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Problem: Safety management literature generally categorizes key performance indicators (KPIs) as either
leading or lagging. Traditional lagging indicators are measures related to negative safety incidents, such
as injuries, while leading indicators are used to predict (and therefore can be used to prevent) the like-
lihood of future negative safety incidents. Recent theory suggests that traditional lagging indicators also
possess characteristics of leading indicators, and vice versa, however empirical evidence is limited.
Method: The current research investigated the temporal relationships among establishment-level inju-
ries, near misses, and fatal events using injury and employment data from a sample of 24,910 mining
establishments over a 12-year period. Results: While controlling for employee hours worked,
establishment-level reported injuries and near misses were associated with of future fatal events across
the sample of mines and over the time period studied. Fatal events were also associated with increases in
future reported near misses, providing evidence of a cyclic relationship between them. Discussion: These
findings challenge the strict categorization of injuries, near misses, and fatal events as lagging indicators.
Practical applications: Understanding the KPIs that should be used to manage organizational safety, and
how they can be used, is of critical practical importance. The results of the current study suggest that,
depending on several considerations, metrics tied to negative safety incidents may be used to anticipate,
and possibly prevent, future negative safety events.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.
1. Introduction

Although key performance indicators (KPIs) are fundamentally
important to organizational safety management and a wealth of
theory and practical guidance surrounding KPIs has been pub-
lished, consensus has yet to be achieved regarding the basic ele-
ments of their definitions, nature, and utility (Almost et al., 2018;
Sinelnikov, Inouye, & Kerper, 2015; Reiman & Pietikäinen, 2012).
The safety management literature generally groups KPIs into lead-
ing or lagging categories. Traditional lagging indicators are mea-
sures related to negative safety incidents such as injuries.
Conversely, leading indicators, such as management practices,
safety culture, and safety climate, are used to predict the likelihood
of future lagging indicators and, therefore, can be used to antici-
pate and prevent future negative safety incidents (Grabowski,
Ayyalasomayajula, Merrick, & McCafferty, 2007). Given these char-
acteristics, increased emphasis has recently been placed on the
importance of leading indicators within organizational safety man-
agement (Almost et al., 2018; Bitar, Chadwick-Jones, Lawrie,
Nazaruk, & Boodhai, 2018; Nazaripour, Halvani, Jahagiri,
Fallahzadeh, & Mohammadzadeh, 2018).
1.1. Problem

Recent research has challenged the notion that leading and lag-
ging indicators neatly conform to their traditional characteristics
(Lingard, Hallowell, Salas, & Pirzaheh, 2017; Kongsvik, Johnsen, &
Sklet, 2011; Payne, Bergman, Beus, Rodriguez, & Henning, 2009).
Specifically, theory and evidence suggest that incidents and inju-
ries (traditionally classified as lagging indicators) are also able to
predict a significant portion of the variability in future levels of tra-
ditional leading indicators. Thus, metrics traditionally defined as
lagging indicators may possess characteristics of both lagging
and leading indicators. The objective of the current research was
to explore the temporal relationship between traditional lagging
indicators using a large longitudinal, establishment-level injury
surveillance database, thereby further informing the ongoing dis-
cussion related to the concept and use of KPIs in organizational
safety.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsr.2020.06.018&domain=pdf
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1.2. Theoretical background

How to measure organizational safety has been, and continues
to be, an important question for organizations around the globe.
The types of KPIs that should be used to measure organizational
safety have been debated by safety theorists, researchers, and prac-
titioners (BSI, 2018; Parmenter, 2015; Podgórski, 2015; ILO, 2001).
Numerous KPI frameworks specific to organizational safety have
been proposed (e.g., Bitar et al., 2018; Nazaripour et al., 2018;
Haas & Yorio, 2016; Podgórski, 2015; Sinelnikov, Inouye, &
Kerper, 2015; Laitinen, Vuorinen, Simola, & Yrianheikki, 2013;
Reiman & Pietikäinen, 2012; Körvers & Sonnemans, 2008; ILO,
2001). With few exceptions, most of these proposed frameworks
broadly categorize KPIs as either lagging or leading.

Lagging indicators represent outcomes of events that have
already happened. In the context of organizational safety, tradi-
tional lagging indicators are those that reflect the frequency and/
or severity of negative safety incidents such as loss of property
or injuries. Alternatively, leading indicators are used to predict
the likelihood of future lagging indicators or objective levels of
safety performance. Thus, they provide actionable information that
can be used to prevent future negative safety incidents (Sinelnikov
et al., 2015; Grabowski, Ayyalasomayajula, Merrick, & McCafferty,
2007). Examples of traditional leading indicators include the fre-
quency and quality of management practices; the values, attitudes,
and beliefs related to safety within the organization; worker per-
ceptions of the importance and priority that workplace safety has
in an organization; and observable safe and healthy behaviors
(Lingard et al., 2017; Hinze, Thurman, & Wehle, 2013).

Historically, incidents and injuries (i.e., lagging indicators) have
represented the most common performance indicator of organiza-
tional safety (Reiman & Pietikäinen, 2012; Grabowski et al., 2007).
Within the last decade the importance of leading indicators has
been emphasized as the drawbacks of relying on lagging indicators
have been voiced (Bitar et al., 2018). The most commonly voiced
criticism is the argument that,while lagging indicators are generally
less resource-intensive to obtain, they only provide information
about negative safety events that have already occurred and are
not useful for predicting or anticipating future negative events
(Bitar et al., 2018; Brauer, 2016; Hinze et al., 2013; Grabowski
et al., 2007; Chen & Yang, 2004). Nazaripour et al. (2018) argued
that, ‘‘lagging indicators such as incident statistics are passive and
do not have the ability to predict possible incidents” (p. 285). With
this assumption inmind, Grabowski et al. (2007) argued that a focus
on ‘after-the-fact’ lagging indicators may convey the message that
preventing future incidents and injuries is less important.

In recent years, however, the academic literature has provided
some evidence that the time dependent, causal dichotomy
between traditional leading and lagging indicators may not be
black and white (e.g., Lingard, et al., 2017; Haas & Yorio, 2016;
Kongsvik et al., 2011; Payne et al., 2009). Through a literature
review and theoretical reasoning, Payne et al. (2009) argued that
safety climate, a traditional leading indicator, is both a leading
and lagging indicator of organizational safety outcomes. This find-
ing was also supported in an analysis of KPIs conducted by Haas
and Yorio (2016). As a leading indicator, safety climate represents
perceptions of the priority of safety in the workplace that, in turn,
drives expectations regarding appropriate behavior. Therefore,
safety climate should influence the occurrence or non-occurrence
of occupational incidents and injuries. The recognition that safety
climate can also function as a lagging indicator, however, acknowl-
edges that worker perception of the priority of workplace safety
can be influenced by incidents and injuries previously witnessed
or experienced within an organization.

Likely due to research design complexity, only two published
empirical studies were found that directly examined these
assertions. In the context of the oil and gas industry, Kongsvik
et al. (2011) examined the relationship between safety climate
and incidents in 28 offshore installations. The study gathered inci-
dent information for a 12-month period, measured the safety cli-
mate perceptions of 2188 oil and gas workers, and then tracked
incident events over the next 12 months. The authors found that
safety climate significantly predicted incident events that occurred
in the 12 months following the survey. They also found that the
incident events that had occurred during the preceding 12 months
significantly predicted safety climate. Given the results, the
authors concurred with Payne et al., (2009) and concluded that
safety climate can act as both a leading and lagging indicator of
incident events in the oil and gas industry.

In a separate study, Lingard, Hallowell, Salas, and Pirzadeh
(2017) collected five years of leading and lagging safety metrics
from a single infrastructure project. They found that expected lead-
ing indicators (e.g., number of toolbox talk meetings, behavioral
observations, and audit results) could be used to significantly pre-
dict future injury rates. They also found that injury rates could be
used to significantly predict future changes in, for example, the fre-
quency of toolbox talks, audits, procedural reviews, and behavioral
observations. The authors concluded that the traditional assump-
tions underpinning the leading and lagging terms should be
reconsidered.

This limited empirical evidence suggests that traditional lead-
ing indicators can be predicted by—and, therefore, can ‘lag’
behind—lagging indicators. It also suggests that traditional lagging
indicators can be used to predict other indicators of organizational
safety. Although there are several studies that force us to question
the traditional theoretical notions of the leading and lagging
framework, they are limited in scope by both the number of estab-
lishments/projects studied and/or the length of time studied.
1.3. Research question

To that end, the current study further addressed the notion of
organizational KPIs being interdependent and, perhaps, cyclical.
The current study presents the results of statistical models
designed to examine whether occupational injuries and near
misses can be used to predict the probability of future fatal
events—and vice versa—using safety information from 24,910 min-
ing establishments over a 12-year period. This research design
allows us to directly examine whether traditional lagging indica-
tors are associated with future fatal events, and if fatal events are
associated with future counts of injuries and near misses, thereby
further informing the ongoing discussion related to the concept
and use of KPIs in organizational safety. Within this context,
exploring the prospect of a predictive relationships between OSH
incidents over time is not synonymous with an examination of
causation. Rather, an examination of prediction—through adjusted,
longitudinal regression models within the sample over the time
period studied— quantifies the relationship between
establishment-level lagging indicators and the negative safety
events that preceded them.
2. Methods

2.1. Databases used for analysis

Publicly available data collected and maintained by the Mine
Safety and Health Administration (MSHA) were used to examine
the research question. For each year between 2006 and 2017, the
MSHA Mine Address and Employment (AE) and the Mine Incident,
Injury, and Illness (AII) databases were obtained from MSHA’s
online statistics portal (MSHA, 2019). MSHA databases were
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selected because of the detail provided for negative safety events
and the employment statistics they provide for each mining estab-
lishment in the United States. Because the databases include a
fixed unique mine identification code, events and employment at
each mine can be tracked over time.

2.1.1. AE database
The AE database is created from a required mine-level quarterly

report (MSHA Form 7000-2) and is essentially a list of all the exist-
ing mines within the United States. Each case within this database
represents information for a single mine and includes variables
that denote, for example, the mine identification code, the geo-
graphic location of the mine, whether the mine was active or inac-
tive, hours worked throughout the year, and other employment
statistics. A distinct AE database is available for each year given
that the number and status of mines can change over time.

2.1.2. AII database
The AII database includes each reportable occupational safety

and health (OSH) incident that a mine experienced during the
course of a given year. Each case within the database represents
an individual OSH incident and, therefore, each case exists at the
individual worker level. However, each reportable OSH incident
is linked to a specific mine through their unique mine identifica-
tion code, as assigned by MSHA. Using the MSHA-required form
7000-1 (MSHA’s Mine Incident, Injury, and Illness Report), mines
must record and report each of the following events:

� fatality
� injury with the potential to cause death
� worker entrapment of 30 min or more
� unplanned mine inundation by liquid or gas
� unplanned ignition or explosion of dust or gas
� unplanned mine fire not extinguished within 30 min of
discovery

� unplanned ignition of a blasting agent or explosive
� unplanned roof fall; a coal or rock outburst that causes the
withdrawal of miners

� unstable condition at an impoundment, refuse pile, or culm
bank

� hoisting equipment failure or damage
� off-site injuries due to an incident event

This list includes incidents that resulted in worker injury as well
as events that did not result in an injury but could have (i.e., a near
miss). Within the AII database, there are numerous variables asso-
ciated with each reported incident. For example, the degree of
injury variable codes each OSH incident as a fatal injury, an injury
that resulted in a permanent disability, an injury that resulted in
days lost or restricted duty (herein referred to as days lost injuries),
or a reportable injury (those without lost or restricted days), or a
near miss.

Each of the datasets demarcated by year were summarized indi-
vidually. For each mine, the total number of fatalities, near misses,
and each type of injury was summed. Given that the AII database
includes information only if a mine reported an OSH event during
a given year, an active and operating mine with zero reportable
OSH incidents during a given year would not have any associated
cases in the AII database. To correct this, all active status mines
were isolated using the AE databases for each year during the time
period studied. The number of fatalities, permanently disabling
injuries, days lost injuries, near misses, and total number of lost
and restricted days each mine experienced were added to the set
of active mining establishments. Zeros were then imputed for each
of the OSH incident variables for the years in which a mine was
active but had no case identified within the AII database.
2.2. Aggregated database

Given that the research question of interest was to examine if
OSH incidents could be used to predict future fatalities, new vari-
ables reflecting the mine-level, one-year lagged counts of injuries,
and near misses were created. This step allowed fatalities that a
mine experienced during a given year to be included in the same
row as the counts of OSH incidents the same mine experienced
in the preceding year. In order to examine for the presence of a cyc-
lic relationship, a lagged fatalities variable was also created. The
resulting database included lagged and unlagged mine level counts
of fatalities, injuries, and near misses by year.

The resulting database included 24,910 distinct mining estab-
lishments that were active during the designated time period:
4511 coal mines (18.1%); 770 metal mines (3.1%); 1155 nonmetal
mines (4.6%); 6930 stone mines (27.8%); and 11,544 sand and
gravel mines (46.3%). The average number of mine-level yearly
hours worked during the time period was 35,972.29
(SD = 136,163.19).

Within the dataset of active mines, there were 469 fatalities,
83.58% (N = 392) of which were cases in which a mine experi-
enced a single fatality in a single year. Given this distribution,
counts of fatalities each establishment experienced for each year
were dichotomized: 0 if no fatal event was experienced, and 1 if a
mine experienced one or more fatalities in a given year. This step
operationalizes the dependent variable as a fatal event rather
than counts of fatalities and thereby eliminates possible statisti-
cal bias that may be introduced in the instance that a single
event caused multiple fatalities. To illustrate, the Crandall Canyon
Mine incident in 2007 in which nine mine workers died and the
Upper Big Branch Mine incident in 2010 that resulted in 29 mine
worker fatalities were both recoded as a 1 to represent a single
fatal incident. Table 1 shows the sum, mine-level average,
standard deviation, and minimum/maximum for each of the
OSH metrics reported by the sample of mines. The table shows
that there were 469 fatalities and 413 fatal events after
dichotomization.
2.3. Analytical approach

Two sets of models were used to examine the temporal rela-
tionships between establishment level injuries, near misses, and
fatalities. Given that repeated measures of yearly establishment-
level metrics resulted in a nested dataset, four longitudinal logistic
statistical models were initially used to estimate the change in
probability for an establishment to experience a fatal event in a
given year as a function of counts of OSH incidents in the previous
year (t–1). The models were fit in IBM SPSS version 25 using gen-
eralized estimating equations (GEE)—a form of generalized linear
models that accounts for statistical dependence among sets of
observations resulting from repeated measures over time. Given
that increased employee hours worked may also theoretically
increase the probability of a fatal event, each of the models con-
trolled for mine level counts of hours worked during the same year
of the dependent variable (fatal events).

Within the four models, each of the incident variables (i.e.,
permanent disabling injuries; days lost injuries; reportable inju-
ries; and near misses) were entered as independent variables
predicting the probability of a subsequent fatal event year while
controlling for employee hours worked. Models 1 – 4 took the
form of:

logitðP fatal eventi;t
� �¼B0þB1 number of injuriesof givendegreeð Þi;t�1

þB2 �logðemployeehoursworkedÞi;t



Table 1
Descriptive statistics for 2006–2017 OSH metrics used in the model.

Variable Total Mine-Level average Standard Deviation Minimum/Maximum

Fatalities—before dichotomization 469 <0.01 0.09 0/29
Fatalities—after dichotomization 413 <0.01 0.05 0/1
Permanently disabling Injuries 1010 0.01 0.08 0/4
Days lost injuries 60,735 0.34 1.92 0/155
Reportable injuries 29,534 0.16 0.94 0/69
Near Misses 13,754 0.08 0.94 0/95

Table 2
Longitudinal Logistic Regression Results—Establishment level fatal events predicted by prior year counts of injuries and near misses.

95% Confidence
Interval for the
Odds Ratio

Model Predictor B Std. Error Wald Chi-Square Significance Odds Ratio Lower Upper

Model 1 Prior Year Disabling Injuries 0.12 0.16 0.56 0.45 1.13 0.83 1.54
Model 2 Prior Year Days Lost Injuries 0.02 0.01 4.74 0.03 1.02 1.01 1.03
Model 3 Prior Year Reportable Injuries 0.04 0.02 5.96 0.01 1.04 1.01 1.07
Model 4 Prior Year Near Misses 0.03 0.01 8.98 <0.001 1.03 1.01 1.05

Note: In each of the Models 1–4 the log of total hours worked variable was a significant, positive, and strongest predictor of fatal events at the p < 0.001 level. All models were
equivalent when using the raw counts (N = 469) in count regression models.

Table 3
Longitudinal Count Regression Results—Establishment level counts of injuries and near misses predicted by prior year fatal events.

95% Confidence
Interval for the Risk
Ratio

Model Outcome B Std. Error Wald Chi-Square Significance Risk Ratio Lower Upper

Model 5 Disabling Injuries 0.19 0.18 1.12 0.29 1.21 0.80 1.70
Model 6 Days Lost Injuries 0.80 0.05 2.39 0.12 1.08 0.94 1.19
Model 7 Reportable Injuries 0.12 0.07 3.03 0.10 1.12 0.97 1.25
Model 8 Near Misses 0.51 0.15 12.14 <0.001 1.67 1.25 2.22

Note: Grounded in an analysis of fit statistics, longitudinal (Generalized Estimating Equations) negative binomial count regression models were used to estimate the results.
In each of the Models 5–8 the log of employee hours worked was significant, positive, and the strongest predictor of injuries and near misses at the p < 0.001 level.
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Within the model, i is the individual mining establishment, and
t is the year. Each of the models allows for a single odds ratio to be
generated for each of the OSH incident types for the time span. In
all models, the injury and near miss predictor variables were
entered into the regression equation untransformed to allow for
straightforward interpretation of the results. The interpretation
of each exponentiated regression coefficient (i.e., the odds ratio)
represents the change in probability for a mining establishment
to experience a fatal event in a given year for every single addi-
tional OSH incident in a previous year.

Four additional longitudinal statistical models were used to
examine for evidence of a cyclic relationship between fatal events
and injury counts and near misses. Within the four additional
models, each of the incident variables (i.e., permanent disabling
injuries; days lost injuries; reportable injuries; and near misses)
were regressed on fatal events at t-1 while controlling employee
hours worked. Models 5–8 were as follows:
logðP number of injuries of a given degreei;t
� �

¼ B0 þ B1 fatal eventð Þi;t�1 þ B2 � logðemployee hours workedÞi;t
Similar to the longitudinal logistic models, each of the models

allows for a single risk ratio to be generated that summarizes the
predictive effect of a fatal event on subsequent year counts of inju-
ries and near misses for the time span. The interpretation of each
exponentiated regression coefficient in this case represents the
change in probability for a mining establishment to report a near
miss or injury type depending on whether a fatal event occurred
in the previous year. Like the previous models, these effects are
derived while controlling for the log number of hours worked.
3. Results

Table 2 reports the results of Models 1–4 in which fatal events
were predicted by previous year counts of injuries and near misses
while controlling for the log of the total number of hours worked.
Within these models, the effect of disabling injuries on future fatal
events was not significant. While controlling for the log of hours
worked, days lost injuries, reportable injuries, and near misses
were significantly associated with future fatal events: days lost
injuries, Odds Ratio (OR) = 1.02, p = 0.03; reportable injuries,
OR = 1.04, p = 0.01; and near misses, OR = 1.03, p < 0.001. This
implies that there was a 2% increase in the probability for an estab-
lishment to experience a fatal event for each additional days lost
injury, a 4% increase for each reportable injury, and a 3% increase
for each near miss.

Table 3 shows the results of Models 5–8 in which fatal events
were used to predict future counts of injuries and near misses.
While controlling for the number of hours worked, only the num-
ber of reported near misses (Model 8) was significantly influenced
by whether a fatal event was experienced in the preceding year
(Risk Ratio = 1.67, p < 0.001). This implies that there was a 67%
increase in the likelihood of a reported near miss if a fatal event
occurred in the previous year over the time period studied. Models
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5–7 suggest that counts of the remaining injury categories (dis-
abling, days lost, and reportable injuries) were not systematically
influenced by the occurrence of a fatal event in the preceding year.
4. Discussion

While controlling for the total number of employee hours
worked in the context of the mining industry, increased counts
of reportable injuries, days lost injuries, and near misses were sig-
nificantly associated with fatal events in future years over a 12-
year period across 24,910 establishments. These findings share
some commonalities with similarly situated longitudinal statistical
models using data from an overlapping, but distinct sample of
mines during the 2000–2012 time period (Yorio & Moore, 2018).
Collectively, both studies provide strong evidence that traditional
lagging indicators can be used to predict future indicators of orga-
nizational safety. The results are consistent with the fundamental
conclusions drawn by Payne et al. (2009), Kongsvik et al. (2011),
Lingard et al. (2017), and Haas and Yorio (2016) that highlight
potential limitations of the traditional terminology.

Evidence of a cyclic relationship was found between fatal events
and near misses. This finding suggests that following a fatal event,
mine workers are much more likely to report occurrences of near
miss events; and increased reports of near misses are associated
with an increased probability of a future fatal event.

Although the results of the study can be used to inform the
ongoing dialogue regarding terms used to describe KPIs important
to the organization, the utility of incidents and injuries as predic-
tive indicators remains open to debate and is subject to future
research. In what follows is a discussion regarding the potential
utility of using incident and injury data as a leading indicator in
lieu of findings of the current and previous studies.

4.1. Near misses and fatal events

Interestingly, previous theoretical work has shown that near
miss incidents share properties with both traditional leading and
lagging indicators. They are unwanted and unplanned incident
events that did not result in an injury but, under slightly different
circumstances, could have (Sinelnikov, Inouye, & Kerper, 2015).
Although some theorists argue that near misses share more in
common with a traditional leading indicator given the absence of
an injury event (e.g., Hinze et al., 2013), with respect to near miss
instances that resulted in damage to materials, machinery, equip-
ment, and/or the work environment, a loss event and/or negative
outcome related to organizational safety has occurred. In these cir-
cumstances, near misses possess properties consistent with tradi-
tional lagging indicators. In the context of mining, the reporting
of near misses is mandated for serious incident events such as roof
and face falls, unplanned explosions, and hoisting equipment fail-
ures—all of which involve some type of loss event that did not
result in an injury event. Both the current study and Yorio and
Moore (2018) found that near misses were significantly associated
with future fatal events. The current study also found that reported
near misses were substantially higher for establishments that
experienced a fatal event in the preceding year. This empirical find-
ing of a cyclic pattern between fatal events and near misses over
time is consistent with notions that they theoretically possess
properties of both traditional leading and lagging indicators.

4.2. Injury counts and fatal events

Although evidence of a cyclic relationship was not present for
days lost and reportable injuries, while controlling for employee
hours worked, increased counts of both days lost and reportable
injuries were significantly associated with future fatal events.
These findings were in contrast with the results of Yorio and
Moore (2018) these effects were not significant. Also distinct from
the current study, Yorio and Moore (2018) found a significant
effect for counts of permanently disabling injuries. The fact that
different periods of time and an overlapping but distinct sample
of establishments resulted in these distinctions, questions the
notion of a systematic relationship between their occurrence and
future catastrophic incident events. However, the effect of tradi-
tional leading indicators (e.g., safety climate) on future fatal events
is largely anecdotal (see Christian, Bradley, Wallace, & Burke, 2009
for a review of the outcomes involved in safety climate empirical
studies to date) and chance variations are theoretically expected
to disrupt a consistent and systematic effect on future incident
and injuries (Zohar, 2010). Thus, although some inconsistencies
were found between distinct samples and time frames, when both
the current study and Yorio and Moore (2018) are considered, the
fact that days lost injuries, reportable injuries, and permanently
disabling injuries were found to, at some point, be significantly
associated with future fatal incidents provides evidence that they
possess properties of predictive indicators.

4.3. Comparing findings from other industries

A handful of studies outside of the mining industry have also
found relationships between injuries and future catastrophic inci-
dent events. In the construction industry, for instance, efforts to
bring residual low-injury numbers (close) to zero led to a greater
likelihood of fatalities (Saloniemi & Oksanen, 1998; Sheratt &
Dainty, 2017). One explanation for the negative relationship is that
the pressure to show low numbers of injuries can help create cul-
tures of risk secrecy in which incident potential is allowed to build
up behind an image or façade of low injury numbers (Turner,
1978). A similar finding was revealed within the commercial avia-
tion industry (Dekker, 2011; Amalberti, 2001; O’Leary & Chappell,
1996). These researchers found that the number of incidents
reported was found to be significantly and negatively predictive
of fatalities. Another cross-industry study (Mendelhoff & Burns,
2013) found that higher fatality rates in the majority of U.S. states
were associated with low nonfatal injury rates, and vice-versa.

Differences in the direction of the predictive relationship
between counts of injuries and future catastrophic incidents high-
light complexities involved in their empirical relationship. The cur-
rent results compared with results of previous studies in high-risk
industries demonstrate that the strength and direction of the
empirical relationship between injuries and future KPIs may lar-
gely depend on the industrial setting of the empirical study, the
norms related to managerial responses to workplace injury, the
frequency with which the outcome(s) takes place, the number of
months/years of lag time, and the outcome used in the empirical
study. Given the nature of the surveillance dataset used, the cur-
rent study considered fatal events—a relatively rare event—as the
foci around which temporal associations with injuries and near
misses were examined.

When the relationship between fatal events and injuries/near
misses are contemplated, a few considerations should be reflected
upon. First, the time lag chosen may influence the effect found. Lin-
gard et al.’s, (2016) finding that a systematic cyclic relationship
between injuries and traditional leading indicators over time, sug-
gests a positive or negative relationship may be uncovered
depending on the exact time lag chosen between measurements.
Although the pattern of OSH incidents and their interrelationships
with safety climate and/or the frequency of management practices,
as a function of time is largely theoretical, the general notion that
choosing different time lags (e.g., weeks, months, or years) may
result in effects of different directionality is intriguing. Thus, strong
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theory and reasoning may be needed to support directional
hypotheses between counts of injuries and future KPIs in context
specific studies.

Second, managerial interventions to identify and correct the
root causes of injuries and illnesses can alter the likelihood of
future negative events of the same cause that may have occurred
in the future. The importance of a direct link through common
cause has been routinely identified within the literature. For exam-
ple, Bellamy (2015), concluded on the basis of 23,000 serious
reportable incidents that low-severity, high-frequency incidents
can provide information about the direct and underlying causes
of high–severity incidents—but only within the same hazard cate-
gory. The notion that most safety incidents and low severity inju-
ries do not share common causes with high severity incidents has
led to policy conclusions that managing low severity injury events
with the goal of preventing future fatalities may not be effective.
For example, the Chemical Safety Board (CSB) found that the ‘‘BP
Texas City explosions was an example of a low-frequency, high-
consequence catastrophic incident. Total recordable incident rates
and lost time incident rates do not effectively predict a facility’s
risk for a catastrophic event” (CSB, 2007, p. 202). Based on its
investigation, the CSB advised that regulatory inspection targeting
should not rely on traditional injury data.

In theory, however, managerial efforts to correct root causes can
influence the occurrence of future negative events even when the
causes are not consistent in lieu of several mitigating factors. For
example, if a strict focus on low severity incidents decreases or
eliminates efforts to control the risks related to fatal events—the
probability of future catastrophic safety events may increase. In
addition, the influence of OSH incidents on safety climate and cul-
ture may also play a mitigating role in the absence of a common
cause. For example, as theorized by Payne et al. (2009) and demon-
strated by Kongsvik et al. (2011), safety climate perceptions can be
influenced by previous negative safety incidents, which, in turn
may increase the probability of a future catastrophic incident
regardless of cause. Alternatively, one must also consider the
potential benefit of implementing corrective actions for lower
severity events that occur more frequently. Because these events
occur more frequently, they offer an organization the opportunity
to exercise key behaviors incorporated within the SHMS and to col-
lect routine data that can be used to evaluate the effectiveness of
this system. Moreover, the interest in characterizing and correcting
these events will undoubtedly impact worker perceptions on an
organization’s view of safety and health as a priority. Collectively
the challenge may be for organizations to find a balanced invest-
ment strategy—perhaps one that does not over-invest in low sever-
ity events while ignoring non-common risks that could result in a
future fatal event; while at the same time not ignoring the poten-
tial benefits of leveraging the more frequently occurring lower
severity events for the benefit of safety climate and culture and
exercising response behaviors included within the SHMS.
5. Limitations, conclusions and directions for future research

A few important limitations and directions for future research
should be highlighted. First, we relied solely on reported
establishment-level metrics included within the MSHA database
between 2006 and 2017. A consistent limitation when using this
type of surveillance data is the potential for underreporting, and
perhaps increased error variance in reporting due to potential
changes of mine ownership and reporting norms over time.

Second, the primary goal of the study was to examine for
mere evidence of a significant association between traditional
lagging indicators on future lagging indicators and no direct
empirical examination was made regarding the reasons behind
the relationship. As implied, the predictive relationship between
OSH incidents and fatalities—or vice versa in the case of near
misses—does not argue that direct causation between the two
can or should be made. Logically OSH incidents should not be
understood to directly cause the occurrence of a future fatal
event in the context of this research. Most traditional leading
indicators (e.g., management communications, training, safety
climate, toolbox talks, pretask safety audits) also do not directly
cause a future incident. In both instances, there are unmeasured
proximal/indirect mechanisms through which a prediction is
realized. Future studies may be designed to empirically focus
on the indirect mechanisms through which OSH incidents influ-
ence future negative events.

Given the nature of the surveillance dataset used, the current
study considered fatal events—a relatively rare outcome—as the
foci used to examine the temporal relationship with injuries
and near misses. Therefore, a level of temporal association
among fatal events and injuries and near misses was not certain
and the small effect sizes observed for most of the relationships
is not surprising. Future studies may examine the predictive
effects of fatal events, injuries, and near misses on KPIs with
greater variability such as safety climate (Payne et al., 2009).
No such examination could be made in the current study given
that metrics related to traditional leading indicators are not
included within the MSHA databases.
6. Practical applications

The purpose of this research was to explore the empirically
grounded theoretical assertions that questions the traditional
notions of KPIs used in OSH management (Lingard et al., 2017;
Haas & Yorio, 2016; Kongsvik et al., 2011; Payne et al., 2009).
Through predictive models based on data from a sample of
24,910 mining establishments over a 12-year period, increased
instances of establishment-level injuries and near misses were
found to be significantly associated with future fatal events. Given
the critical importance of identifying metrics that can be used to
predict occupational fatalities, these findings have significant prac-
tical implications. The finding that fatal events trigger significant
increases in reported near misses highlights the impact these
events can have on management and worker awareness, percep-
tion, and the importance attributed to reporting and sharing near
injury events.

These findings support previously voiced notions that the tem-
poral relationships among organizational safety indicators may be
more complicated than previously understood. Given the broad-
based appeal and use of the leading and lagging typology in prac-
tice, the degree to which these findings, and other supporting
research, can have a practical impact is yet to be decided. Almost
certainly, additional research is needed to theoretically develop
OSH KPI frameworks that do not integrate the nuances associated
with the leading/lagging terminology. Building from the theoreti-
cal work of Juglaret et al (2011), Haas and Yorio (2016) empirically
developed indicator categories that were neither explicitly catego-
rized based on time nor causally related. In doing so, they argued
that the newly developed categories are ideally positioned to man-
age the full breadth of SHMS practices, while satisfactorily recog-
nizing OSH and its management as a complex, emergent
property of an organization. The work of Haas and Yorio (2016)
demonstrates that the potential for alternative frameworks do
exist, the utility of which may be considered from a practical per-
spective in the future.
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