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Hand-Load Levels in Two-handed Anterior Carry
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INTRODUCTION

Carrying heavy hand loads frequently and for long
durations is a known risk factor for low back disorders.
Two-handed anterior carry is a common carrying posture
performed regularly at work places, but shows the
largest increase in anterior-posterior shear loading
compared to other carrying postures such as one-handed
carry, backpack carry, and shoulder carry. A two-handed
load of just 11.3 kg causes spinal shear loads to exceed
the recommended exposure limits and may potentially
damage spinal tissues (Rose, Mendel, & Marras, 2013).

Prediction of load levels remotely using the
wearable sensors could help quantify biomechanical
exposures from load carriage in situ particularly in jobs
where the duration and magnitudes of loads carried vary
across time (e.g., warehousing, and mail delivery). The
mode and magnitude of load carriage produces
biomechanical adaptations reflected in changes in
posture and gait patterns, specifically in the movement
coordination between the torso and pelvis (Lim &
D'Souza, under review). The mean relative phase angles
is a measure of coordination between multiple body
segments during complex, multi-joint movements
(Burgess-Limerick, Abernethy, & Neal, 1993).

The objective of this study was to build and validate a
statistical prediction algorithm that uses measures of
thoracic-pelvic coordination, namely, mean relative
phase angles, computed from body-worn inertial sensor
data for classifying hand-load levels in a two-handed
anterior load carrying task.

METHODS

Nine males participated in a laboratory experiment
carrying a hand load with both hands anteriorly
positioned down a levelled corridor for a distance of
24m. The participants first performed no-load walk
trials, followed by 4.5kg and 13.6kg walk trials,
presented in a random order. Each load condition was
performed twice consecutively. Body postural
kinematics were recorded using four commercial inertial
sensors (Opal, APDM Inc, Portland, OR, USA) attached

to the sixth thoracic vertebra (T6), the first sacral
vertebra (S1), and posterior-superior aspect of the right
and left shank midway between the lateral femoral and
malleolar epicondyles, respectively.

The classification developed involved 3 general
steps with the outcome variable as a load level (no-load,
4.5kg, or 13.6kg) for each gait cycle. First, individual
gait cycles were detected using a custom gait detection
algorithm adapted from Aminian, Najafi, Biila, Leyvraz,
and Robert (2002). Heel-strikes were detected from the
angular velocity (rad/s) obtained by the right and left
shank sensors, and consecutive right heel strikes were
labeled as one gait cycle. Second, mean thoracic-pelvic
relative phase angle in the transverse, sagittal, and
coronal planes were calculated over each gait cycle and
used as predictor variables. Relative phase angles were
calculated using angular velocity (rad/s) data obtained
from the torso (T6) and pelvis (S1) sensors. Third, the
classification of load levels were performed using the
Random forest technique (Breiman, 2001). Model
performance was evaluated by hold-out cross-validation
test repeated 20 times. Three measures of model
performance, namely, average prediction accuracy,
precision, and sensitivity were evaluated.

RESULTS
Model performance

The model correctly classified the load level in
85.2% (n = 685 of 804) of the validation trials. Table 1
summarizes the confusion matrix of the model along
with the precision and sensitivity values from 20 cross-
validation tests. Precision was similar in the No-load and
13.6 kg conditions at 90% and 91%, respectively, but
lower in the 4.5kg condition at 74%. Sensitivity was the
highest for the no-load condition at 95%, and the lowest
in the 13.6kg load condition at 71%.

Variable importance

The relative importance of predictor variables in the
classification model was examined by calculating the
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Gini impurity Index (Strobl, Boulesteix, Zeileis, &
Hothorn, 2007). Mean thoracic-pelvic relative phase
angle in coronal plane was found to be the most
important predictor variable (normalized to 100%)
followed by the transverse plane with a relative
importance of 79.5% and lastly the sagittal plane with a
relative importance of 66.3% compared to the coronal
plane.

Table 1. Confusion matrix showing the classification result for
load levels from each gait cycle data.

Predicted Load Level
No-load  4.5kg 13.6kg

Total Sensitivity

= No-load 304 12 4 320 95%
g g 4.5kg 12 193 15 220 88%
<~ 13.6kg 20 56 188 264 71%
Total 336 261 207 804
Precision 90% 74% 91%

DISCUSSION AND CONCLUSIONS

This study was performed as an initial step to
explore the potential of using inertial sensor-based
thoracic-pelvic coordination measures for hand-load
level classification. Prediction of load levels can be used
as an input to the low back compression/shear force
calculation (e.g., using the 3DSSPP software; Center for
Ergonomics, University of Michigan, MI, USA)
combined with postural angles, which can also be
obtained from the inertial sensors, to provide the
information on cumulative low back compression force
of the workers.

The sensitivity of the 13.6kg condition was
relatively lower compared to other load conditions. This
was due to the misclassification of 13.6kg condition as
4.5kg in 56 out of 264 gait cycles, and suggests that the
mean thoracic-pelvic relative phase angles may not be
discriminative in classifying load conditions between
two loaded conditions. Including additional predictor
variables (e.g., temporal parameters, body postural
angles) to the algorithm may improve the sensitivity of
the classification.

Segmenting a stream of sensor data can be
performed by either using a fixed time window or by

using an adaptive or dynamic time window. This study
used the latter by segmenting the time-series inertial
sensor data by gait cycle, which varies by person and
task condition, and subsequently calculating the mean
thoracic-pelvic relative phase angles within each gait
cycle. Using a fixed time window, as is typically done in
machine learning algorithms, may not capture
differences in gait and may reduce model performance.

Future work will aim to expand the scope of the
study by investigating additional carrying strategies,
load levels, and predictor variables.
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