

subfolder and the main run folder. 

Restart Files 

Depending on the restart parameter in the input file, a restart file is 

created at the end of the run. This restart file keeps all the data required for 

continuation form that time step. Usually it is a good idea to keep a restart 

file handy, since sometimes it may take too long for a flow to reach steady 

state. You can always change the flow parameters, but restarting from a 

restart file usually accelerates the convergence rate. The restart file is not as 

user friendly as the input files, therefore editing a restart file should be 

avoided. If it is necessary, one can match the variable names in the 

write_out subroutine in auxiliary module and the restart file and update the 

required values. 

Terminating a Run 

Usually the run executes until the user defined iteration level is 

reached and quits running. In some occasion it may be necessary to stop a 

run before the maximum iteration number is reached. You can simply use 

Control-C for a hard stop. However, in this situation you loose all the data 

you have obtained so far for that particular run. Also since the output files 

are replaced once a new run is started, the output files may not contain the 

full information once the run is terminated. If you like to stop a run without 

loosing any information, open the stop.dat file in the input folder and replace 

the letter F (False) with T (True). Save this file and close it. At the next check 

point of the run, this file will be read and the execution will terminate 

smoothly as it reached the maximum iteration level. The stop check is done 
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every time the output files are updated. Therefore it is checked 200 times 

during a run. It may be checked more occasionally but this approach affects 

the speed of the execution. 

Flow Structure 

The main code is called the PTLFlow. This is the coordinating main 

program. It calls all the other subroutines. 

Modules and Subroutines 

There a several modules, which holds the relevant subroutines 

together. This improves the modularity of the code. It is very easy to include 

or exclude individual modules depending on the results needed.  

mod_Auxilary: Includes all the subroutines required for main program 

to communicate with the user and also sets up the initial conditions for the 

flow. 

mod_Boundary: Includes the subroutine to set the boundary 

conditions for coughing case. 

mod_Cough: Includes to subroutines, to select a random cough signal 

and apply the corresponding boundary condition. 

mod_OneD: This module includes all the subroutine for the solution of 

one dimensional flow. The subroutines in this module were translated the 

original one-dimensional code (GFS-1D) into Fortran90. 
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mod_Parameters: Keeps the global variables for maximum array 

declarations. 

mod_PBM: Includes the subroutines related with particle breakup 

process. 

mod_PGEM: Includes the subroutines related with particle entrainment 

model. 

mod_precision: A parameter file to set up the precision level for the 

entire program. The code can easly be run as a single or a double precision 

by modifying this module. 

mod_random: Includes the generic pseudo random generation 

subroutines. It is used to randomly select the cough signal and also randomly 

slect droplet size during the breakup process. 

mod_SetBC:  Includes the subroutines to set the boundary conditions. 

mod_TDMA: Includes TDMA solver. 

mod_TKE: Includes the subroutine to solve the integral turbulent 

kinetic energy equation. 

mod_TwoD: Includes subroutines to generate the two-dimensional 

flow field. 

mod_variables: Includes all the global variables used commonly in all 

the subroutines. 
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Variables 

All global variables are defined in the mod_Variables module. These 

variables are accessible from each subroutine, which includes the 

mod_Variables module. This eliminates the passing of commonly used 

variables between the subroutines and also decreases the memory usage by 

using only one memory location for these variables. All local variables used 

within a particular subroutine are defined within the subroutine. 
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