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Symptoms are common in patients on maintenance
hemodialysisbut identification is challenging.New informatics
approaches including natural language processing (NLP) can
be utilized to identify symptoms from narrative clinical
documentation. Herewe utilized NLP to identify seven patient
symptoms from notes of maintenance hemodialysis patients
of the BioMe Biobank and validated our findings using a
separate cohort and the MIMIC-III database. NLP performance
was compared for symptom detection with International
Classification of Diseases (ICD)-9/10 codes and the
performance of both methods were validated against manual
chart review. From1034 and 519 hemodialysis patients within
BioMe and MIMIC-III databases, respectively, the most
frequently identified symptomsbyNLPwere fatigue, pain, and
nausea/vomiting. In BioMe, sensitivity for NLP (0.85 - 0.99) was
higher than for ICD codes (0.09 - 0.59) for all symptoms with
similar results in theBioMe validation cohort andMIMIC-III. ICD
codes were significantly more specific for nausea/vomiting in
BioMe and more specific for fatigue, depression, and pain in
the MIMIC-III database. A majority of patients in both cohorts
had four or more symptoms. Patients with more symptoms
identified by NLP, ICD, and chart review had more clinical
encounters. NLP had higher specificity in inpatient notes but
higher sensitivity in outpatient notes and performed similarly
across pain severity subgroups. Thus, NLP had higher
sensitivity compared to ICD codes for identification of seven
common hemodialysis-related symptoms, with comparable
specificity between the two methods. Hence, NLP may be
useful for the high-throughput identification of patient-
centered outcomes when using electronic health records.
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M ore than 450,000 patients are undergoing mainte-
nance hemodialysis (HD) in the United States.1

Symptom burden is high in patients undergoing
HD, and patients on average report a median of 9 symptoms
over a week.2 The Standardized Outcomes in Nephrology–
HD study has identified outcomes that are important to
physicians and patients.3 Whereas cardiovascular disease and
mortality outcomes are easily tracked and identified, symp-
toms are difficult to identify and usually require a prospective
survey of patients or manual chart review, which are time
consuming (with many surveys including more than 30
questions) and provide only a cross-sectional view.4,5

Electronic health records (EHRs) have been widely
implemented in most hospital systems and dialysis units.6 At
each HD session, patients are regularly observed for adverse
signs and symptoms by nurses, technicians, and physicians.
These encounters are documented in EHRs as “free text” and
infrequently as structured data.7 Natural language processing
(NLP) permits the “reading” of unstructured documentation
and converts it into discrete data for analysis. We sought to
determine the ability of NLP to identify fatigue, nausea and/or
vomiting (N/V), anxiety, depression, itching, cramps, and
pain from the EHR of patients undergoing HD. We then
compared the performance of NLP and International Classi-
fication of Diseases (ICD) against manual chart review.
RESULTS
Patient characteristics
We identified 1080 patients receiving maintenance HD from the
BioMe biobank (Supplementary Figure S1A); 46 of these pa-
tients who enrolled after 2017 served as a separate validation
dataset. Patients had a mean age of 64 � 13 years, 42% were
women, and 42% self-reported as African American. Patients
had a high prevalence of diabetes (65%), hypertension (88%),
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coronary artery disease (40%), and congestive heart failure
(32%; Table 1). The median number of encounters was 109
(interquartile range [IQR], 41–241), with 342 progress notes
(IQR, 102–782) and 16 discharge summaries (IQR, 2–54). The
mean follow-up time was 8.7 � 5.5 years (Table 1). From the
Medical Information Mart for Intensive Care (MIMIC-III)
database, we identified 519 patients undergoing chronic HD
utilizing ICD-9 codes (Supplementary Figure S1B). The mean
age of patients was 70 � 39.6 years, 41% of patients were
women, and 63% self-reported as European American. The
prevalence of comorbidities was high, with diabetes at 54%,
hypertension at 91%, coronary artery disease at 46%, and
congestive heart failure at 47% (Table 1). The median progress
note count was 10 (IQR 0–55), and the median discharge
summary count was 1 (IQR, 1–2). Because a majority of pa-
tients only had 1 encounter, follow-up time could not be
calculated.

Symptom identification using NLP versus administrative
codes
In the BioMe development cohort, NLP identified symptoms
more frequently than did ICD codes (Figure 1a). The most
frequent symptoms identified were pain (NLP 93% vs. ICD
46%, P < 0.001), fatigue (NLP 84% vs. ICD 41%, P < 0.001),
and N/V (NLP 74% vs. ICD 19%, P < 0.001). Symptoms
were identified most frequently from progress notes (39%–

84%) and discharge summaries (14%–33%). When normal-
ized by number of encounters and follow-up time in the
BioMe development cohort, the mean frequencies of
Table 1 | Patient characteristics of BioMe and MIMIC-III

BioMe development (n [ 1034)

Age, yr 64 � 13.3
Female 433 (42)
Race/ethnicity

African American 433 (42)
European American 146 (14)
East Asian 14 (1.4)
Hispanic 376 (36)
Missing 2 (0.2)
Other 63 (6)

Comorbidities
Diabetes 671 (65)
Hypertension 915 (88)
Coronary artery disease 412 (40)
Congestive heart failure 334 (32)

Insurance type
Medicare 461 (45)
Medicaid 332 (32)
Private 215 (21)
Other/missing 26 (3)

Note types, median (IQR)
Progress notes 342 (102–782)
Discharge summaries 16 (2–54)
Radiology 48 (14–105)
Pathology/test report 0 (0–1)

Mean follow-up time, yr 8.7 � 5.5

IQR, interquartile range; MIMIC-III, Medical Information Mart for Intensive Care; N/A, no
aBecause a majority of patients only had 1 encounter, follow-up time was not calculate
Data are shown as mean � SD or count (%) except where specified.
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symptoms were 0.8, 0.5, 0.5, 0.4, 0.1, 0.07, and 0.003 en-
counters/year for pain, fatigue, depression, itching, anxiety,
N/V, and cramping, respectively. In the BioMe validation
cohort, the mean frequencies of symptoms were 0.1, 0.02,
0.01, 0.01, 0.006, 0.003, 0.001 encounter/year for pain,
depression, fatigue, anxiety, N/V, itching, and cramping,
respectively.

In MIMIC-III, the most common symptoms identified
by NLP were pain (NLP 94% vs. ICD 6%, P ¼ 0.15), fatigue
(NLP 62% vs. ICD 1%, P ¼ 0.05), and N/V (NLP 56% vs.
3%, P ¼ 0.003; Figure 1b). Depression, anxiety, and pain
were the most common symptoms identified by ICD codes
(all 6%).

Manual chart validation of 50 randomly selected charts
In the BioMe development cohort, agreement across in-
vestigators for chart review was high (k statistic, 0.6–1).
Frequency of symptoms was 4% to 54% as identified by
NLP þ ICD þ manual review, 16% to 54% as identified by
NLP þ manual review, and 0 to 2% as identified by ICD þ
manual review (Figure 2a and b). Sensitivity for NLP ranged
from 0.85 (95% confidence interval [CI], 0.65–96) for
depression to 0.99 (95% CI, 0.93–1) for fatigue, whereas
sensitivity for ICD ranged from 0.09 (95% CI, 0.01–0.29) for
cramps to 0.59 (95% CI, 0.43–0.73) for fatigue. Specificity for
NLP ranged from 0.5 (95% CI, 0–1) for pain to 0.96 (95% CI,
0.8–1) for itching, whereas specificity for ICD ranged from
0.5 (95% CI, 0.37–0.66) for pain to 0.98 (95% CI, 0.86–1) for
itching (Figure 3a; Supplementary Table S1A). ICD codes
MIMIC-III (n [ 519) BioMe validation (n [ 46)

70 � 39.6 57 � 12.6
212 (41) 18 (39)

97 (19) 17 (40)
329 (63) 4 (9)
18 (3) 1 (2)
26 (5) 21 (46)
20 (4) 0 (0)
29 (6) 3 (7)

278 (54) 29 (63)
473 (91) 44 (96)
241 (46) 14 (30)
243 (47) 13 (28)

387 (75) 17 (40)
39 (8) 20 (46)
84 (16) 5 (12)
9 (2) 1 (9)

10 (0–55) 366 (234–486)
1 (1–2) 1 (1–1)

13 (4–33) 14.5 (6–28)
9 (4–20) 1 (1–3)
N/Aa 6.9 � 3.5

t available.
d.
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Figure 1 | Frequency of symptom identified by natural language processing (NLP) and International Classification of Diseases (ICD)
from BioMe (a) and Medical Information Mart for Intensive Care (MIMIC-III) (b). Blue bars indicate the percentage of patients in
whom the symptom was found only by NLP, green bars indicate the percentage of patients in whom the symptom was found by only by ICD,
red bars indicate the percentage of patients in whom the symptom was found by both NLP and ICD, and the purple bars indicate
the percentage of patients in whom the symptom was found by neither NLP nor ICD. NV, nausea and vomiting.
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were significantly more specific for N/V (NLP 0.57 [95% CI,
0.29–0.82] versus ICD 0.97 [95% CI, 0.77–1], P ¼ 0.03). F1
scores for NLP ranged from 0.82 to 0.99 and were signifi-
cantly higher than ICD for all symptoms (0.28–0.83). The
addition of medications to ICD codes for identification of N/
V, anxiety, depression, and pain improved sensitivity of ICD
alone but worsened specificity (Supplementary Figure S2A).

In the BioMe validation cohort, the sensitivity for NLP
ranged from 0.78 (95% CI, 0.52–0.94) for depression to 0.99
(95% CI, 0.92–1) for fatigue, while sensitivity of ICD ranged
from 0.13 (95% CI, 0.02–0.27) for cramp to 0.71 (95% CI,
0.56–0.85) for fatigue (Supplementary Table S1B).

Twenty-five patients were identified as having undergone
Patient Health Questionnaire (PHQ)-9 depression screening,
of which 24 patients were identified as having depression by
PHQ-9 and/or clinical history. NLP correctly identified 22
patients (92%), whereas ICD-9/10 identified 20 patients
(83%).

In MIMIC-III, sensitivity for NLP ranged from 0.5 for
cramp to 0.98 (95% CI, 0.86–1) for fatigue, whereas
Kidney International (2020) 97, 383–392
sensitivity for ICD ranged from 0.04 (95% CI, 0–0.21) for
fatigue to 0.5 (95% CI, not available) for cramp (Figure 2b;
Supplementary Table S1C). Specificity for NLP ranged from
0.11 (95% CI, 0–0.48) for pain to 0.98 (95% CI, 0.89–1) for
itching, whereas for ICD it was 0.95 (95% CI, 0.66–1) for
pain to 0.99 (95% CI, 0.93–1) for itching. ICD had signifi-
cantly higher specificity for fatigue (NLP 0.77 [95% CI, 0.56–
0.91] vs. ICD 0.98 [95% CI, 0.87–1], P ¼ 0.03), depression
(NLP 0.81 [95% CI, 0.64–0.92] vs. ICD 0.99 [95% CI, 0.9–1],
P ¼ 0.02), and pain (NLP 0.11 [95% CI, 0–0.48] vs. ICD 0.95
[95% CI, 0.66–1], P < 0.001) in MIMIC-III.

Symptom burden
In BioMe, NLP identified 44 (4%), 61 (6%), 87 (8%), 99
(10%), 177 (17%), 158 (15%), 204 (20%), and 204 (20%)
patients with 0, 1, 2, 3, 4, 5, 6, and 7 symptoms, respectively.
Patients who did not have any symptoms identified by NLP
had a median of 7 (IQR, 2–40) encounters per year, whereas
patients with all 7 symptoms had a median of 24 (IQR, 15–
43) encounters per year. A moderate correlation was found
385



Figure 2 | Frequency of symptoms from 50 patients from BioMe (a) and Medical Information Mart for Intensive Care (MIMIC-III)
(b) who had manual chart review. ICD, International Classification of Diseases; NLP, natural language processing; NV, nausea and vomiting.
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between the number of encounters per year and the number
of symptoms identified by NLP (correlation coefficient 0.36,
P < 0.001). Among the 50 patients who had a manual chart
review, symptom burden identified by NLP and manual chart
review was similar; however, patients had fewer symptoms
identified by ICD codes than by manual chart review
(Figure 4a, b, and c). A moderate significant positive corre-
lation was found between number of encounters per year and
number of symptoms identified by NLP (correlation coeffi-
cient 0.5, P < 0.001), ICD (correlation coefficient 0.35, P ¼
0.01), and manual chart review (correlation coefficient 0.5,
P < 0.001) in BioMe. In MIMIC-III, NLP identified 21 (4%),
51 (10%), 136 (26%), 122 (24%), 98 (19%), 65 (13%), 21
386
(4%), and 5 (1%) patients with 0, 1, 2, 3, 4, 5, 6, and 7
symptoms, respectively.

Subgroup analysis in BioMe
A total of 608 participants had at least 2 years of follow-up
time. When restricted to only 1 year of notes, NLP iden-
tified symptoms less frequently than it did without date
restrictions (fatigue 58% vs. 84%, N/V 39% vs. 74%,
anxiety 26% vs. 54%, depression 18% vs. 55%, itching 22%
vs. 48%, and cramp 16% vs. 44%) except for pain, which
was found at a similar rate (90% in the 1-year subset vs.
93% with no restrictions). Even with date restrictions, NLP
identified more symptoms and had better sensitivity than
Kidney International (2020) 97, 383–392



Figure 3 | Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of natural language processing
versus International Classification of Diseases for the identification of symptoms for BioMe (a) and Medical Information Mart for
Intensive Care (MIMIC-III) (b) calculated using manual chart review of 50 patient charts. CI, confidence interval.
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Figure 4 | Overall symptom burden demonstrating the number of symptoms identified from 50 BioMe patients by natural language
processing (a), International Classification of Diseases (b), and manual review (c).
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did ICD codes (Supplementary Figure S3 and
Supplementary Table S1D).

A total of 1024 participants had at least 1 encounter with
notes available; these patients were then grouped into tertiles
(low [#62 encounters], medium [63–186 encounters], and
high [$187 encounters]) based on the number of encounters.
An increasing number of symptoms were identified using
NLP and ICD with increasing encounters for all symptoms
except for pain. There was no substantial increase in identi-
fication of pain with NLP between medium- and high-
encounter groups. Regardless of symptom and encounter
group, NLP identified more symptoms than did ICD
(Supplementary Figure S4).

Out of 100,118 notes, 11,066 (11%) were from an inpatient
hospital stay. Symptoms were identified more frequently in
outpatient notes than in inpatient notes except for N/V. Fatigue
identification had the largest difference by inpatient and
outpatient notes, with a difference of 19% (Supplementary
Figure S5). Overall, NLP had better sensitivity for symptom
identification in outpatient notes but better specificity in
inpatient notes (Supplementary Figure S2B).

A total of 533 patients (52%) had 7476 episodes of pain with
severity documented; 3137 (42%) were mild, 2232 (30%) were
moderate, and 2107 (28%) were severe. NLP performed simi-
larly across pain severity types (Supplementary Figure S2C).

DISCUSSION
Although symptoms are common in patients undergoing HD
and are identified as important to patients and providers,
efficient retrospective assessment of symptoms from the EHR
is difficult. We show that NLP has better sensitivity than ICD
codes at identifying 7 common symptoms in patients from
the BioMe biobank with validation of results in a separate
validation cohort from BioMe and an external cohort from
MIMIC-III.3 The symptom burden was high, with a majority
of patients having at least 4 or more symptoms identified by
NLP. Finally, there was a positive correlation between the
number of encounters and number of symptoms identified by
NLP.

The Standardized Outcomes in Nephrology–HD initiative
identified several outcomes important to all stakeholders and
has emphasized the importance of clinical research that
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includes these symptoms. Prior research that used patient-
centered outcomes as end points have required prospective
surveys for their execution.2,8 Alternatives to this approach
include chart validation, potentially with aid of computer
text searching and chart review tools. However, these
methods are labor and time intensive. Although NLP can
process notes in an efficient manner, few studies in
nephrology have utilized NLP and included symptoms or
patient-centered outcomes.9–14

Symptom prevalence identified in the BioMe cohort by
NLP is similar to prior published survey data on symp-
toms.2,8,15 Symptoms such as itching and cramps were less
frequent, whereas other symptoms such as N/V were found
more commonly. Differences in patients enrolled in studies
and those seen in real-world practice likely contribute to the
differences in prevalence. Additionally, the ethnically and
racially diverse nature of the BioMe biobank and the critically
ill nature of MIMIC-III patients are likely contributors to
differences in symptom prevalence. How the prevalence of
symptoms identified here compared with the general outpa-
tient US HD population needs to be further elucidated.

Whereas surveys in prior studies have been conducted in
patients who are stable at their outpatient HD centers, we
included outpatient and acute inpatient notes. Subgroup
analysis showed that more symptoms were picked up in the
outpatient notes than the inpatient notes. The larger pro-
portion of notes for outpatient encounters likely contributes
to the higher sensitivity in outpatient notes. Additionally,
providers are more likely to discuss overall health in the
outpatient setting when the patient is not acutely ill, whereas
in the inpatient notes providers will focus on the admitting
diagnosis. Because MIMIC-III consists of progress notes from
critically ill patients, symptoms were identified at an even
lower rate, likely because the patients were critically ill and
unable to verbalize their symptoms and because the providers
focus on admission diagnosis and contributing comorbidities
instead of symptoms and psychosocial comorbidities.

We chose not to place limitations on the number, timing,
or type of notes, which may have increased the likelihood of
NLP or ICD codes identifying a symptom. However, in
sensitivity analysis, NLP consistently identified more symp-
toms than did ICD codes. Although the false-positives may be
Kidney International (2020) 97, 383–392
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contributing to this difference, we suspect this is a small
contributor given relatively small differences in specificity
between NLP and ICD. Additionally, the lack of note re-
strictions may lead to identification of symptoms that are not
caused by patient’s end-stage renal disease status. However,
these symptoms remain important patient outcomes because
they were deemed to be important to patients, physicians, and
caregivers.3

We found that NLP outperformed ICD codes for symptom
identification.16–19 Because ICD codes are administrative and
billing codes, clinicians may be less inclined to use them to
document symptoms experienced by patients undergoing
HD, especially if they do not count toward overall reim-
bursement. Sensitivity for ICD codes are generally moderate
even in more common conditions such as myocardial
infarction (72%) and hypertension (78%).20 The addition of
medications to ICD codes for identification of N/V, anxiety,
depression, and pain increased sensitivity but decreased
specificity, likely because of the use of medications for other
indications (e.g., bupropion for depression and for smoking
cessation).

ICD codes for symptoms had high specificity and high
positive predictive value. Therefore, the NLP method may be
favored for identification of a large cohort of patients with
symptoms while accepting the risk of higher false-positive
rates, whereas the ICD method may be favored for identifi-
cation of patients highly likely to have symptoms while
accepting the higher false-negative rate. Although NLP was
more sensitive at identifying depression, ICD codes were
more specific because of false-positives for depression used in
other clinical contexts (e.g., depressions on electrocardiogram
or temporal depressions). Although we could potentially
improve the specificity of NLP for depression by excluding
specific phrases found during chart review, this is likely to
reduce the generalizability of NLP for external cohorts
because of variability in provider documentation across
institutions.

Our study should be interpreted in the light of some
limitations, including the dependence of symptom identifi-
cation on the number of encounters and notes available.
However, this is a common issue with EHR systems, in which
more data are available for both sicker patients and patients
with longer length of follow-up.21 Unfortunately, data
regarding the authors of the notes are not available, and we
cannot comment on the documentation of symptoms by
provider type. Additionally, only symptoms that the provider
is screening for are documented, and therefore NLP may miss
symptoms that patients are not discussing with their pro-
viders, which may lead to an underestimation of symptom
prevalence.22 Neither the BioMe nor MIMIC-III datasets are
exclusive to patients undergoing HD on an outpatient basis,
which makes comparison with prior published data difficult
and reduces the generalizability of our results. However, the
prevalence of symptoms in our study is similar to prior
published survey data.2,15 Data are extracted from EHRs of
respective institutions, and this export process may affect the
Kidney International (2020) 97, 383–392
generalizability of results to other institutions. Although
presence of symptoms varied throughout time, we chose to
classify patients as ever present or never present because our
goal was to evaluate the performance of NLP in identifying
patients with the symptoms. In our subgroup analyses of 1
year of notes, we looked only at the date of the note and not
whether the query was flagged as a current or past temporal
context, which may change the frequency of symptoms
identified. Unfortunately, because we did not have concurrent
survey data available, we used manual chart review as our
gold standard, which may be imperfect. The results of our test
statistics were relatively consistent across BioMe and MIMIC-
III cohorts, suggesting that our NLP algorithm could have
generalizability across different medical systems. Unfortu-
nately, we did not perform formal error analysis, but further
work on NLP methods could benefit from formal error
analysis.

In conclusion, we used NLP to identify important patient
symptoms from the EHR of patients undergoing HD from the
Mount Sinai health system and validated our results in
MIMIC-III. NLP outperformed ICD codes for identification
with regard to sensitivity, negative predictive value, and F1
score for a majority of symptoms in both the cohorts.
Additional refinement of NLP approaches and testing in the
EHR of outpatient HD units is needed to further validate our
findings and prior to using in the care of our patients.
METHODS
Study population
From a cohort of 38,575 participants from the BioMe biobank at
Mount Sinai, we retrieved all notes of BioMe participants available
from a centralized data mart from January 1, 2010, up to March 15,
2019. The BioMe Biobank is a prospective registry of patients from
the Mount Sinai Healthcare System linked to the United States
Renal Data System. We included patients undergoing HD,
excluding those with a kidney transplant and those who never
underwent dialysis. Because linkage information did not include
dialysis type or dialysis access type, peritoneal patients were
excluded using ICD codes (Supplementary Table S2A). The NLP
development cohort included only patients who enrolled in BioMe
prior to December 31, 2017. The institutional review board
approved the BioMe protocols, and informed consent was obtained
for all subjects.

We validated performance of our NLP algorithm using 2 distinct
cohorts: (i) the BioMe validation cohort composed of patients un-
dergoing chronic HD from BioMe who were not included in the
original development cohort and (ii) the MIMIC-III database.23 The
BioMe validation cohort consisted of patients who enrolled in BioMe
between January 1, 2018, and March 15, 2019, and were identified
using ICD-9/10 codes (Supplementary Table S2A). MIMIC-III is a
critical care database of patients from a large, single center tertiary
care hospital from 2001–2012.23 We included all notes from the
MIMIC-III database. Because MIMIC-III could not be linked with
the United States Renal Data System, end-stage kidney disease was
identified as patients who had an ESKD code and a code for dialysis
procedure or diagnosis after excluding patients with acute kidney
injury codes and peritoneal patients by peritoneal dialysis codes
(Supplementary Table S2A). Because MIMIC-III is a de-identified
389
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publicly available database, evaluation of data from this source was
considered exempt from institutional review board approval.

Patient comorbidities were identified using the Clinical Classifi-
cation Software developed by the Healthcare Cost and Utilization
Project.24 The Clinical Classification Software aggregates ICD codes
into clinically meaningful and mutually exclusive categories. The
codes used for identification are included in Supplementary
Table S2B.

Study design
This study is a retrospective cohort study of patients undergoing HD
drawn from the EHRs of 2 medical systems. We utilized the CLiX
NLP engine produced by Clinithink (London, UK) to parse notes.
CLiX NLP is an NLP software that matches free text to Systematized
Nomenclature of Medicine—Clinical Terms (SNOMED CT).25

SNOMED CT is a comprehensive health care terminology resource
that has an inherent hierarchy consisting of overarching concepts,
that is, parent terms, which encompass more specific concepts, that
is, children terms. Supplementary Figure S6 includes an example of
how “cramp” would be represented in the SNOMED CT hierarchy.
In our testing for this and other projects, we found that CLiX NLP
was able to handle typographical errors, sentence context, and
negation well.26,27 Common abbreviations (e.g., N/V for nausea and/
or vomiting) were correctly identified; however, during chart review,
additional abbreviations that were incorrectly identified required a
request to alter the NLP algorithm. CLiX NLP identifies terms such
as “no,” “denies,” and “not” as negative and applies it to the
SNOMED CT, thereby marking the query as “present” or “absent.”
Therefore, we did not use specific negative terms for exclusion;
instead, only those marked as “present” were considered as positive.
There was no restriction on the number of notes or types of notes
placed. Note types included progress notes (from all providers
including social worker, physical therapy, nursing, and physician),
radiology reports, discharge summaries, and pathology reports.

We queried for fatigue, depression, pain, N/V, anxiety, itching,
and cramps.3 SNOMED CT for the associated outcomes were
selected through extensive review by 2 physicians (Supplementary
Table S3). These specific terms were selected because of their
inability to be identified from structured data.

We used a SNOMED CT query engine (a second component of
CLiX) to perform hierarchical subsumption queries to identify all
relevant SNOMED CT, both parent terms and the associated chil-
dren terms for each outcome. This was first identified on the
document level and then on the patient level. For depression, a
chronic disease, NLP identification on at least 2 different dates was
necessary to be considered positive; for all other symptoms, identi-
fication on one note was considered positive. CLiX NLP reads
through each sentence to identify all associated SNOMED CT. Then
CLiX NLP’s inherent description logic outputs details associated with
each term, including subject, temporality, presence versus absence,
and, if appropriate, location/laterality (Supplementary Figure S7). A
query was considered positive if the subject was identified as the
subject of record and it had a known present context. Date of query
positive was the date of the note. Although CLiX NLP is a pro-
prietary system, this study can be replicated with other NLP tools
that utilize SNOMED CT. We chose this NLP method because of the
research team members’ familiarity with it and its availability to us.
Other valid methods, including machine learning, were not used
because of a lack of mature methodologies for this specific project.

We performed 2 iterations of NLP parsing with manual chart
review of 50 randomly selected charts, a test set, guiding the second
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iteration. We rectified errors in identification in the NLP engine prior
to the execution of the final parsing. Examples included phrases such
as “the patient was advised to call for any fever or for prolonged or
severe pain or bleeding” and “EKG sinus tach with V4, V5 de-
pressions.” We modified the NLP algorithm to recognize these as
negative expressions. We report results in this article from the final
NLP query with test statistics calculated from a separate manual
chart review of 50 randomly selected charts as described later. Ex-
amples of false-positive results that were identified during this final
chart review are presented in Supplementary Table S4. This final
NLP algorithm was then validated in a cohort of distinct HD patients
from BioMe and MIMIC-III.

We compared performance of ICD–clinical modification (CM)
codes with the results obtained from CLiX NLP.28–30 ICD-9 and -10
codes were used in BioMe, whereas only ICD-9 codes were available in
MIMIC-III (Supplementary Table S2C). To determine if medication
data improved ICD identification of symptoms, we identified medica-
tions used for pain, N/V, anxiety, and depression from RxNorm
(Supplementary Table S5) and identified patients for whom these
medications had ever been prescribed.31 Medications that are commonly
used for other indications (e.g., aspirin for second prevention of cardiac
events) were removed from the list. Finally, both methods were
compared with independent chart review by 2 physicians. We randomly
selected 50 patient charts from BioMe and MIMIC-III, using SAS
(PROC SURVEYSELECT method SRS) to perform simple random
sampling. Then all notes from the same 50 charts were reviewed for all
symptoms. All patients from the BioMe validation cohort underwent
manual chart review. When there was disagreement between manual
validations for a patient, joint review of the patient’s chart was per-
formed until consensus agreement was obtained.

To evaluate NLP performance across note types, notes were
categorized into inpatient or outpatient. Manual chart review of 50
randomly selected charts was performed. Next, we looked at
symptom identification within progress notes, discharge summaries,
pathology reports, and radiology reports. For pain, we extracted
severity and categorized it into mild, moderate, and severe. Manual
chart review of 25 randomly selected cases for each severity and 25
randomly control subjects (those with pain but no severity identi-
fied) was performed.

Two additional subgroup analyses were performed using data
from BioMe patients. First, we restricted NLP to only 1 year of notes
from patients who had at least 2 years of data. Manual chart review
was done for 30 patients. Second, only patients with at least 1
encounter with notes available were included and grouped into
tertiles based on the number of encounters (low, medium, and high).
Unfortunately, the MIMIC-III database was solely an intensive care
unit database and therefore lacks the repeated encounters and lon-
gitudinal follow-up that is available in BioMe; therefore, these sub-
group analyses could not be performed.

Lastly, we compared NLP depression positive with PHQ-9
screening documentation.32,33 We considered depression screening
positive if patients scored $10 or there was evidence of a history of
depression (i.e., cognitive behavior therapy, antidepressive medica-
tions, or prior suicide attempts).

Statistical analysis
We calculated sensitivity, specificity, positive predictive value, nega-
tive predictive value, and F1 scores of NLP and ICD-9/10 codes. F1
scores were calculated as a measure of accuracy that considers both
the sensitivity and positive predictive value.34 For cells on the 2�2
table where the value was 0, we adapted the Woolf-Haldane
Kidney International (2020) 97, 383–392
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correction method for logistic regression and entered 0.5 to allow for
calculation of test statistics.35,36 The 95% CIs were calculated using
the PROC FREQ procedure in SAS using the binomial option.37 We
compared estimates of sensitivity and specificity using McNemar’s
test, with significance set using a 2-sided P value of <0.05. We
compared negative predictive value and positive predictive value
using the generalized score statistic method and the SAS macro
created by Gondara et al.38 Unfortunately 95% CI and P values could
not be generated if 2 or more cells in the 2�2 table were empty. We
calculated Pearson’s correlation coefficient to determine the corre-
lation between number of encounters and number of symptoms
identified by NLP. We performed all analysis using SAS version 9.4
(Copyright � 2019 SAS Institute Inc. SAS and all other SAS Institute
Inc. product or service names are registered trademarks or trade-
marks of SAS Institute Inc., Cary, NC, USA.) and R 3.6.0 (R
Foundation for Statistical Computing, Vienna, Austria).

DISCLOSURE
GNN and SGC are co-founders of RenalytixAI, and GNN and SGC are members of
the advisory board of RenalytixAI and own equity in the same. GNN has received
operational funding from Goldfinch Bio. GNN has received consulting fees for
BioVie Inc. SGC has received consulting fees from Goldfinch Bio, CHF Solutions,
Quark Biopharma, Janssen Pharmaceuticals, and Takeda Pharmaceuticals. GNN
and SGC are on the advisory board for pulseData and have received consulting
fees and equity in return. TVV was part of launching Clinithink and retains a
financial interest in the company. PK is an employee of the Renal Research
Institute, a wholly owned subsidiary of Fresenius Medical Care (FMC); he holds
stock in this company. All the other authors declared no competing interests.

ACKNOWLEDGMENTS
LC is supported in part by the National Institutes of Health
(5T32DK007757–18). GNN is supported by a career development
award from the National Institutes of Health (K23DK107908) and is
also supported by R01DK108803, U01HG007278, U01HG009610, and
U01DK116100. SGC is supported by the following grants from the
National Institutes of Health: U01DK106962, R01DK106085,
R01HL85757, R01DK112258, and U01OH011326.

We thank all participants of BioMe and MIMIC-III.

AUTHOR CONTRIBUTIONS
LC, SC, and GNN designed the study. TVV parsed the data. LC, KC, KC,
and ND carried out the analysis. LC, AY, and KB performed the manual
chart review. ND and AS made the figures and tables. All authors
drafted and revised the manuscript and approved the final version of
the manuscript.

SUPPLEMENTARY MATERIAL
Supplementary File (Word)
Figure S1. Study flow chart for BioMe (A) and MIMIC-III (B).
Figure S2. Test parameters for addition of medication on ICD
performance (A), NLP performance for pain severity identification (B),
and NLP performance on symptom identification (C) in inpatient
versus outpatient notes.
Figure S3. Frequency of symptoms from BioMe patients identified
from 1 year of notes.
Figure S4. Frequency of symptoms identified by NLP and ICD across
tertiles of encounters.
Figure S5. Proportion of symptoms identified in inpatient and
outpatient notes.
Figure S6. SNOMED Hierarchy for concept of cramp.
Figure S7. Example of CLiX parsing the phrase “cramp in left leg.”
Table S1. Sensitivity, specificity, PPV, NPV, and F1 score of NLP versus
ICD for identification of symptoms for BioMe development cohort (A);
Kidney International (2020) 97, 383–392
BioMe validation cohort (B); MIMIC-III (C); and 1 year of notes from
patients in BioMe (D) calculated using manual chart review.
Table S2. ICD 9 and 10 codes for identification of hemodialysis and
peritoneal dialysis patients (A); comorbidities (B); and symptoms (C).
Table S3. List of SNOMED concepts and children terms used for
symptom identification.
Table S4. Example of false-positives and false-negatives found with
NLP.
Table S5. List of medications for pain, nausea and/or vomiting,
depression, and anxiety as per RXnorm.

REFERENCES
1. United States Renal Data System. 2018 USRDS annual data report:

epidemiology of kidney disease in the United States. Bethesda, MD:
National Institutes of Health, National Institute of Diabetes and Digestive
and Kidney Diseases; 2018.

2. Weisbord SD, Fried LF, Arnold RM, et al. Prevalence, severity, and
importance of physical and emotional symptoms in chronic
hemodialysis patients. J Am Soc Nephrol. 2005;16:2487–2494.

3. Tong A, Manns B, Hemmelgarn B, et al. Establishing core outcome
domains in hemodialysis: report of the Standardized Outcomes in
Nephrology–Hemodialysis (SONG-HD) consensus workshop. Am J Kidney
Dis. 2017;69:97–107.

4. Weisbord SD, Fried LF, Arnold RM, et al. Development of a symptom
assessment instrument for chronic hemodialysis patients: the dialysis
symptom index. J Pain Symptom Manage. 2004;27:226–240.

5. Hays RD, Kallich JD, Mapes DL, et al. Development of the kidney disease
quality of life (KDQOL) instrument. Qual Life Res. 1994;3:329–338.

6. Adler-Milstein J, DesRoches CM, Furukawa MF, et al. More than half of US
hospitals have at least a basic EHR, but stage 2 criteria remain
challenging for most. Health Aff (Millwood). 2014;33:1664–1671.

7. Hernandez-Boussard T, Tamang S, Blayney D, et al. New paradigms for
patient-centered outcomes research in electronic medical records: an
example of detecting urinary incontinence following prostatectomy.
EGEMS (Wash DC). 2016;4:1231.

8. Merkus MP, Jager KJ, Dekker FW, et al. Physical symptoms and quality of
life in patients on chronic dialysis: results of The Netherlands
Cooperative Study on Adequacy of Dialysis (NECOSAD). Nephrol Dial
Transplant. 1999;14:1163–1170.

9. Perotte A, Ranganath R, Hirsch JS, et al. Risk prediction for chronic
kidney disease progression using heterogeneous electronic health
record data and time series analysis. J Am Med Inform Assoc. 2015;22:
872–880.

10. Singh K, Betensky RA, Wright A, et al. A concept-wide association study
of clinical notes to discover new predictors of kidney failure. Clin J Am
Soc Nephrol. 2016;11:2150–2158.

11. Chase HS, Radhakrishnan J, Shirazian S, et al. Under-documentation of
chronic kidney disease in the electronic health record in outpatients.
J Am Med Inform Assoc. 2010;17:588–594.

12. Nadkarni GN, Gottesman O, Linneman JG, et al. Development and
validation of an electronic phenotyping algorithm for chronic kidney
disease. AMIA Annu Symp Proc. 2014;2014:907–916.

13. Malas MS, Wish J, Moorthi R, et al. A comparison between physicians and
computer algorithms for form CMS-2728 data reporting. Hemodial Int.
2017;21:117–124.

14. Nigwekar SU, Solid CA, Ankers E, et al. Quantifying a rare disease in
administrative data: the example of calciphylaxis. J Gen Intern Med.
2014;29:724–731.

15. Caplin B, Kumar S, Davenport A. Patients’ perspective of haemodialysis-
associated symptoms. Nephrol Dial Transplant. 2011;26:2656–2663.

16. Waikar SS, Wald R, Chertow GM, et al. Validity of International
Classification of Diseases, ninth revision, clinical modification codes for
acute renal failure. J Am Soc Nephrol. 2006;17:1688–1694.

17. Vlasschaert MEO, Bejaimal SAD, Hackam DG, et al. Validity of
administrative database coding for kidney disease: a systematic review.
Am J Kidney Dis. 2011;57:29–43.

18. Semins MJ, Trock BJ, Matlaga BR. Validity of administrative coding in
identifying patients with upper urinary tract calculi. J Urol. 2010;184:190–192.

19. McCormick N, Lacaille D, Bhole V, et al. Validity of heart failure diagnoses
in administrative databases: a systematic review and meta-analysis. PLoS
One. 2014;9:e104519.
391

https://doi.org/10.1016/j.kint.2019.10.023
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref1
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref1
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref1
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref1
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref2
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref2
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref2
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref3
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref3
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref3
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref3
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref4
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref4
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref4
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref5
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref5
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref6
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref6
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref6
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref7
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref7
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref7
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref7
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref8
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref8
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref8
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref8
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref9
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref9
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref9
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref9
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref10
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref10
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref10
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref11
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref11
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref11
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref12
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref12
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref12
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref13
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref13
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref13
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref14
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref14
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref14
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref16
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref16
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref17
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref17
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref17
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref18
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref18
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref18
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref19
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref19
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref20
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref20
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref20


c l i n i ca l i nves t iga t i on L Chan et al.: HD symptom burden
20. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining
comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care.
2005;43:1130–1139.

21. Weiskopf NG, Rusanov A, Weng C. Sick patients have more data: the non-
random completeness of electronic health records. AMIA Annu Symp
Proc. 2013;2013:1472–1477.

22. Weisbord SD, Fried LF, Mor MK, et al. Renal provider recognition of
symptoms in patients on maintenance hemodialysis. Clin J Am Soc
Nephrol. 2007;2:960–967.

23. Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible
critical care database. Sci Data. 2016;3:160035.

24. Agency for Healthcare Research and Quality. Healthcare Cost and
Utilization Project (HCUP). www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.
jsp. Accessed November 11, 2019.

25. Spackman KA, Campbell KE, Côté RA. SNOMED RT: a reference
terminology for health care. Proc AMIA Annu Fall Symp. 1997:640–644.

26. Van Vleck TT, Chan L, Coca SG, et al. Augmented intelligence with natural
language processing applied to electronic health records for identifying
patients with non-alcoholic fatty liver disease at risk for disease
progression. Int J Med Inform. 2019;129:334–341.

27. Clark MM, Hildreth A, Batalov S, et al. Diagnosis of genetic diseases in
seriously ill children by rapid whole-genome sequencing and
automated phenotyping and interpretation. Sci Transl Med. 2019;11:
eaat6177.

28. Fiest KM, Jette N, Quan H, et al. Systematic review and assessment of
validated case definitions for depression in administrative data. BMC
Psychiatry. 2014;14:289.

29. Tian TY, Zlateva I, Anderson DR. Using electronic health records data to
identify patients with chronic pain in a primary care setting. J Am Med
Informatics Assoc. 2013;20:e275–e280.
392
30. Kisely S, Lin E, Gilbert C, et al. Use of administrative data for the
surveillance of mood and anxiety disorders. Aust N Zeal J Psychiatry.
2009;43:1118–1125.

31. Lister Hill National Center for Biomedical Communications, U.S. National
Library of Medicine, National Institutes of Health, and Department of
Health & Human Services. RxClass. Exploring Classes for RxNorm Drugs.
Available at: https://mor.nlm.nih.gov/RxClass. Accessed October 25,
2019.

32. Kroenke K, Spitzer RL. The PHQ-9: a new depression diagnostic and
severity measure. Psychiatr Ann. 2002;32:509–515.

33. Watnick S, Wang P-L, Demadura T, et al. Validation of 2 depression
screening tools in dialysis patients. Am J Kidney Dis. 2005;46:
919–924.

34. Sasaki Y. The truth of the F-measure. https://www.toyota-ti.ac.jp/Lab/
Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf.
Published 2007. Accessed November 11, 2019.

35. Lawson R. Small sample confidence intervals for the odds ratio. Commun
Stat Simul Comput. 2004;33:1095–1113.

36. Dureh N, Choonpradub C, Tongkumchum P. An alternative method for
logistic regression on contingency tables with zero cell counts. https://
rdo.psu.ac.th/sjstweb/journal/38-2/38-2-8.pdf. Published 2016. Accessed
November 11, 2019.

37. SAS. 24170–Estimating sensitivity, specificity, positive and negative
predictive values, and other statistics. http://support.sas.com/kb/24/170.
html. Accessed November 11, 2019.

38. Gondara L. A SAS� macro to compare predictive values of
diagnostic tests. https://www.researchgate.net/publication/28144
0778_A_SAS_R_macro_to_compare_predictive_values_of_
diagnostic_tests. Published April 2015. Accessed November 11,
2019.
Kidney International (2020) 97, 383–392

http://refhub.elsevier.com/S0085-2538(19)31116-0/sref21
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref21
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref21
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref22
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref22
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref22
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref23
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref23
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref23
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref24
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref24
http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref26
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref26
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref27
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref27
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref27
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref27
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref28
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref28
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref28
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref28
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref29
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref29
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref29
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref30
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref30
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref30
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref31
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref31
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref31
https://mor.nlm.nih.gov/RxClass
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref33
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref33
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref34
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref34
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref34
https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf
https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref36
http://refhub.elsevier.com/S0085-2538(19)31116-0/sref36
https://rdo.psu.ac.th/sjstweb/journal/38-2/38-2-8.pdf
https://rdo.psu.ac.th/sjstweb/journal/38-2/38-2-8.pdf
http://support.sas.com/kb/24/170.html
http://support.sas.com/kb/24/170.html
https://www.researchgate.net/publication/281440778_A_SAS_R_macro_to_compare_predictive_values_of_diagnostic_tests
https://www.researchgate.net/publication/281440778_A_SAS_R_macro_to_compare_predictive_values_of_diagnostic_tests
https://www.researchgate.net/publication/281440778_A_SAS_R_macro_to_compare_predictive_values_of_diagnostic_tests

	Natural language processing of electronic health records is superior to billing codes to identify symptom burden in hemodia ...
	Results
	Patient characteristics
	Symptom identification using NLP versus administrative codes
	Manual chart validation of 50 randomly selected charts
	Symptom burden
	Subgroup analysis in BioMe

	Discussion
	Methods
	Study population
	Study design
	Statistical analysis

	Disclosure
	Acknowledgments
	Author Contributions
	Supplementary Material
	References


