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Carbon nanotube (CNT)-induced pulmonary inflammation and fibrosis 
have been intensively observed and characterized in numerous animal 
studies in the past decade. Remarkably, CNT-induced fibrotic lesions highly 
resemble some human fibrotic lung diseases, such as IPF and 
pneumoconiosis, regarding disease development and pathological features. 
This notion leads to a serious concern over the health impact of CNTs in 
exposed human populations, considering the rapidly expanding production 
of CNT materials for diverse industrial and commercial applications, and 
meanwhile provides the rationale for exploring CNT-induced pathologic 
effects in the lung. Accumulating mechanistic understanding of CNT lung 
pathology at the systemic, cellular, and molecular levels has demonstrated 
the potential of using CNT-exposed animals as a new disease model for the 
studies on inflammation, fibrosis, and the interactions between these two 
disease states. Tissue microenvironment plays critical roles in maintaining 
homeostasis and physiological functions of organ systems. When aberrant 
microenvironment forms under intrinsic or extrinsic stimulation, tissue 
abnormality, organ dysfunction, and pathological outcomes are induced, 
resulting in disease development. In this article, the cellular and molecular 
alterations that are induced in tissue microenvironment and implicated in 
the initiation and progression of inflammation and fibrosis in CNT-exposed 
lungs, including effector cells, soluble mediators, and functional events 
exemplified by cell differentiation and extracellular matrix (ECM) 



modification, are summarized and discussed. This analysis would provide 
new insights into the mechanistic understanding of lung inflammation and 
fibrosis induced by CNTs, as well as the development of CNT-exposed 
animals as a new model for human lung diseases. 

Introduction 
Pulmonary fibrosis is an irreversible pathologic stage that leads to high rates of 

morbidity and mortality in humans. It can result from a variety of human diseases, 

such as pneumonia, tuberculosis, and systemic sclerosis; develop spontaneously 

without a known cause, which is designated as IPF; be induced by a diversity of 

inhalational environmental fibrogenic irritants, such as silica dust and asbestos 

fiber, exemplified by human lung diseases silicosis and asbestosis; or be triggered by 

soluble chemicals, such as bleomycin and paraquat. Recently, a large number of 

studies have demonstrated that certain types of nanomaterials are potent fibrogenic 

agents in experimental animals. Despite the various causes, lung fibrosis is 

commonly featured by excessive deposition and accumulation of ECM materials, 

replacement of parenchymal tissue with connective tissue, and formation of 

permanent scars in lung interstitial space, which lead to destruction of alveolar and 

airway structures, stiffness of lung tissues, and loss of pulmonary function. 

Carbon nanotubes (CNTs) are a class of nanomaterials with rapidly increasing 

annual production and a variety of industrial and commercial applications, such as 

electronic, energetic, and biomedical uses (De Volder et al., 2013; Zhang Q. et al., 

2013; Abdalla et al., 2015). They are long and hollow nanostructures composed of 

either a single layer or concentric multiple layers of one-atom-thick carbon walls, 

which are designated as single-walled CNTs (SWCNTs) and multi-walled CNTs 

(MWCNTs), respectively. Most CNTs are respirable fibers with nano-scaled sizes, 

high aspect ratios, poor solubility, and substantial biopersistence. These 

physicochemical properties potentially associate CNTs to toxic fibers with fibrogenic 

activities, similar to asbestos (Donaldson et al., 2010; Johnston et al., 2010; Dong and Ma, 

2015). Indeed, numerous studies performed in the past decade have demonstrated 

that certain types of CNTs behave as potent fibrogenic agents in the lung of exposed 

rodents. Meanwhile, CNT-induced lung fibrosis in animals possesses a high 

similarity to human IPF and pneumoconiosis (Dong and Ma, 2016b; Vietti et al., 2016). 



Owing to the increased exposure to CNTs and CNT-containing materials, the 

fibrogenicity of CNTs raises a serious concern over the adverse health impact of CNT 

exposure in human populations, which is supported by a few recent studies carried 

out in workers that were occupationally exposed to CNTs (Schulte et al., 

2012; Fatkhutdinova et al., 2016; Vlaanderen et al., 2017). 

Prompted by the noticeable fibrotic phenotypes triggered by CNTs in the lung, a 

large body of studies have been performed to elucidate the mechanisms that 

promote the initiation and progression of lung fibrosis in CNT-exposed animals in 

recent years, leading to a marked progress in this research area. Importantly, the 

findings reveal that the systemic, cellular, and molecular mechanisms of CNT-

triggered lung fibrosis are consistent with the current knowledge on lung fibrosis 

derived from the studies on human fibrotic lung diseases and some lung fibrosis 

animal models, such as bleomycin-induced lung fibrosis, to a considerable extent, 

indicating CNT-induced lung fibrosis may serve as a new disease model (Dong and 

Ma, 2016b; Vietti et al., 2016; Dong and Ma, 2018b; Duke and Bonner, 2018). Remarkably, 

like the scenarios in many human fibrotic lung diseases, inflammation plays a 

critical role in the onset and progression of lung fibrosis induced by CNT exposure, 

providing the potential of using CNT-exposed rodents as a unique disease model for 

lung fibrosis studies (Dong and Ma, 2019b). To manifest the underpinning systemic, 

cellular, and molecular events that may function in the development of pathologic 

inflammation and fibrosis in CNT-exposed lungs, in this article, the major tissue 

microenvironmental alterations that are induced and function during the acute and 

chronic phase responses, including effector cells, soluble mediators, and functional 

events exemplified by immune cell polarization, fibroblast-to-myofibroblast 

differentiation, and ECM modification, are focused on for discussion. 

CNT-Induced Lung Inflammation and Fibrosis 
Carbon nanotube-induced pulmonary pathological effects are characterized with 

biphasic inflammatory and fibrotic responses in experimental animals (Lam et al., 

2004; Warheit et al., 2004; Muller et al., 2005; Shvedova et al., 2005, 2014; Mangum et al., 

2006; Aiso et al., 2010; Porter et al., 2010, 2013; Park et al., 2011; Reddy et al., 2012; Mercer 

et al., 2013; Wang et al., 2013; Dong et al., 2015; Dong and Ma, 2016a, c, 2017a,b, 2018a). 



The lung injury initiates with a prominent acute inflammatory response, indicated 

by the rapid recruitment, infiltration, and accumulation of inflammatory cells in the 

interstitial, perivascular, and peribronchial regions in CNT-exposed lungs. During 

this stage, both type 1 and type 2 immune responses are activated. Briefly, type 1 

response is marked by the differentiation and activation of Th1 lymphocytes and 

traditionally activated M1 macrophages, produces copious amounts of pro-

inflammatory type 1 cytokines, such as TNF-α, IL-1β, and IL-6, and results in acute 

inflammation and tissue injury; whereas type 2 response is characterized by the 

formation and activation of Th2 lymphocytes that produce and release type 2 

cytokines, such as IL-4 and IL-13, the polarization and activation of alternatively 

activated M2 macrophages stimulated by IL-4 and IL-13, the production of type 2 

cytokines, chemokines, and mediators, such as TGF-β1, IL-10, CCL17, CCL18, and 

CCL22, and the functions in suppressing acute inflammation and promoting tissue 

repair and organ fibrosis. In CNT-exposed lungs, type 1 response erupts upon 

exposure and is predominant during the early acute phase, whereas type 2 response 

takes a longer time to occur and is dominant during the late acute phase. These 

events lead to strikingly elevated production and secretion of mediators, such as 

pro-inflammatory and pro-fibrotic cytokines, chemokines, and growth factors, 

which create a milieu that is capable of triggering and fostering fibrosis 

development. Concurrently with acute inflammation, a rapid-onset fibrotic response 

starts as early as day 1 post-exposure, which is demonstrated by elevated expression 

of fibrosis marker proteins, increased deposition of ECM proteins in alveolar septa, 

and enriched fibroblasts and myofibroblasts. With the persistent deposition of CNTs 

in lung tissues, the acute inflammatory and fibrotic responses reach an apex on day 

7 post-exposure. After that the acute pathologic effects gradually decline, but transit 

to chronic responses. The chronic responses become fully established by day 28 

post-exposure, last at least 1 year, and are featured by fibrosis and mild chronic 

inflammation. During the chronic phase, fibrosis is characterized with increased 

expression of fibrosis marker proteins, excessive deposition of ECM, accumulation 

of fibroblasts and myofibroblasts, thickened alveolar septa, and formation of fibrotic 

foci and epithelioid granulomas (Dong and Ma, 2016b; Vietti et al., 2016). The chronic 

immune outcome is dominated by type 2 response, in which alternatively activated 



M2 macrophages are enriched and activated (Dong and Ma, 2018b). In summary, the 

pulmonary responses to CNT exposure initiate from acute inflammatory and fibrotic 

events, and progress to chronic inflammation and fibrosis (Dong and Ma, 2019b). The 

biphasic process of CNT-induced lesions resembles that elicited by the deposition of 

fibrogenic foreign bodies, such as insoluble dusts and large biologic masses, in the 

lung. Moreover, pathologically, CNT-exerted pulmonary impact displays a 

considerable similarity to IPF and pneumoconiosis, especially when contemplating 

the observation that CNT-triggered lung fibrosis appears persistent and irreversible 

in animals. 

A few animal models have been developed and studied for lung fibrosis in the past 

years, exemplified by bleomycin-, silica-, and irradiation-induced lung fibrosis. The 

advantages and disadvantages of these models have been reviewed previously 

(Moeller et al., 2008; Moore and Hogaboam, 2008; Degryse and Lawson, 2011; Williamson et 

al., 2015). Comparing with these models, CNT-induced lung fibrosis exhibits certain 

unique features. Remarkable acute immune response is induced in CNT-exposed 

lungs, which precedes and accompanies acute fibrotic response. This phenomenon is 

reminiscent of inflammation-driven fibrosis occurring in many human diseases, 

such as IPF, COPD, and systemic sclerosis (Dong and Ma, 2019b). CNT-exposed lungs 

therefore provide a model system to study the role of inflammation in the initiation 

and progression of fibrosis development, which cannot be performed in other 

fibrosis models due to the lack of marked acute immune response therein. CNT-

induced lung inflammatory and fibrotic responses rapidly start within 1 day and 

persist for at least 1 year post-exposure, whereas bleomycin-induced lung fibrosis 

occurs 14–28 days post-exposure with spontaneous resolution thereafter, silica-

induced lung fibrosis takes 12–16 weeks to develop, and irradiation-induced lung 

fibrosis may take more than 30 weeks to develop (Moore and Hogaboam, 2008; Dong 

and Ma, 2016b). Thus, CNT-exposed animals offer a system to study both the acute 

and chronic responses in inflammation and fibrosis, as well as the interactions 

between immune responses and fibrosis during each stage, which would enhance 

the understanding of relevant human diseases. Moreover, alveolar epithelial cell 

death (apoptosis) is remarkably induced and serves as a major trigger in bleomycin- 

and asbestos-induced lung fibrosis (Liu et al., 2013; Williamson et al., 2015). However, 



similar to the pathologic feature in IPF, alveolar epithelial cell death does not occur 

dominantly in CNT-exposed lungs. This finding indicates that the mechanism 

activated by CNTs to induce lung fibrosis differs from that by bleomycin or asbestos. 

Together, these observations demonstrate that CNT-exposed animals possess some 

distinct features to serve as a disease model for obtaining new mechanistic 

understanding of lung inflammation and fibrosis. 

Immune Cells and Soluble Mediators 
In the lung exposed to CNTs, increased immune cells are observed over the entire 

course of inflammation and fibrosis, but with distinct subsets at different stages, 

which is in agreement with the cell type-specific functions of immune cells during 

disease development (Figure 1). 
FIGURE 1 

 

Figure 1. Integrated perspective of microenvironmental mechanisms in CNT-

exposed rodent lungs. Enriched numbers of neutrophils and M1 macrophages and 

elevated levels of pro-inflammatory factors are hallmarks of acute inflammation 

induced by CNTs during early acute phase response. In contrast, promoted by 

certain alarmins produced by injured epithelial cells, Th2-driven type 2 immune 

response and fibrotic response are predominant during late acute phase response 

and chronic phase response, marked by increased type 2 immune cells, type 2 

mediators, fibroblastic cells, and ECM production and remodeling in the lung 

exposed to CNTs. These induced cells, mediators, and events underlie the initiation 

and progression of CNT-induced inflammation and fibrosis in the lung. 

Acute Inflammation 
The hallmark of acute inflammation is the immediately and strikingly induced 

recruitment, infiltration, and accumulation of inflammatory cells (Dong and Ma, 

2016b,2019b). Neutrophils and macrophages are markedly recruited and infiltrate 

into lung tissues, examined by cell counting of BAL samples and immunostaining of 

specific cell markers on lung tissues, which indicates their critical roles as the 



frontline responders in the onset of acute inflammation induced by CNTs (Shvedova 

et al., 2005; Porter et al., 2013; Dong et al., 2015; Rydman et al., 2015; Nikota et al., 

2017; Dong and Ma, 2018a). At this stage, M1 (traditionally activated) macrophages are 

the dominant macrophage population, as determined by the cell surface markers 

CD86 and MHC II. A markedly increased number of macrophages express iNOS, a 

functional marker of M1, demonstrating the activation and function of M1 in the 

acute inflammatory response to CNTs. The activation of M1 is further supported by 

the increased levels of phosphorylated STAT1 and IRF5, two markers of M1-specific 

signaling pathways in macrophages. These findings reveal the pro-inflammatory and 

cytotoxic M1 functions in CNT-exposed lungs (Dong and Ma, 2018a). Meanwhile, 

increased lymphocytes are observed in BAL samples from CNT-exposed lungs, 

suggesting their roles in the consequent pathological responses (Shvedova et al., 

2005; Dong et al., 2015). 

The enrichment of inflammatory cells leads to markedly elevated production and 

secretion of pro-inflammatory cytokines and chemokines in CNT-exposed lungs. 

Functionally, cytokines are small secreted proteins, which bind to their specific 

receptors on target cells and activate downstream signaling pathways, leading to the 

transactivation of the genes that encode functional proteins; and chemokines are a 

family of small heparin-binding cytokines that are chemotactic and function in 

trafficking and orchestrating immune cells. A subset of cytokines and chemokines 

have been shown to exert pro-fibrotic functions as microenvironmental cues, leading 

to the initiation and progression of tissue fibrosis, in both animal and human lung 

fibrosis (Borthwick et al., 2013; Sahin and Wasmuth, 2013). For instance, the cytokines 

TNF-α, IL-1α, IL-1β, and IL-6, and the chemokines CCL2 (MCP-1), CCL5 (RANTES), 

and CXCL2, have been shown to play pro-fibrotic roles in bleomycin-induced lung 

fibrosis in mice and in certain human fibrotic lung diseases, such as IPF and 

asbestosis. Notably, one of the most predominant pathologic effects induced by 

CNTs is that a majority of these pro-inflammatory mediators are highly induced in 

CNT-exposed mouse, rat, and human lungs. The representative studies are listed 

in Table 1. These mediators may play important roles in the initiation and promotion 

of CNT-induced inflammation and fibrosis. The detailed analysis of their individual 

functions is emerging at the current stage. For instance, IL-1 signaling activated by 



IL-1α or IL-1β has been shown to promote acute inflammation, but not chronic 

inflammation or fibrosis, in the lung exposed to MWNT-7 MWCNTs, examined by 

using IL-1R KO mice (Rydman et al., 2015; Nikota et al., 2017). Insightful studies in this 

direction would identify the critical mediators among these rapidly induced factors 

to serve as functional biomarkers and therapeutic targets for lung inflammation and 

fibrosis. 
TABLE 1 

 

Table 1. CNT-induced pathological factors in rodent lungs. 

Type 2 Immune Response 
In the late acute phase, neutrophils diminish in lung tissues, whereas macrophages 

persist (Shvedova et al., 2005; Dong et al., 2015; Rydman et al., 2015). T and B 

lymphocytes are enriched in the interstitial, perivascular, and peribronchial regions 

of the lung exposed to CNTs (Dong and Ma, 2016c). Th2 (IL-4+/IL-13+ CD4+) 

lymphocytes with increased levels of phosphorylated STAT6 and GATA-3 are 

induced in CNT-exposed lungs, demonstrating the differentiation and activation of 

Th2 cells by CNTs (Dong and Ma, 2016a). A number of studies have revealed that the 

levels of Th2-type cytokines, such as IL-4, IL-13, and IL-5, are significantly 

increased in BAL fluid and lung tissues of CNT-exposed mice, further supporting the 

activation of Th2 cells induced by CNT exposure (Dong and Ma, 2018b). IL-4 and IL-

13 function as pro-fibrotic cytokines in driving fibrosis development in a variety of 

fibrotic diseases and animal models, indicating their potential roles in promoting 

CNT-induced lung fibrosis (Wynn, 2008; Wynn and Ramalingam, 2012; Borthwick et al., 

2013; Wynn, 2015). 

Correspondingly, in macrophage population, M1 cells decline, whereas M2 

(alternatively activated) macrophages become predominant, as demonstrated by the 

M2 surface markers CD206 and CD163. The elevated number of ARG1 positive 

macrophages exhibits the functional activation of M2 at this stage. The M2 

activation is also supported by the increased levels of phosphorylated STAT3, 



phosphorylated STAT6, and IRF4, which are the markers of M2-specific signaling 

pathways in macrophages, and the induced expression of two additional M2 marker 

proteins, FIZZ1 and YM1, in the lung (Dong and Ma, 2018a). M2 macrophages are 

known to produce excessive amounts of pro-fibrotic mediators, which can promote 

fibroblast accumulation, fibroblast-to-myofibroblast differentiation, and ECM 

production and deposition (Wynn and Barron, 2010; Murray and Wynn, 2011; Wynn and 

Vannella, 2016; Vannella and Wynn, 2017). Indeed, the levels of some of these 

mediators, including TGF-β1, PDGF, TIMP1, OPN, and MMP12, are significantly 

elevated in CNT-exposed lungs; meanwhile, TGF-β1, TIMP1, and OPN have been 

demonstrated to play essential pro-fibrotic roles in CNT-induced lung fibrosis (Dong 

and Ma, 2016b,2017a,b, 2018b). These findings reveal that M2 macrophages and their 

secreted factors are critical elements in the development of lung fibrosis induced by 

CNTs (Table 1). 

Additionally, a few other type 2 immune cells play essential roles in the onset and 

promotion of type 2 immune response and fibrosis induced by CNTs in the lung 

(Dong and Ma, 2018b). For instance, MWCNT-triggered lung inflammation, fibrosis, 

and injury are markedly attenuated in mast cell-deficient KitW–sh mice and in ST2 

(receptor for IL-33) KO mice that are defective in mast cell activation, indicating the 

critical role of mast cells (Katwa et al., 2012). Eosinophils are increased in BAL from 

MWCNT-exposed mouse lungs, accompanied by elevated levels of type 2 cytokines 

(Beamer et al., 2013; Rydman et al., 2014, 2015). ILCs are also observed to increase in 

MWCNT-exposed lungs (Beamer et al., 2013). These three types of cells are believed to 

function in producing the initial type 2 cytokines IL-4 and IL-13, which stimulate the 

differentiation and activation of Th2 cells leading to type 2 immune response, thus 

are of importance in CNT-induced lung inflammation and fibrosis. 

The Th2-driven type 2 immune response can be activated by injury to suppress 

acute inflammation and promote tissue repair. However, when the insult and the 

injury caused are persistent or repeated, the activation of type 2 response and its 

repair function become prolonged and exaggerated, leading to pathologic organ 

fibrosis (Wynn, 2015; Gieseck et al., 2018). Accumulating evidence indicates that the 

exposure to CNTs and the induced activity of type 2 response fall into this scenario 



(Dong and Ma, 2018b). Thus, type 2 immune response plays critical roles in the 

transition from acute inflammation to chronic inflammation and fibrosis, and type 2 

cytokines and mediators function as important microenvironmental cues, in CNT-

exposed lungs. 

Chronic Inflammation 
In the chronic response to CNT exposure, chronic inflammation with granulomas 

displays in the lung, accompanying fibrosis. At this stage, increased macrophages 

are present in BAL and lung tissues from CNT-exposed mice (Shvedova et al., 

2005; Huizar et al., 2011; Rydman et al., 2015; Dong and Ma, 2017a). CD4+ T cells are 

induced dose-dependently in lung tissues on day 28 post-exposure to MWCNTs 

(Rydman et al., 2015). CD3+ T cells are enriched in granulomatous foci on day 60 and 

day 90 post-exposure to MWCNTs in mouse lungs (Huizar et al., 2011). Some pro-

inflammatory cytokines exist at higher levels in CNT-exposed lungs than control 

lungs at this stage, indicating the occurrence of chronic inflammation (Table 1). The 

levels of certain type 2 mediators, such as TGF-β1 and OPN, in macrophages, BAL 

fluid, and lung tissues are remarkably higher in MWCNT-exposed lungs than those 

in control lungs during the chronic stage, suggesting the activation of type 2 immune 

response (Dong and Ma, 2018b). The presence of these immune cells and factors is 

consistent with their orchestrated roles in maintaining chronic inflammation and 

fibrosis, which persist for at least 1 year in CNT-exposed lungs. Nevertheless, 

compared with acute inflammation, the activities and mechanisms of chronic 

inflammation induced by CNT exposure are currently less studied and require 

further elucidation. 

Fibroblastic Cells and ECM Production 
Studies on the mechanisms underlying pathologic fibrosis development have 

identified fibroblastic cells, i.e., fibroblasts and myofibroblasts, as major effector 

cells responsible for fibrosis, owing to their direct functions in excessive production 

of ECM components and pathological remodeling of injured tissues (Kuhn and 

McDonald, 1991; Zhang et al., 1994; Tomasek et al., 2002; White et al., 2003; Thannickal et 

al., 2004; Hinz et al., 2007; Wynn, 2008; Hinz, 2010; Wynn and Ramalingam, 2012). During 

fibrogenesis, tissue resident fibroblasts are regulated through stimulated migration, 



augmented proliferation, and defective apoptosis, leading to the accumulation of 

fibroblasts. Fibroblasts can be activated and differentiate into myofibroblasts, which 

possess contractile properties similar to those of smooth muscle cells due to de 

novo expression of smooth muscle proteins, such as α-SMA, and express 

exaggerated levels of ECM proteins exemplified by collagens and fibronectin, 

cytokines, and growth factors. Fibroblasts, myofibroblasts, and the copious ECM 

produced by them form fibrotic foci, which result in tissue scarring and organ 

dysfunction. 

Considering the central roles of fibroblasts and myofibroblasts in fibrosis 

development, studies on the behaviors and functions of these cells in CNT-exposed 

lungs have been performed in recent years. A number of studies demonstrate that 

fibrogenic SWCNTs and MWCNTs induce the enrichment of fibroblasts and 

myofibroblasts during both the acute and chronic phase responses in the lung, 

which have been summarized and discussed previously (Dong and Ma, 2016b). A few 

recent studies reveal that fibroblasts and myofibroblasts are activated and function 

in lung fibrosis triggered by CNT exposure. Meanwhile, emerging findings 

demonstrate that certain soluble factors generated from immune responses may 

function as the stimulators to activate critical signaling pathways in these 

fibroblastic cells, confirming the roles of, and the interactions between, immune 

cells and fibroblastic cells in the development of lung fibrosis induced by CNT 

exposure (Figure 2). 
FIGURE 2 

 

Figure 2. Soluble factor-activated signaling pathways in fibroblastic cells in CNT-

exposed mouse lungs. Certain pro-inflammatory and pro-fibrotic mediator-

regulated signaling pathways, including the canonical NF-κB pathway, the 

canonical, Smad-dependent TGF-β pathway, and the ERK signaling, have been 

reported to be activated in fibroblastic cells in CNT-exposed lungs. These pathways 

exert crucial functions in promoting the development of fibrosis induced by CNTs. 



They demonstrate the activities and roles of fibroblasts and myofibroblasts, as well 

as the connections between immune factors and fibrosis development, in the lung 

under CNT exposure. 

Comparison between WT and Opn KO mice reveals that OPN enhances MWCNT-

induced lung fibrosis through promoting the formation of fibrotic foci and 

increasing the production of matrix proteins in the lung. At the cellular and 

molecular levels, OPN promotes TGF-β1 expression and activation, Smad-

dependent TGF-β signaling activation and ECM protein expression in fibroblasts 

and myofibroblasts, fibroblast accumulation, myofibroblast differentiation, and 

ECM deposition in MWCNT-exposed lungs. By using TGF-β1 neutralizing antibodies 

and a type I TGF-β receptor inhibitor, it is confirmed that OPN enhances MWCNT-

induced fibrotic response through activating Smad-dependent TGF-β signaling and 

elevating ECM production in fibroblastic cells. Together, these findings demonstrate 

that the induction of OPN and TGF-β1, and the activation and function of Smad-

dependent TGF-β signaling in fibroblastic cells, promote MWCNT-induced lung 

fibrosis (Dong and Ma, 2017a). In another study, on day 7 post-exposure to SWCNTs, 

the induction of TGF-β1 protein is undetectable in the BAL from Opn KO lungs, 

whereas there is a 2.3-fold induction in the BAL from WT lungs; correspondingly, a 

decreased collagen deposition in Opn KO lungs on day 28 post-exposure is observed, 

compared with WT lungs (Khaliullin et al., 2017). These two studies establish TGF-β1 

as a signaling mediator that associates type 2 immune response with fibrosis 

development in CNT-exposed mouse lungs. 

Exposure to MWCNTs (MWNT-7) significantly increases the expression of the cell 

proliferation markers Ki-67 and PCNA and a panel of cell cycle-controlling genes in 

the lung in a TIMP1-dependent manner, determined by comparing WT mice with 

Timp1 KO mice. Accompanying the induction of TIMP1, MWCNTs increase the 

levels of CD63 and integrin β1 in fibroblasts and induce the formation of a 

TIMP1/CD63/integrin β1 complex on the surface of fibroblasts to trigger the 

phosphorylation and activation of Erk1/2, which might underlie MWCNT-

stimulated, TIMP1-mediated fibroblast proliferation in the lung. Deficiency of 

TIMP1 in mice causes a remarkable attenuation in fibroblast enrichment, 



myofibroblast differentiation, fibrotic focus formation, and ECM deposition in the 

lung exposed to MWCNTs (Dong and Ma, 2017b). This study therefore reveals that 

TIMP1 is a pro-fibrotic factor in CNT-induced lung fibrosis in mice. 

The pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, are well-known 

target genes, and in turn activators, of NF-κB signaling (Pahl, 1999; Ghosh and Karin, 

2002; Lawrence, 2009). Enhanced or prolonged NF-κB activation has been detected in 

multiple lung diseases, such as asthma, COPD, and silicosis (Wright and Christman, 

2003; Di Giuseppe et al., 2009; Edwards et al., 2009). The increased levels of pro-

inflammatory cytokines in CNT-exposed lungs suggest the potential activation and 

roles of NF-κB in promoting the pathological effects. Indeed, two types of fibrogenic 

MWCNTs, MWNT-7 MWCNTs and long MWCNTs, markedly induce the activation 

of NF-κB signaling in fibroblasts and myofibroblasts in mouse lungs during both the 

acute and chronic responses, demonstrated by nuclear translocation of NF-κB 

subunit p65 and phosphorylation of NF-κB p65 Serine 276 (S276). Coincidently, two 

NF-κB-regulated genes encoding pro-fibrotic mediators, TIMP1 and OPN, are 

evidently induced in fibroblasts and myofibroblasts in MWCNT-exposed lungs, 

which confirms the transactivation of NF-κB and indicates the pro-fibrotic function 

of NF-κB in MWCNT-induced lung fibrosis. These findings therefore disclose that 

NF-κB signaling functions as a molecular connection between pro-inflammatory 

factors and fibrosis development (Dong and Ma, 2019a). 

In agreement with the biological functions of fibroblasts and myofibroblasts, 

copious expression and deposition of fibrotic ECM proteins, such as Collagen I, 

Collagen III, and fibronectin, are observed in CNT-exposed lungs, especially in 

fibrotic foci where CNTs deposit and fibroblastic cells accumulate, resulting in 

pathologic ECM remodeling and tissue scarring (Dong and Ma, 2017a, b). Numerous 

investigations on this finding have been reported, with traditional methods of 

collagen analysis, such as Masson’s Trichrome staining and Picro-Sirius Red 

staining, and antibody-based immunostaining methods that detect specific proteins, 

such as immunohistochemistry and immunofluorescence, which have been 

summarized elsewhere (Dong and Ma, 2016b; Vietti et al., 2016). A number of 

representative studies are listed in Table 1. The accumulation of fibrotic ECM directly 



indicates the critical role of fibroblasts and myofibroblasts in driving CNT-induced 

lung fibrosis, and serves as an apparent hallmark of microenvironmental changes 

induced by CNT exposure. 

Epithelial Cells and Alarmins 
Lung epithelial cells are activated as effector cells in response to exposed pathogens 

and environmental insults. They play important functions in mediating host defense 

via regulating innate and adaptive immune responses (Holtzman et al., 2014; Leiva-

Juarez et al., 2018). Upon exposure to stimuli, injured epithelial cells produce and 

secrete certain alarmins that can initiate type 2 immune response, such as IL-25, IL-

33, and TSLP, demonstrating the critical role of epithelial cells in activating type 2 

immunity and tissue fibrosis (Paul and Zhu, 2010; Gieseck et al., 2018; Lloyd and 

Snelgrove, 2018). A number of studies have shown MWCNTs elevate the levels of IL-

25, IL-33, and TSLP in mouse BAL and lung tissues, suggesting the injury and 

function of epithelial cells induced by MWCNTs in the lung (Wang et al., 2011; Katwa et 

al., 2012; Beamer et al., 2013; Ronzani et al., 2014; Sager et al., 2014). A few representative 

studies are listed in Table 1. Moreover, IL-33+ type II pneumocytes (surface 

epithelial cells of the alveoli) are observed in the vicinity of alveolar macrophages 

phagocytosing MWCNTs or free MWCNTs, but not in the areas lacking MWCNTs, in 

the lung by immunohistochemistry assay, directly demonstrating the induced 

expression of IL-33 in epithelial cells by MWCNTs (Beamer et al., 2013). In cultured 

C10 mouse epithelial cells, the levels of LDH and IL-33 protein are increased by 

MWCNTs in a dose-dependent manner, supporting the damage of epithelial cells 

and the production of IL-33 by these cells stimulated by MWCNTs (Beamer et al., 

2013). Importantly, when IL-33 signaling is blocked by using anti-ST2 antibodies or 

mice with mast cells deficient of ST2, MWCNT-induced type 2 immune response is 

significantly reduced, compared with control (Katwa et al., 2012; Beamer et al., 2013). 

These studies reveal that epithelial cells play a crucial role in initiating type 2 

immune response via the IL-33/ST2 signaling during CNT-induced lung 

inflammation and fibrosis. Together, these findings demonstrate that certain type 2 

alarmins are induced and trigger the activation of type 2 immune response in CNT-

exposed lungs (Figure 1). 



Epithelial cells also contribute to the onset of acute inflammation in the lung 

through producing the alarmin HMGB1 (Andersson and Tracey, 2011; Harris et al., 

2012; Magna and Pisetsky, 2014; Huebener et al., 2015). SWCNTs and MWCNTs have 

been shown to increase the level of HMGB1 in BAL fluid from exposed mice (Jessop 

and Holian, 2015; Cui et al., 2019). In cultured C10 mouse epithelial cells, it is detected 

that the production and secretion of HMGB1 are induced by MWCNTs, indicating 

epithelial cells are a source of HMGB1 in MWCNT-exposed lungs (Jessop and Holian, 

2015). By using anti-HMGB1 neutralizing antibodies and Caspase-1 KO mice, 

HMGB1 is demonstrated to increase IL-1β secretion through NLRP3 inflammasome 

activation and initiate acute inflammation in MWCNT-exposed mouse lungs (Jessop 

and Holian, 2015). These findings suggest that HMGB1 functions as a pro-

inflammatory alarmin in CNT-exposed lungs and epithelial cells are implicated in 

CNT-induced acute inflammation through producing pro-inflammatory alarmins 

(Figure 1). 

Conclusion 
Mechanistic understanding of CNT-triggered lung inflammation and fibrosis has 

identified a variety of immune and structural cells, soluble signaling molecules, and 

ECM proteins that are evidently induced by CNT exposure and result 

inmicroenvironmental alterations in the lung. These changes function as pro-

inflammatory and/or pro-fibrotic elements that play fundamental roles in 

promoting the onset and progression of inflammation and fibrosis directly or 

indirectly, as well as serve as the cellular and molecular links that mediate the 

interactions between inflammation and fibrosis. The available evidence suggests 

that the mechanisms and modes of action underlying CNT-induced lung 

inflammation and fibrosis are in agreement with the overall understanding of 

inflammation and fibrosis to a great extent, which therefore provides the 

mechanistic basis for the potential of using CNT-exposed animals as a disease model 

to study lung inflammation and fibrosis. 
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