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ABSTRACT

Performance of secondary task i.e. dual task affects certain aspects of gait, but the relationship between gait variability and
dual tasking is not well understood. This study evaluated the effects of the dual-task paradigm on measures of movement
variability changes in two healthy age groups. Seven young (age 22.6+2.5 years, height 170.3+9.3 cm and weight 69.6£15.5
Kgs) and seven old participants (age 71.14+6.5 years, height 174.5+10.2 cm and weight 78.5£18.2 Kgs) were recruited for
this study. Since cognitive task such as mental arithmetic tasks (for example counting backwards by subtracting three digits)
are self-generated, and are performed with selected spontaneous rhythm, so are used as secondary task while walking. An
inertial measurement unit was affixed at sternum level and anterior-posterior angular velocities were used for determining
stride intervals and peak accelerations during each stride. It was found that healthy older adults have significantly higher
dynamic stability (p<0.01) and we also found that dual-tasking significantly increases complexity in stride interval time
signals in both young and older adults (p=0.01). In conclusion the findings of this study elucidate that dual-task related
changes in gait compensate with movement variability but may not predispose healthy young and older adults to falls.
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INTRODUCTION

Human movement variability may be defined as normal variations that occur while performing motor
task across multiple repetitions [1]. A person being persistent and lacking variability in movement may
indicate rigidness or inflexible motor behaviors and may have limited adaptability towards changing
task and environmental demands, whereas greater than optimal variability characterizes human
movement as noisy and unstable. An optimal amount of variability may be defined as the amount of
variability necessary for healthy biological systems to be adaptable and flexible in unpredictable and
ever changing environments. With aging there are several changes in muscle properties that, may
influence movement execution. Some of these changes include reduced muscle cross section area[2]
with reduction in strength and fiber type distribution [3] which reduces the movement speed. There is
also decrease in motor units [4] and all these changes have implications for execution of movement in
old age[5]. Old age and frailty may result in reduction of muscle strength and force production, which
has a significant influence on movement trajectories and final position accuracy for rapid movements

[6].

In addition, age-related deficits are pronounced during dual-tasking [7, 8]. The inability to perform in
dual tasking has also been reported to increase risk of falls in older adults [9]. In older adults impaired
walking performance is associated with impaired cognitive performance in dual task walking [10]. It is
reported that frail older adults have higher variability of stride time while backwards counting [11],
which has been reported to be related to its rhythmic character and not wholly attributable to attentional
load. Although numerous studies have reported walking speed negatively influences stride time
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variability [12-15], despite suggesting that stride time is independent of walking speed [14, 15].
Hollman and colleagues [10] reported that older adults reduced their gait velocity by 20% and young
adults from 7-8% in dual task walking condition. They also found increase in 1.3-1.5% increase in
stride-to-stride variability in young adults and 2.9% in older adults, demonstrating that attention
demanding tasks have a destabilizing effect on gait and that attentional processes are involved in
walking. Dual-task is associated with slow speed may be because control of gait speed may involve
higher order cognitive systems. Some researchers have shown that gait speed is dependent on Prefrontal
Cortex (PFC) activation [16, 17] and others have linked gait speed with executive function [18]. Thus
walking and secondary task, compete for these shared neural networks, this leads to cognitive motor
interference (CMI) [19]. Gait speed and stride length are probably controlled by cortico-basal ganglia
circuit through thalamus [20, 21], whereas cadence is controlled by brainstem and spinal cord [22, 23].
Dual task methods can help to determine the cognitive demand of gait control and has been used by
many researchers [24, 25]. Dual-task related gait changes have been reported amongst several
populations however firm conclusions are lacking. The objective of this study was to determine how
nonlinear variability was influenced in healthy young and elderly during dual task overground walking.

METHODS

Participants: Seven young and seven old participants were recruited for this study. The younger
population consisted college students of Virginia Tech campus, and older adults were retired people in
Blacksburg area. The recruited participants were in a general good health condition, with no recent
cardiovascular, respiratory, neurological, and musculoskeletal abnormalities. All participants were first
familiarized with laboratory equipment’s and were provided a verbal explanation of the experimental
procedure. Participants were requested to wear laboratory clothes and shoes, fitting to their sizes. Height
and weight of participants were noted below the ID numbers assigned to the subject. This study was
approved by the Institutional Review Board (IRB) of Virginia Tech. All participants who participated in
this study provided written consent prior to the beginning of data collection. Demographic information
for the participants is provided in Table 1.

Protocol: The experiment was divided into two sessions: normal session and dual-task session (Figure
1). Each session was separated by 4 days and each participant was randomly assigned to either normal or
dual-task as his/her first session.

Participants were instructed to walk on square hallway with 20 meters straightway inside the
building continuously for 5 minutes at their self-selected pace. Participants were also instructed that they
have to walk uninterrupted and keep walking steadily in their self-selected pace. An experimenter
walked behind the participant with the Bluetooth enabled laptop and sheet of paper with list of numbers
starting from 1000 and serial subtraction of digit 3. Participant’s gait data were acquired using inertial
measurement (IMU) situated at the sternum level (Figure 2).

Dual task walking : This study used a clear and standardized cognitive task, such as serial subtraction
[26, 27]. This session was similar to normal walking session described above, except that the
participants were counting backwards when walking. The investigator told a random number (between
0-1000) before the walking trial and participants had to subtract the number by three continuously until
the end of trial. Participants performed 3 trials of walking. The investigator corrected the participants, if
error was made in counting backwards.
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Figure 1. Participants were assigned to normal or dual-task session randomly and the listed tests were conducted

Table 1 Background characteristics of study participants

Age Group

Old Young

Mean SD Mean SD
Age 71.143 6.5174 22643  2.5603

Height [cm] | 174.571 10.2446 170.376 9.3302
Weight [Kg]  78.559 18.2576 69.651  15.5270
BMI 25529 4.2731 23786  4.0004

Instrumentation: The IMU node consisted of MMA7261QT tri-axial accelerometers and IDG-300 (x
and y plane gyroscope) and ADXRS300, z-plane uniaxial gyroscope aggregated in the Technology-
Enabled Medical Precision Observation (TEMPO) platform which was manufactured in collaboration
with the research team of the University of Virginia [28, 29]. The data acquisition was carried out using
a Bluetooth adapter and laptop through a custom built program in LabView (LabView 2009, National
Instruments Corporation, Austin, TX). Data was acquired with sampling frequency of 120 Hz. This
frequency is largely sufficient for human movement analysis in daily activities, which occurs, in low
bandwidth [0.8-5Hz] [30]. The data was processed using custom software written in MATLAB
(MATLAB version 6.5.1, 2003, computer software, The MathWorks Inc., Natick, Massachusetts).

Figure 2: Attachment of IMU sensors at sternum level using Velcro strap.

Stride Interval Time series (SIT): The temporal fluctuations in stride intervals time series has been
widely used as a non-invasive technique to evaluate effects of neurological impairments on gait and its
changes with aging and disease[31, 32]. A customized MATLAB algorithm was used to identify peaks
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from gyroscope signals from trunk mounted inertial sensor. The time difference from one peak to the
other was considered as stride interval and all these consecutive intervals made up Stride Interval Time
Series (SIT) (Figure 3).

Signal Magnitude Difference Time series (SMD): The differences in peak heights of angular velocity
signals are categorized as signal magnitude differences. These differences in magnitudes of angular
velocity were used to construct a time series which was named as Signal Magnitude Difference (SMD)
Time series. The total length of SMD time series is one less than the total number of strides walked by
the subject.

Local dynamic stability computation: According to Taken’s theorem [33], any single dimensional
time series can be used to reconstruct a multi-dimensional state space via time-delayed coordinate
approach and this phase plot created contains information for the underlying dynamics of the system.

For each participant 50 continuous gait cycles were extracted from trunk anterior posterior angular
velocities and resampled to 5000 frames. Rosenstein’s algorithm was applied to compute average
divergences between neighboring trajectories in the reconstructed state space [34]. The nearest neighbor
points on separate strides diverge at a rate given by the max LE [35].

2(D) = (In[D;(D)])/At 1

Where Dj(i) is the Euclidean distance between the jth pair of nearest neighbors after i discrete time steps,
At is the sampling period of the time series data and <...> denotes average over all values ofj.

RESULTS

Variability analysis for 5-minute walk: Various nonlinear measures such as maximum Lyapunov
exponent, sample entropy and detrended fluctuation analysis (DFA) were evaluated for 5 minutes of
normal walking and dual-task walking data. It was also found that dynamic stability of older adults was
significantly higher than the younger counterparts (p=0.008) (Figure 4). But dual-tasking did not affect
dynamic stability while walking. We found that dual tasking increased sample entropy significantly in
both young and older adults (p=0.017).(Figure 5)

DISCUSSION

The findings support the use of inertial sensors as a tool for understanding variability in healthy young
and older adults and augments preexisting knowledge of variability structure in healthy young and
elderly. We found that elderly have higher dynamic stability than younger counterparts, which is
consistent with the findings of other previous studies[35]. Dynamic stability is measured by Lyapunov
exponent readily differentiated younger and older adults. Older individuals had significantly higher
maxLE exponents than younger adults (Figure 4). We also found that during dual task overground
walking both younger and older adults were found to have more complexity in SIT signals than that
during normal walking (Figure 5). This is in contrast to already reported results that dual-tasking
increases fall risk[36, 37].
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Figure 3: Schematic diagram of derivation of SID and SMD time series from angular velocity signals
from trunk IMU during walking on treadmill.
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Figure 5: Sample Entropy of SIT signals for normal and dual task condition

In fact, the reduced capacity to adapt to stress is attributed to the loss of complexity with aging
and disease [38]. This reduced complexity [38], is dependent on the nature of the intrinsic dynamics of
the system and one’s ability for short time adaptive change, which is required to meet an immediate task
demand is reduced [39]. This study has found that the complexity of participants was higher during
dual-tasking and therefore dual-tasking does not predispose both young and elderly to increased fall risk.
We also acknowledge that the study is limited with small population size and all the participants are
healthy. Previous studies have reported for elderly fallers or with any pathology like Multiple sclerosis
[36, 40]. The measures derived in this study serve as ground work for future research and will provide
an understanding of movement variability to reduce falls in frail older individuals, and in designing
effective interventions to reduce fall risk and establish a link between fall risk and variability in human
movement.
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CONCLUSIONS

Inertial sensors are appealing for unconstrained and non-invasive ambulatory measurements with
heuristic approach to summarizing variability measures. Previous studies on dual task suggest that older
individuals have stride-to-stride fluctuations, step width and stride time variability are influenced by
attention loading and are related to fall risk. This study concludes that probably dual-tasking does not
affect healthy human gait such to predispose it to fall risk. This study uses inertial sensors to provide
new insights into the factors that regulate gait variability in healthy young and older adults and the
practical application of measures of the variability in the clinical settings.
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