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ABSTRACT

Introduction: Biomathematical models of fatigue (BMMF) predict fatigue during a work-rest
schedule on the basis of sleep-wake histories. In the absence of actual sleep-wake histories,
sleep-wake histories are predicted directly from work-rest schedules. The predicted sleep-
wake histories are then used to predict fatigue. It remains to be determined whether
workers organize their sleep similarly across operations and thus whether sleep predictions
generalize.

Methods: Officers (n = 173) enrolled in the Buffalo Cardio-Metabolic Occupational Police Stress
study were studied. Officers’ sleep-wake behaviors were measured using wrist-actigraphy and
predicted using a BMMF (FAID Quantum) parameterized in aviation and rail. Sleepiness (i.e.
Karolinska Sleepiness Scale (KSS) ratings) was predicted using actual and predicted sleep-wake
data. Data were analyzed using sensitivity analyses.

Results: During officers’ 16.0 = 1.9 days of study participation, they worked 8.6 + 3.1 shifts and
primarily worked day shifts and afternoon shifts. Across shifts, 7.0 h £ 1.9 h of actual sleep were
obtained in the prior 24 h and associated peak KSS ratings were 5.7 + 1.3. Across shifts,
72 h = 1.1 h of sleep were predicted in the prior 24 h and associated peak KSS ratings were
55 = 1.2. The minute-by-minute predicted and actual sleep-wake data demonstrated high
sensitivity (80.4%). However, sleep was observed at all hours-of-the-day, but sleep was rarely
predicted during the daytime hours.

Discussion: The sleep-wake behaviors predicted by a BMMF parameterized in aviation and rail
demonstrated high sensitivity with police officers’ actual sleep-wake behaviors. Additional
night shift data are needed to conclude whether BMMF sleep predictions generalize across
operations.
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Introduction Fatigue risk management systems have been
developed in operations such as aviation and rail as

Managing fatigue in 24/7 operations
HAGIEHT /7 op a more comprehensive, data-driven regulatory

Managing fatigue in 24/7 operations is critical for
sustaining performance. Fatigue has historically
been managed in operational settings with hours-
of-service regulations specifying duty time limita-
tions and minimum rest break requirements
(Gander et al. 2016). However, the efficacy of
hours-of-service regulations alone to improve
safety have been challenged for decades (Gander
2015; Jones et al. 2005; McDonald 1981). These
regulations also lack the operational flexibility
needed to schedule workers in many operations.

approach to managing fatigue. While hours-of-
service regulations provide a single layer of defense
against fatigue, fatigue risk management systems
include multiple, overlapping layers of defense
(Dawson and McCulloch 2005; Gander 2015).
Examples of defenses include constructing work
schedules with adequate sleep opportunities, evalu-
ating the likelihood of on-duty fatigue, and mana-
ging fatigue-related errors before they propagate to
fatigue-related incidents or accidents (Dawson and
McCulloch 2005). One tool often used in fatigue risk
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management systems to construct and evaluate
work-rest schedules is biomathematical models of
fatigue (Dawson et al. 2017).

Biomathematical models of fatigue also serve
other purposes in operational settings, including
to determine whether fatigue mitigation strategies
may be needed (Dean et al. 2007); to develop
safety cases in aviation for flights that do not fit
within the regulations (Lamp et al. 2019); and, to
assess the likelihood of driver or pilot fatigue in
post-accident investigations (Pruchnicki et al.
2011). In operational research, biomathematical
models of fatigue are useful tools for studying
workers’ sleep-wake behaviors and the relation-
ships between their work-rest schedules, sleep-
wake behaviors, on-duty fatigue, and actual job
performance (e.g. Akerstedt et al. 2008; Hursh
et al. 2008; Riedy et al. 2019).

Biomathematical models of fatigue

Biomathematical models of fatigue quantify the
effects of the homeostatic and circadian pro-
cesses on the temporal profiles of sleep, sleepi-
ness, and fatigue (Hursh et al. 2016; Mallis et al.
2004). There are two types of biomathematical
models of fatigue used in operational settings
and operational research: one-step and two-step
biomathematical models of fatigue (Kandelaars
et al. 2005). One-step biomathematical models
predict fatigue at the group-level using actual
sleep-wake data (“one-step models”). Since fati-
gue is predicted at the group-level, all workers
with the same sleep-wake behaviors have the
same fatigue predictions.

In the absence of actual sleep-wake data, two-
step biomathematical models of fatigue are used.
Two-step biomathematical models predict work-
ers’ sleep-wake behaviors at the group-level
directly from their work-rest schedules. The
models then predict fatigue at the group-level
using the predicted sleep-wake data (“two-step
models”). Since sleep and fatigue are predicted
at the group-level, all workers with the same
work-rest schedules have the same predicted
sleep-wake behaviors and fatigue predictions. To
date, one-step biomathematical models of fatigue
have been more rigorously tested and validated
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than two-step biomathematical models of fatigue
(Dawson et al. 2011).

Two-step biomathematical models in operational
settings and research

Actual sleep-wake data are often unavailable in opera-
tional settings and consequently two-step biomathe-
matical models of fatigue are often used in operational
settings (Dawson et al. 2017). Obtaining inaccurate
sleep and fatigue estimates can have serious implica-
tions in both operational settings and operational
research. As previously noted, these models are often
used in operational settings to assist with work sche-
duling (e.g. Civil Aviation Safety Authority, 2014).
Inaccurate sleep estimates could propagate to inaccu-
rate fatigue estimates and this could ultimately lead to
inappropriately classifying a work-rest schedule as
likely “safe” or “unsafe” to work. Similarly, two-step
biomathematical models of fatigue are used in the
development of safety cases in aviation for flights
that do not fit within regulations (Lamp et al. 2019).
Here, obtaining accurate sleep and fatigue estimates is
critical since non-compliant flights deemed “safe” to
fly can receive regulatory exemptions for data collec-
tion purposes.

In operational research, inaccurate sleep and fati-
gue estimates may lead to researchers drawing the
wrong conclusions on how work-rest schedules,
sleep-wake behaviors, and on-duty fatigue are
related to workers’ actual job performance. For
example, Riedy et al. (2019) found that predicted
sleep loss and on-duty fatigue increased the like-
lihood of a police officer receiving a citizen com-
plaint suggesting that sleep loss and police fatigue
affect police-community relationships. These results
and conclusions may hinge on whether the two-
step biomathematical model of fatigue accurately
predicted the police officers” sleep-wake behaviors.

Generalizability of sleep predictions

There is currently an assumption that sleep predic-
tions generalize across operations. It is not clear,
however, whether workers organize their sleep simi-
larly across operations and thus whether the sleep
predictions generalize across operations. To date,
there is published literature on the parameterization
and validation of sleep estimators in aviation
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(Darwent et al. 2010; Hursh and Waggoner 2017;
Ingre et al. 2014; Kandelaars et al. 2005) and rail
(Darwent et al. 2012; Gertler et al. 2012). However,
these sleep estimators are also used in a number of
other operations such as maritime (Hobbs et al.),
healthcare (Sagherian et al. 2018), policing (Riedy
et al. 2019), and public transit (James et al. 2017).
There have likely been validation studies conducted
in other operations as well that have not been pub-
lished due to containing potentially sensitive or pro-
prietary information (James et al. 2018).

Policing is one operation where two-step biomathe-
matical models of fatigue have not been validated.
Police officers are often required to work overtime
hours and oft-duty court hours; and, may choose to
have secondary employment (Reaves 2012). It is pos-
sible that the work requirements will result in police
officers organizing their sleep differently than workers
in other operations. There may be more anticipatory
behavior where the police officers prepare for possible
overtime, more fragmented sleep with on-call hours
and/or the stresses associated with policing, and/or
greater recovery sleep following long and erratic
work hours. Several studies have also found that
there is a high prevalence of poor sleep quality
among police officers, and this has been associated
with various stressors (Gabarino et al. 2002, 2019).

The generalizability of sleep estimators depends on
whether workers organize their sleep similarly across
operations. If the sleep predictions are generalizable,
other operations can start using the two-step bio-
mathematical models of fatigue parameterized and
validated in aviation and rail. If the sleep predictions
are not generalizable, two-step biomathematical mod-
els of fatigue still have potential as tools for mitigating
fatigue across operations. However, before this hap-
pens, the sleep estimator either needs to be re-
parameterized or the sleep predictions need to be
adjusted to better predict workers’ sleep-wake beha-
viors in the operation of interest. This will be
an important step if the sleep predictions do not gen-
eralize because inaccurate estimates of workers’ sleep-
wake behaviors could propagate to inaccurate
estimates of on-duty fatigue.

Fatigue Audit InterDyne Quantum

Fatigue Audit InterDyne (FAID) Quantum is ana-
lytical software that includes a sleep estimator and

one implementation of the Three-Process Model
of Alertness - a publicly available biomathematical
model of fatigue (Akerstedt et al. 2004; FAID
Quantum User Guide v1.0, 2017). The Three-
Process Model of Alertness predicts on-duty slee-
piness using sleep-wake data collected in the
operation (i.e. one-step approach) or sleep-wake
data predicted by FAID Quantum (i.e. two-step
approach).

FAID Quantum predicts workers’ sleep-wake
behaviors directly from their work-rest schedules
using two steps (Darwent et al. 2012). First, it
predicts the total hours of sleep obtained during
non-work hours. Second, it predicts the timing
and duration of discrete sleep periods during non-
work hours. To date, FAID Quantum’s sleep esti-
mator has been parameterized and validated in
aviation and rail (Darwent et al. 2010, 2012). It
remains to be determined whether its sleep pre-
dictions accurately describe the sleep-wake beha-
viors of workers in other operations and generalize
to other operations such as policing.

Research objectives

The objectives of this research include: (1) To com-
pare police officers’ actual sleep-wake behaviors to
their predicted sleep-wake behaviors; (2) to deter-
mine whether misestimations of sleep propagate to
misestimations of sleepiness; and, (3) to determine
whether a simple scaling factor can be used to correct
for misestimations of sleep (if any). The results from
this research are used to assess the generalizability of
sleep estimators, and to determine if and how the
model should be adjusted in the future to better
predict police officers’ sleep-wake behaviors.

Methods

The Buffalo Cardio-metabolic Occupational Police
Stress study protocol was approved by the Internal
Review Board of the State University of New York at
Buffalo, and the National Institute for Occupational
Safety and Health (NIOSH) Human Subjects Review
Board (IRB), and done in accordance with the
Declaration of Helsinki for experiments involving
human subjects.



Buffalo Cardio-metabolic Occupational Police
Stress study

A total of 173 police officers employed by the
Buffalo, New York Police Department were studied.
The officers were enrolled in the Buffalo Cardio-
metabolic Occupational Police Stress (BCOPS)
study for approximately 15 days between 2011 and
2015. During officers’ study participation, they wore
an actigraph on their non-dominant wrist to record
their movement and infer their sleep-wake behaviors
(AMA-32CL; Ambulatory Monitoring Inc., Ardsley,
New York, USA). Officers’ work data were obtained
from the Buffalo, New York Payroll Department.
Officers also wrote their work start times and end
times in a diary. The payroll work data were cross-
checked using the diary entries.

Fatigue Audit InterDyne Quantum

FAID Quantum predicted police officers’ sleep-wake
histories directly from their work-rest schedules. The
Three-Process Model of Alertness predicted on-duty
sleepiness using the actual sleep-wake data and pre-
dicted sleep-wake data. Sleepiness predictions were
expressed on the 9-point Karolinska Sleepiness Scale
(KSS), where higher KSS predictions represented
greater likelihood of on-duty sleepiness. KSS ratings
across a shift were summarized as peak KSS ratings,
which represented the greatest sleepiness predicted
during each shift. The default threshold for a high
likelihood of on-duty sleepiness is a peak KSS rating
of 7 (i.e. a KSS tolerance level [KTL] of 7) (FAID
Quantum User Guide v1.0, 2017). Previous research
has demonstrated that behavioral and physiological
symptoms of sleepiness are evident starting at KSS
ratings of 7+ (Akerstedt et al. 2014).

Data analyses

All minutes between sleep onset and wake onset
were scored as sleep, as the model does not predict
wake within sleep periods. Sleep in the 24 h prior
to a shift and sleep in the 48 h prior to a shift were
calculated using the actual and predicted sleep-
wake data. Using the actual sleep-wake data and
predicted sleep-wake data, it was determined
whether officers had less than the 5 h sleep in
the 24 h prior to a shift and/or less than 12 h
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Table 1. Overall agreement, sensitivity, and specificity definitions™
Measure

Minute-by-Minute Data
Overall Agreement

Definition

% of sleep and wake minutes correctly
predicted by BMMF

Sensitivity % of minutes of sleep correctly predicted
by BMMF

Specificity % of minutes of wake correctly predicted
by BMMF

Sleep in the Prior 24 h

Sensitivity % shifts preceded by <5 h correctly
predicted by BMMF
Specificity % shifts preceded by =5 h correctly

predicted by BMMF
Sleep in the Prior 48 h

Sensitivity % shifts preceded by <12 h correctly
predicted by BMMF
Specificity % shifts preceded by >12 h correctly

predicted by BMMF
Sleepiness (KTL of 7)

Sensitivity % shifts with peak KSS ratings = 7 correctly
predicted by BMMF
Specificity % shifts with peak KSS ratings < 7 correctly

predicted by BMMF
Sleepiness (KTL of 8)

Sensitivity % shifts with peak KSS ratings = 8 correctly
predicted by BMMF
Specificity % shifts with peak KSS ratings < 8 correctly
predicted by BMMF
Abbreviations:  Sleepiness Threshold Level (KTL), Hours (h),

Biomathematical Model of Fatigue (BMMF)

sleep in the 48 h prior to a shift. For each shift,
it was determined whether the peak KSS ratings
calculated using the actual and predicted sleep-
wake data were greater than a KTL of 7 and
greater than a KTL of 8. All data were analyzed
using sensitivity and specificity analyses (see Table
1). Thus, the conditions being tested were whether
officers’ actual sleep and/or predicted sleep were
restricted prior to the shift, and whether on-duty
sleepiness predictions were high when using offi-
cers’ actual sleep-wake data and/or the predicted
sleep-wake data.

The predicted sleep periods were scaled to
determine if a simple scaling factor could correct
for any misestimations of sleep. The scaling factor
was the regression coefficient from a mixed-effects
model where hours of actual sleep in the 48 h prior
to a shift was the dependent variable and hours of
predicted sleep in the 48 h prior to a shift was the
independent variable The scaling factor thus
represented the rate of change of actual sleep as
a function of changes in predicted sleep. The
Three-Process Model of Alertness predicted on-
duty sleepiness using the scaled sleep periods.
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Results

Buffalo cardio-metabolic occupational police
stress study

The officers in the study sample (n = 173) includes
89 police officers, 37 detectives, 36 lieutenants, and
11 police officials with other job titles; 71% of the
sample were male officers Hereupon, the term
“officer” if used to describe all 173 police officials.
The 173 officers contributed a total of 2,764 days
of data and worked a total of 1,494 shifts. On
average, each officer participated in the study for
16.0 = 1.9 days (range: 9-30 days) and worked
8.6 = 3.1 shifts (range: 1-20 shifts). Shifts were
9.3 + 2.6 hours in duration (range: 0.3-19.8 hours).
They were between the ages of 28-61 (mean + SD:
46.1 + 6.5 years) and had been with the Buffalo,
New York Police Department for 4-39 years
(mean + SD: 19.2 + 6.9 years).

A total of 234 shifts were not preceded by a full
24 hours of sleep-wake data and 336 shifts were
not preceded by a full 48 hours of sleep-wake data.
The 234 shifts were excluded from analyses exam-
ining sleep in the prior 24 h. The 335 shifts were
excluded from analyses examining sleep in the
prior 48 h and on-duty sleepiness.

Overall agreement, sensitivity, and specificity

The predicted sleep-wake data demonstrated high
overall agreement, sensitivity, and specificity with
the actual sleep-wake data at the group-level (see
Table 2). Officers primarily worked day shifts and
afternoon shifts and, as such, primarily slept dur-
ing the nighttime hours. To be expected, the
model appropriately predicted that the day shift
and afternoon shift officers primarily slept during
the nighttime hours (see Figure 1). Sleep was
observed at all hours-of-the-day, but sleep was
rarely predicted during the daytime hours. For
example, 11.4% of actual sleep periods and 0.3%
of predicted sleep periods included any sleep
between 13:00 and 18:00.

Across shifts, 70 h £ 1.9 h of sleep were
obtained and 7.2 h + 1.1 h of sleep were predicted
in the 24 h prior to a shift. Similarly, 142 h £ 3.1 h
of sleep were obtained and 14.5 h + 1.7 h of sleep
were predicted in the 48 h prior to a shift. Using
both the actual and predicted sleep-wake data,

Table 2. Overall agreement, sensitivity, and specificity results™
Actual

Actual v. Scaled

Measure v. Predictions® Predictions™
Minute-by-Minute

Data
Overall Agreement 90.1% 88.3%
Sensitivity 80.4% 61.7%
Specificity 93.0% 96.7%
Sleep in the Prior

24 h
Sensitivity 7.9% 72.9%
Specificity 98.4% 48.1%
Sleep in the Prior

48 h
Sensitivity 20.4% 97.5%
Specificity 96.1% 5.4%
Sleepiness (KTL of 7)
Sensitivity 55.0% 90.0%
Specificity 97.7% 69.1%
Sleepiness (KTL of 8)
Sensitivity 53.5% 69.0%
Specificity 97.3% 91.9%

Abbreviations: Sleepiness Threshold Level (KTL) and Hours (h)

bSensitivity and specificity analyses, which compare (1) the actual
sleep-wake data and predicted sleep-wake data, and (2) the sleepi-
ness predictions calculated using the actual sleep-wake data and the
sleepiness predictions calculated using the predicted sleep-wake
data.

Sensitivity and specificity analyses, which compare (1) the actual
sleep-wake data and the scaled predicted sleep-wake data, and (2)
the sleepiness predictions calculated using the actual sleep-wake
data and the sleepiness predictions calculated using the scaled pre-
dicted sleep-waked data

most shifts were preceded by at least 5 h of sleep
in the prior 24 h and at least 12 h of sleep in the
prior 48 h. Shifts were more frequently preceded
by less than 5 h of actual sleep (11.4%) than 5 h of
predicted sleep (2.3%) in the prior 24 h, and less
than 12 h of actual sleep (21.4%) than 12 h of
predicted sleep (7.6%) in the prior 48 h. The pre-
dicted sleep-wake data demonstrated low sensitiv-
ity and high specificity with the actual sleep-wake
data (see Table 2).

Across shifts, the average peak KSS ratings were
5.7 £ 1.3 using the actual sleep-wake data and
5.5 + 1.2 using the predicted sleep wake data.
Using both the actual and predicted sleep-wake
data, most shifts had peak KSS ratings less than
the KTL of 7 and the KTL of 8. Shifts more
frequently had peak KSS ratings greater than 7
using the actual sleep-wake data (17.5%) than the
predicted sleep-wake data (11.5%) Similarly, shifts
more frequently had peak KSS ratings greater than
8 using the actual sleep-wake data (6.4%) than the
predicted sleep-wake data (5.9%). The peak KSS
ratings calculated using the predicted sleep-wake
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Figure 1. Officers’ work distributions (black), actual sleep distributions (red), and predicted sleep distributions (blue). Shifts start
on day 1 and continue into day 2 if the shift continues past midnight. The pre-duty and post-duty sleep are plotted for sleep in the
24 hours prior to and subsequent to the shift. The percentage of shifts contributing to the figure at each hour is plotted (black

dotted line).

data demonstrated low sensitivity and high speci-
ficity with the peak KSS ratings calculated using
the actual sleep-wake data (see Table 2).

As noted above, sleep in the prior 24 h and sleep in
the prior 48 h were slightly overestimated by
02 h £ 18 h and 03 h + 29 h, respectively, and
sleepiness was slightly underestimated by 0.2 + 0.7
units. However, there was considerable variability
around the mean with sleep and sleepiness being both
underestimated and overestimated (see Figure 2A).

Scaling the predicted sleep-wake data

The scaling factor associating how change in
predicted sleep is associated with change in

20 1 20 -
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actual sleep was 0.7. For every 1 hour increase
in predicted sleep, there was a 0.7 hour increase
in actual sleep. After adjusting the predicted
sleep-wake data, 4.6 h + 0.8 h of sleep were
predicted in the 24 h prior to a shift,
10.1 h + 1.2 h of sleep were predicted in the
48 h prior to a shift, and the peak KSS ratings
were 6.9 £ 1.0. The scaling factor did not suc-
cessfully minimize residuals since there was con-
siderable variability in the misestimation of
sleep. The scaling factor simply shifted the
sleep and sleepiness distributions (see Figure
2B). On average, sleep was now underestimated,

and sleepiness was now overestimated (see
Table 2).

60 1 (A)
50
40 A
30 A
20 1

%6420 2 4 6 8
60 1 (B)
50 1
40 1
30
20
10 -

-10-8 -6 4-20 2 4 6 810

Misestimation of Sleep (h)
in Prior 24h

-20-16-12-8 -4 0 4 8 1216 20
Misestimation of Sleep (h)
in Prior 48h

0 +—r———rT+—>7—r
8 6 4 -2 0 2 4 6 8

Misestimation of Sleepiness

Figure 2. Misestimations of sleep in the prior 24 h (left), sleep in the prior 48 h (middle), and on-duty sleepiness (right) prior to
scaling the predicted sleep-wake data (top; panel A) and after scaling the predicted sleep-wake data (bottom; panel B). Negative
values indicate an underestimation of sleep or sleepiness. Positive values indicate an overestimation of sleep or sleepiness.
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Discussion

This research assessed the generalizability of
a biomathematical model of fatigue’s sleep predic-
tions. Work data and sleep data were collected
from 173 police officers enrolled in the Buffalo
Cardio-metabolic Occupational Police Stress
study. Sleep was predicted using FAID Quantum’s
sleep estimator, which, to date, has been parameter-
ized and validated using data collected in the avia-
tion and rail industries. On-duty sleepiness was
predicted by the Three-Process Model of Alertness
using police officers’ actual and predicted sleep-
wake data.

During their study participation, the police officers
primarily worked day shifts and/or afternoon shifts.
The officers had been with the Buffalo Police
Department for 19.2 + 6.9 years and were at a point
in their career where they had largely rotated off of the
night shift. To be expected given their work schedules,
the officers primarily slept during the nighttime hours
and the model predicted that the officers would pri-
marily sleep during the nighttime hours. Daytime
sleep was the primary discrepancy between the pre-
dicted sleep-wake data and actual sleep-wake data.
Sleep was observed at all hours-of-the day, but sleep
was rarely predicted during the day.

To appropriately identify fatiguing schedules and
mitigate fatigue in the operation, it is important that
predicted sleep-wake data demonstrates high sensi-
tivity and specificity with actual sleep-wake data. In
the research presented here, the minute-by-minute
predicted sleep-wake data demonstrated high overall
agreement, high sensitivity, and particularly high
specificity with the police officers’ minute-by-
minute actual sleep-wake data. It could be argued
that the sensitivity was relatively low. This argument
assumes that one hundred percent is the upper limit
for sensitivity. However, even when workers’ past
sleep-wake behaviors are used to predict their own
future sleep-wake behaviors during the same work-
rest schedule, the sensitivity still does not approach
one hundred percent (Dorrian et al. 2012).

Using the actual and predicted sleep-wake data,
most shifts were preceded by at least 5 hours sleep
in the prior 24 hours and at least 12 hours sleep in
the prior 48 hours, and most shifts had peak KSS
ratings less than 7. As a result, the specificities for
sleep in the prior 24 h, sleep in the prior 48 h, and

on-duty sleepiness were consistently high. Shifts
were more frequently preceded by less than
5 hours of actual sleep than predicted sleep in
the prior 24 hours, were more frequently preceded
by less than 12 hours of actual sleep than predicted
sleep in the prior 48 hours, and more frequently
had peak KSS ratings greater than 7 using the
actual sleep-wake data rather than the predicted
sleep-wake data. As a result, the sensitivities for
sleep in the prior 24 hours, sleep in the prior
48 hours, and on-duty sleepiness were low.

On average, sleep was slightly overestimated,
and sleepiness was slightly underestimated. The
average differences were negligible. However,
there was considerable variability around the
mean with sleep and sleepiness being both under-
estimated and overestimated. Since there was con-
siderable variability around the mean, the scaling
factor did not successfully minimize the discrepan-
cies between the actual sleep-wake data and pre-
dicted sleep-wake data. Rather, the scaling factor
shifted the sleep and sleepiness distributions. After
scaling the data, there was an underestimation of
sleep and an overestimation of sleepiness.

Additional data are currently needed to inform
whether or not sleep-wake predictions provide
a good characterization of police officers’ actual
sleep-wake behaviors between night shifts. This
will be important before concluding that sleep
predictions generalize to policing because it is
notoriously more difficult to predict sleep between
night shifts than day shifts or afternoon shifts.
Based on the current set of analyses, changes to
the sleep estimator * not recommended at this
point. While more night shift data are needed to
inform changes (if any) to the sleep estimator, it
was evident that misestimations of sleep in an
operation cannot be corrected for with a simple
scaling factor unless sleep is systematically and
consistently underestimated or overestimated.

If the sleep predictions generalize to policing,
existing two-step biomathematical models of fati-
gue may provide a useful tool for improving work-
rest schedules in policing as well as a useful tool for
future operational research with police officers. If
the sleep predictions generalize, this also increases
confidence that the sleep predictions may general-
ize to other operations where the sleep estimators
have not yet been validated. If the sleep predictions



do not generalize to policing, however, this raises
additional questions, such as whether sleep estima-
tors need to be parameterized and validated in each
operation; whether sleep predictions generalize
across departments or companies within an opera-
tion; and whether conclusions previously drawn
using two-step biomathematical models need to be
corroborated. It is important to note that even if the
sleep predictions generalize, it will be at the group-
level rather than the individual-level since not all
workers with the same work-rest schedules exhibit
the same sleep-wake behaviors.

In the future, changes to the sleep estimator (if any)
would likely be in the form of re-estimating the model
parameters. FAID Quantum predicts the total hours
of sleep obtained during non-work hours using
a regression model with predictors for sleep propen-
sity, prior shift length, and post shift length. It then
predicts the timing and duration of the discrete sleep
periods by comparing the sleep propensity rhythm
and sleep threshold rhythm. The regression estimates
for sleep propensity, prior shift length, and post-shift
length would need to be re-estimated if sleep duration
is misestimated in an operation. In the current study,
re-estimating the regression estimates could minimize
the sleep and sleepiness residuals. On the other hand,
the sleep propensity rhythm parameters would need
re-estimated if sleep timing is misestimated in an
operation. In the current study, re-estimating the
sleep propensity rhythm parameters could correct
for the daytime sleep discrepancies.

Limitations

Officers primarily worked day shifts and afternoon
shifts during their study participation between 2011
and 2015. Sleep between night shifts is notoriously
more difficult to predict that sleep between day shifts
and afternoon shifts. Additional night shift data are
needed to inform if and how the model should be
adjusted in the future. Another limitation is that
wake within sleep periods were not accounted for.
Each minute between sleep onset and wake onset
was scored as sleep since models do not predict
wake within sleep periods. Thus, sleep is likely even
more overestimated than what is shown in the cur-
rent set of analyses. And, if officers’ sleep is fragmen-
ted, the on-duty sleepiness predictions are also likely
underestimated.
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