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ABSTRACT

The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of
nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust
route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar re-
gion. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system
and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of
some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompa-
nied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules re-
leased from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in
their molecular make-up and activity in the periphery. The present review examines systemic outcomes attrib-
uted to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung
into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible
to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to under-
stand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts
arising from NP exposure scenarios.

© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

Nano-sized particles, with at least one dimension under 100 nm, are
persistent within our environment. These nanoparticles (NP) are en-
demic to our atmosphere, water sources, the soil and are carried by mi-
croorganisms (Hochella, Spencer, & Jones, 2015). Similarly termed
ultrafine particulates (UFP) for non-manufactured sources, NPs are pro-
duced by natural events such as photochemical reactions, forest fires,
dust storms or volcanic eruptions, but are also common byproducts of
industrial processes such as welding, wood/charcoal burning, and vehi-
cle exhaust. Lastly, nano-sized particles are engineered (ENP) for a wide
variety of manufacturing demands. ENPs are commonly used for indus-
trial purposes in water/sewage treatment, energy, auto and airspace en-
gineering, as well as construction, agriculture, electronics, optics,
sporting equipment, textile, cosmetics, and food safety. Moreover,
there is a growing biomedical demand for ENPs for clinical diagnosis
and therapy (Cheng, Morshed, Auffinger, Tobias, & Lesniak, 2014; Jain,
Hirst, & O'Sullivan, 2012; Meyers, Doane, Burda, & Basilion, 2013), bio-
technology (Sonnichsen, Reinhard, Liphardt, & Alivisatos, 2005), and
bio sensing (Kwon & Bard, 2012; Wang, Xu, Kawde, & Polsky, 2001).
Most commonly, ENPs are comprised of carbon (e.g., single and multi-
walled carbon nanotubes (MWCNT) or nanofibers), noble metals
(e.g., silver, gold) and metal oxides (e.g., ZnO, TiO,). Diversity in origin
and use translates to a wide variety of physicochemical properties with
composition, size, shape and other aspects influencing the toxicological
profile of NPs (Fenoglio et al., 2012; Nagai et al., 2011; Poland et al.,
2008). NPs tend to inflict greater health deficits than larger particulates
(Braakhuis et al., 2014; Breitner et al., 2011; Du et al., 2013; Franck,
Odeh, Wiedensohler, Wehner, & Herbarth, 2011), entering the body
more efficiently and presenting generally greater bioactivity with a
larger surface area per mass (Oberdorster, Oberdorster, & Oberddrster,
2005). For example, pulmonary inflammation was enhanced with
NPs over larger particles of the same material (Warheit, 2004). The
impact of an NPs larger surface area is particularly pertinent for low
solubility NPs like carbon black (Sager & Castranova, 2009). Overall, the
health hazards of NPs remain of paramount concern with much to be
explored.

The ubiquitous NP environmental presence predisposes exposure
via dermal, oral, and even intravenous/subcutaneous routes. However,
inhalation is the most prevalent and robust mode of exposure, with a
higher rate of uptake, large alveolar surface area, and a surfactant-
enabled capture interface (Hoet, Bruske-Hohlfeld, & Salata, 2004) that
can circumvent mucociliary clearance (Chalupa, Morrow, Oberdorster,
Utell, & Frampton, 2004; Daigle et al., 2003). Yet NP inhalation not
only can produce local pulmonary effects (Oberddrster et al., 2005),
but cardiovascular dysfunction (Brook, Rajagopalan 3rd, et al,
2010; Peters, Dockery, Muller, & Mittleman, 2001; Shah et al., 2015),
extensive inflammation in peripheral organs, and cognitive and
neurodevelopmental deficits (Cipriani, Danti, Carlesi, & Borin, 2018;
Dimakakou, Johnston, Streftaris, & Cherrie, 2018), as well. Traditionally,
NP systemic outcomes have been attributed to particle translocation
from the lung (Deng et al., 2007; Nemmar et al., 2001; Nemmar et al.,
2002; Reddy, Krishna, Reddy, & Himabindu, 2010). Yet studying the nat-
ural fate of NPs in the periphery is challenging due to their small size,
low mass deposition/translocation and limited methods for detection.
Studies in humans have provided conflicting results, with several
reporting the absence of translocation for some classes of NPs (Brown,
Zeman, & Bennett, 2002). Even sensitive radio-labeling studies have
been challenged to demonstrate significant translocation of NPs from
the lung, in part due to radiolabel leaching (Mdller et al., 2008;
Nemmar et al., 2002). In a detailed electron microscopy assessment of
oropharyngeal aspirated multi-walled carbon nanotubes (MWCNT),
Mercer et al. estimated that only 1.1% of the mass translocated to the
lymphatics and less than 0.01% to any other organ in the first 24 h
post-exposure (Mercer et al., 2013). Follow-up nearly a year later
showed that only 7.3% of the mass was cleared to the lymphatics, and
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just 0.04% of the MWCNT mass could be detected in other organs.
Other metal/metal oxide NPs are more mobile, if not soluble, yet the
pervasive extrapulmonary effects of confined NPs, like MWCNT, has
substantiated indirect molecular mediator involvement.

A variety of indirect mechanisms have been proposed. Inhaled car-
bon nanotubes (CNT) provoke a system-wide immune response,
which is partly due to spleen cyclooxygenase activation (Mitchell,
Lauer, Burchiel, & McDonald, 2009). More broadly, NPs induce oxidative
stress and inflammation in the lung that is believed to cause release of
bioactive mediators into the circulation (Brook et al., 2010; Donaldson
et al., 2005; Miller, Shaw, & Langrish, 2012). Yet there are reports of ex-
tensive cellular damage without any signs of oxidative stress or apopto-
sis (Tabet et al., 2009). Additionally, cardiovascular deficits following
CNT exposure have been observed without pulmonary inflammation
(Khandoga et al., 2010; Upadhyay et al., 2008). Thus, indirect mediators
of extrapulmonary NP outcomes may be more varied and dynamic than
expected (Erdely et al., 2009; Mitchell et al., 2009). Accordingly, this re-
view describes the state-of-knowledge on systemic outcomes caused by
NP lung exposures (Fig. 1) and the involvement of indirect molecular
mediators in extra-pulmonary pathobiological responses. Where appro-
priate, studies of UFP and fine particulate matter are discussed in com-
parison to help illustrate outcomes and mechanisms.

2. Common inhaled nanoparticles and exposure sources

NPs can be classified into three groups based on their origin: natu-
rally occurring (found in plants, insects, etc. or generated from skin
and hair shedding), process-derived (industrial and combustion
byproducts), and engineered (manufactured by humans to fulfill spe-
cific physicochemical requirements). Natural NPs are formed by bio/
photochemical, mechanical, and thermal processes (Sharma, Filip,
Zboril, & Varma, 2015). Alternatively, they can also form in outer
space and later get introduced to Earth's atmosphere (Hochella et al.,
2015). For example, large carbon structures such as fullerenes, com-
monly found in soot (Krdatschmer, Lamb, Fostiropoulos, & Huffman,
1990), have also been detected in deep space (Ehrenfreund & Foing,
2010). Natural NPs are commonly formed by wind erosion, evaporation
of sea spray, and overall weathering of rocks and minerals. Natural NPs
also form through thermal processes such as the combustion of biomass
or volcanic activity. Natural NPs are also produced by biomineralization,
a form of biologically induced, controlled mineralization (Sharma et al.,
2015) that results in inorganic nanominerals containing iron and silica,
calcium carbonate, and calcium phosphate (Te et al,, 2012). Other NNP
sources include wastewater from ore and other mines, cold CO, seeps,
and hydrothermal vent emissions, which can contain a wide variety
of heavy metals (Ag, Au, Fe, Mn, Cr, Cu, Ba, Pb) and their sulfides
(FeS,, Ag,S, CusS, CdS, and ZnS) (Sharma et al., 2015). Overall Natural
NPs represent a diverse group of particles with varied chemical
composition that can enter the atmosphere and pose an inhalation
exposure concern. While the toxic potential of Natural NPs is generally
regarding as limited, it is important to consider that their overall
environment abundance is several orders in magnitude greater than
ENPs, and not always lower in concentration, depending on proximity
to sources such as wildfires or volcanism (Hochella et al., 2015).

Human-generated NPs constitute ~10% of all atmospheric NPs
(Taylor, 2002) with combustion byproducts of fuel oil and coal burning
(Linak, Miller, & Wendt, 2000), airplane engines (Kelly, Wagner, Lighty,
& Sarofim, 2005), and vehicle exhaust (Kagawa, 2002) being the main
contributors particularly in metropolitan areas (Singh, Phuleria,
Bowers, & Sioutas, 2006). Even with the enforcement of stricter vehicle
emission standards in the U.S., mean daily occupational exposures to
diesel exhaust particulate remains high between 0.7 and 4 pg/m?
(Debia, Neesham-Grenon, Mudaheranwa, & Ragettli, 2016), and over
90% of atmospheric carbon-based NPs coming from diesel combustion
(Kittelson, 2001). Yet, vehicle emissions are a complex mixture of hy-
drophobic soot aggregates (41%), hydrophilic (9%), and hygroscopic
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Fig. 1. Diverse organ targets of inhaled nanoparticle (NP) exposure. A growing body of literature reports on the extrapulmonary burden of inhaled NPs, most prominently on cardiovascular
and neurological systems, which are the most cited in this review. Shown is the percentage of PubMed entries (809 in total) on “nanoparticle(s)” and “inhalation” citing the listed

extrapulmonary organ targets.

particles (45%) (Kireeva, Popovicheva, Persiantseva, Timofeyev, &
Shonija, 2009), which divides into solid, condensed (or liquid), and gas-
eous fractions (Chan et al., 2007; Jayaram, Agrawal, Welch, Miller, &
Cocker, 2011; Westerholm & Egeback, 1994). The solid fraction is pri-
marily elemental carbon with NPs between 10 and 30 nm in diameter
(Liati & Dimopoulos, 2010; Zhu, Lee, Yozgatligil, & Choi, 2005) that
can agglomerate into larger soot 60-100 nm NP aggregates
(Burtscher, 2005), all of which can deposit deep into the alveolar and
bronchial space (Dockery, 2009). Yet as exhaust plumes mix with ambi-
ent air, NPs rapidly evolve into new particles through nucleation and ab-
lative process to change in size and mass (Zhang & Wexler, 2004; Zhang,
Wexler, Zhu, Hinds, & Sioutas, 2004). Influencing these processes are
the dilution ratio and temperature, which play a pivotal role in
transforming vehicle exhaust NPs (Morawska, Ristovski, Jayaratne,
Keogh, & Ling, 2008; Zhang et al., 2005). For example, temperature
and compression differences between engine types results in a
20-200 nm diesel NP fraction range (Lidia Morawska, Bofinger,
Ladislav Kocis, & Nwankwoala, 2009) that is wider than the 30-60 nm
range for gasoline (Ristovski, Morawska, Bofinger, & Hitchins, 1998).
While principally carbonaceous, exhaust NPs are also impregnated
with various sulfates, metals and metal oxides originating from lubri-
cants and fuel additives (Burtscher, 2005; Matti, 2007). In all,
combustion-derived NPs pose an urgent health concern with variability
in size and chemical composition affecting their toxic potential.

NP toxicity is influenced by concentration, duration of dose, surface
area to volume ratio, chemistry, magnetism, crystallinity, electronic
configuration, aggregation behavior, and ion leaching characteristics
(Nel et al,, 2009; Schrand et al., 2010). These properties are particularly
characteristic of engineered metal-based NPs (MeNP). Occupational ex-
posure to metals such as Al, Mn, Pt, Cr, Co, Ni, Be, and Hg is common in
industrial plants, mines and with welding, all of which produces pulmo-
nary pathology in humans (Nordberg, Fowler, Nordberg, & Friberg,
2007). Upon interaction with immune cells, inhaled MeNPs promote re-
active oxygen species (ROS) formation and the accumulation (Young
et al.,, 2021) of cytotoxic oxidized glutathione (Nel, Xia, Mddler, & Li,
2006). While most MeNPs are limited to industrial sites, silver and
TiO, NPs are broadly utilized in variety of household items such as
sporting goods, air sanitizer sprays, wet wipes, food storage
containers, shampoos, toothpastes, cosmetic creams and sunscreens
(Donaldson, Stone, Tran, Kreyling, & Borm, 2004; Vance et al., 2015;
Weir, Westerhoff, Fabricius, Hristovski, & Von Goetz, 2012). Another

synthetic metal oxide NP commonly found in household goods is ZnO,
used for UV shielding (Becheri, Diirr, Lo Nostro, & Baglioni, 2008;
Osmond & McCall, 2010) and wood sealing agents (Cooper et al.,
2017). Welding fumes from galvanized steel are yet another airborne
source of ZnO NPs (Fine et al., 2000; Wesselkamper, Chen, & Gordon,
2001). Thus, MeNPs pose both industrial production and post-
production toxicity concerns for workers and consumers alike
(Osmond & McCall, 2010).

Silica (silicon dioxide, SiO,) is yet another widely utilized
nanomaterial. In 2018, the global silica market was estimated at $5.22
billion and expected to grow at an annual 8.6% out to 2026 (Grand
View Research, 2019a). While, silica naturally exists on Earth in
crystalline (quartz, cristobalite, tridymite, coesite, and stishovite) and
amorphous forms (diatomaceous earth) (Napierska, Thomassen, Lison,
Martens, & Hoet, 2010), amorphous silica could also be synthesized to
form micron- or nano-sized silica in gel, precipitate, pyrogenic, mesopo-
rous and colloidal silica forms (Fruijtier-Polloth, 2012). Precise control
over particle size, shape and other physical properties makes synthetic
silica NPS attractive in various industrial process (Pisani et al., 2015).
For instance, nanosilica is universally applied in biomedical and biotech-
nological fields for biosensors, biomarkers, cancer therapy, gene trans-
fection, drug delivery, and enzyme immobilization tools (Barik, Sahu,
& Swain, 2008; Cheng et al., 2010; Tsai, Chen, Hung, Chang, & Mou,
2009; Wang et al., 2015). Pyrogenic (fumed) silica is used extensively
as a strengthening filler or thickening agent in polyester, silicone, paints,
printing inks, coatings, and adhesives as well as a desiccant in cosmetics
and toothpastes. Pyrogenic silica NPs are used in electronics and optical
fiber industries. Natural silica sources also pose an NP threat, mainly
from quartz quarries and downstream applications (e.g., cutting coun-
tertops), ceramics production and as a primary component of volcanic
ash [nearly 9% of world's population lives in the vicinity of an active vol-
cano (Small & Naumann, 2001)]. However, naturally sourced silica is
generally larger in scale, from 0.5 to 10 pm (Napierska et al., 2010), so
more uniform industrial nanosilica poses significantly greater pulmo-
nary health risk. Industrial nanosilica has high surface-to-volume ratio
and surface reactivity qualities that are useful in manufacturing. How-
ever, these properties also enhance their ability to induce oxidative
stress (Wang et al., 2009; Ye et al., 2010; Ye, Liu, Chen, Sun, & Lan,
2010), cross the alveolar capillary barrier, and penetrate into the sys-
temic circulation (Nemmar et al., 2001; Nemmar et al, 2002;
Oberdorster et al., 2002).
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Carbon black (CB) is often used as a substitute for silica in industry
(Grand View Research, 2019b). For example, CB is a filler in automobile
tires that increases its elasticity along with its ability to absorb micro-
wave energy to prolong tire life (Scuracchio, Waki, & Da Silva, 2007).
It is also extensively used in the production of films, conductive packag-
ing, moldings, fibers, semi-conductive cable compounds and pipes
(Grand View Research, 2019a). In 2018 the global CB market size was
estimated at $17.22 billion, with an expected annual growth rate of
6.0% through 2024. Production of CB takes place via either thermal de-
composition or partial combustion reactions raising the risk of occupa-
tional exposure. Raw CB is 95% elemental carbon, with small amounts
of inorganic and organic materials, and is arguably minimally toxic
(not be confused with black carbon soot) (Long, Nascarella, & Valberg,
2013; Watson & Valberg, 2001). However, polycyclic aromatic hydro-
carbons and other toxic substances can also be adsorbed during synthe-
sis to alter CB toxicity (Bostrom et al., 2002). The toxic profile of CB thus
varies mainly by its surface area and surface-bound toxins (Lindner
et al.,, 2017). CB nanoparticles can deposit deep in the lung and induce
severe pulmonary pathological effects, to include lung cancer (Parent,
Siemiatycki, & Renaud, 1996; Rosmanith, Kandus, & Holusa, 1969).
Chronic CB inhalation exposure has also been suggested to also impact
other organs such as thymus and spleen (Chu et al., 2019), raising
broader concerns over its toxicity. Circulating inflammatory potential,
as described further below, is elevated in workers exposed to high levels
of CB (Tang et al., 2020) and indices of genomic instability have been ob-
served in sputum (Cheng et al., 2020).

Yet the most diverse class of ENPs are the CNTs, which can be
engineered to possess an extraordinary variety of useful electrical, me-
chanical, optical, thermal, and chemical properties. Discovered by
Sumio lijima in 1991, CNTs are cylindrical carbon structures of wrapped
graphene, either as single-walled or multi-walled tubes (Dai, 2002;
lijima, 1991). CNTs are strong and lightweight materials (Dresselhaus,
Dresselhaus, & Eklund, 1996) favorable for conductive, high-strength
composites, sensors, field emission displays and radiation sources,
nanometer-sized semiconductor devices, and probes (Dresselhaus,
Dresselhaus, Charlier, & Hernandez, 2004). They are also used as biosen-
sors, in tissue engineering, and as drug delivery systems (Simon,
Flahaut, & Golzio, 2019) due to their ability to interact with macromol-
ecules like proteins and DNA (Foldvari & Bagonluri, 2008; Zeinabad,
Zarrabian, Saboury, Alizadeh, & Falahati, 2016). However, they also act
as sorbents for organic pollutants, metals, fluoride, polycyclic aromatic
hydrocarbons and radionuclides (Fiorito, Serafino, Andreola, & Bernier,
2006; Jia et al., 2005; Yang, Zhu, & Xing, 2006), which vastly affects
their toxic potential. Exposure to CNTs can occur during six stages of
manufacturing with various degrees of impact (Ono-Ogasawara,
Takaya, & Yamada, 2015; Schlagenhauf, Niiesch, & Wang, 2014). First,
CNT synthesis involves considerable manual handling of the raw mate-
rial when extracting from the furnace growth tubes. Secondary
manufacturing of interim products such as master batches and dis-
persed solutions involves agitation and mechanical abrasion that can
cause release into the air. For example, Maynard et al. reported up to
53 ug/m? of single-walled CNT (SWCNT) dispersed into the air with ag-
itation, which varied greatly with the process of manipulating the mate-
rial (Maynard et al., 2004). Fonseca et al. showed that airborne CNT
concentration during secondary manufacturing depended greatly on
ventilation with as little as 1.7 x 103 fibers/cm? with high-flow venti-
lation to as much as 5.6 fibers/cm?® without local exhaust (Fonseca et al.,
2014). CNT nanoparticles often clump, however, forming rope-like
structures that can be straight, bend, curled and flexible, with diameters
ranging from 20 to 200 nm and lengths between 10% and 10° nm
(Donaldson et al., 2006). CNT also sediments easily and adheres to sur-
faces (e.g., safety gloves can have between 0.2 and 6 mg per hand),
which may re-aerosolized (Maynard et al., 2004). Stage three involves
composite formation where NPs can be released during drying/curing.
Stage four involves mechanical manipulation and testing of the final
product, where NPs are released by tooling, cutting, or sanding of
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products into their final form. Stages five and six involve the handling
of the final product by the consumer and its eventual disposal; however,
CNT release is considered relatively minimal during these last two
stages of the life cycle (Kingston et al., 2014). Yet the overlap between
CNT and asbestos life-cycles in terms of airborne exposure risk are sim-
ilar enough to raise health concerns in workers and consumers alike
(Nowack et al., 2013). Moreover, health outcome studies with CNT ex-
posure have supported its initiation of systemic pathological responses
(Table 1), to include extra-pulmonary inflammation (Erdely et al.,
2011), cardiovascular dysfunction (Nurkiewicz et al., 2006), atheroscle-
rosis (Niwa, Hiura, Murayama, Yokode, & Iwai, 2007), and neurological
deficits (Liao et al., 2014).

Direct passage from the lung into the circulation has been observed
for certain types of NPs, others are phagocytosed effectively by macro-
phages and transferred through the lymphatics, while high-aspect
ratio particles are more lasting within the lung. It is principally the
smaller, compact particles like the MeNPs that readily translate from
the lung, particularly those that have less than a 35 nm hydrodynamic
diameter and a non-cationic surface charge (Choi et al., 2010;
Takenaka et al., 2001). Other NPs made from CB or polymers get readily
taken up by lung macrophages, which have been shown via particle la-
beling to translocate out of lung into the lymphatics and beyond into the
circulation, liver and heart (Furuyama, Kanno, Kobayashi, & Hirano,
2009; Shwe, Yamamoto, Kakeyama, Kobayashi, & Fujimaki, 2005). Yet
NPs with tube- and fiber-like profiles do not readily enter the circulation
or get cleared to the lymphatics, remaining longer-term within the lung
while still inducing tangible systemic effects (Chen et al., 2006; Mercer
etal,, 2013; Wiebert et al.,, 2006), pointing to involvement of relevant in-
direct mediators. Additionally, limited evidence mechanistically con-
firms that systemic toxicity of particles arises from their direct action
at the site of injury (e.g., in the aorta or the brain). Findings of systemic
toxicity from ozone inhalation — which fails to penetrate beyond the ep-
ithelial lining fluid of the lung (Postlethwait, Cueto, Velsor, & Pryor,
1998; Pryor, Squadrito, & Friedman, 1995) - strongly argue for pulmo-
nary responses to inhaled toxicants as an essential driver of systemic
health outcomes (Garcia et al., 2021; Mumaw et al., 2016; Tyler et al.,
2018).

3. Systemic health outcomes of nanoparticle exposure
3.1. Systemic inflammation

Inhalation of various NPs has been found to induce peripheral in-
flammation. For example, inhalation of ultrafine CB for seven hours in-
creased circulating blood leukocytes and stimulated the release of
polymorphonuclear leukocytes from the bone marrow within 48 h
(Gilmour et al., 2004). Moreover, human occupational exposure to CB
significantly stimulated secretion of pro-inflammatory cytokines inter-
leukin (IL)-1, IL-6, IL-8, macrophage inflammatory protein (MIP)-1p,
and tumor necrosis factor (TNF)-« into the circulation (Zhang et al.,
2014). NP inhalation can also produce inflammation in other organ sys-
tems. In a mouse model of subacute (4-week) NP inhalation of diesel ex-
haust enriched with cerium oxide, IL-1(> and TNF-a levels were both
significantly increased in the brain (Cassee et al., 2012). Interestingly,
these studies suggested greater susceptibility in the brain, as there
were no measured cytokine changes in spleen or liver tissues of the
same animals. In a whole-body inhalation chamber, animals exposed
to nickel hydroxide NPs for either 1 week or 5 months (0 or 79 pg/m?>,
5 h/d, 5 d/wk) showed serum amyloid P mRNA levels significantly in-
creased over control, a marker of liver inflammation and injury. Addi-
tionally, animals with the 5 month exposure exhibited significant
increases in spleen CCL-2, IL-6, and TNF-ac mRNA as well as increases
in Ccl-2 and II-6 within the heart (Kang et al., 2011). Interestingly,
serum cytokines showed no significant differences in either nickel hy-
droxide exposure cohort, suggesting that extra-pulmonary organ in-
flammation can be mediated by other circulating factors, and that this
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Table 1

Overview of different types of nanoparticles and their systemic effects following inhalation exposure.
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Nanoparticle Size Systemic Health Outcome
Distribution Inflammation Cardiovascular Dysfunction Neurological Deficits Cancer
Traffic Ultrafine <100 nm - (Ibald-Mulli et al., 2002; P Elder  (Allen, Liu, Pelkowski, Palmer, (Ljubimova et al., 2013)
related air  Particulate et al,, 2004; Chuang et al,, 2005; et al., 2014; Allen, Liu, Weston,
pollution Matter (UFP) Delfino et al., 2005; Lanki et al., Conrad, et al., 2014; Allen, Liu,
2006; Upadhyay et al., 2008; Weston, Prince, et al., 2014;
Andersen et al., 2010; Khandoga  Babadjouni et al., 2018;
et al,, 2010; Sannolo et al,, 2010;  Cory-Slechta et al., 2018; Guerra
Strak et al., 2010; Miller et al., et al.,, 2013; Heusinkveld et al.,
2012) 2016; Klocke et al., 2017; Klocke
et al.,, 2018; Ljubimova et al., 2013;
Sobolewski et al., 2018)
Diesel/mixed <200 nm (Cassee et al., 2012)  (Kodavanti et al., 2011; Lund (Bolton et al., 2012; Bolton et al., -
Engine et al, 2011; Mills et al., 2011; 2013; Bolton et al., 2014; Bolton
Exhaust Sack et al., 2016; Thompson et al., et al., 2017; Cole et al., 2016;
2019) Ehsanifar et al., 2019;
Fleegal-DeMotta, Doghu, & Banks,
2009; Hullmann et al., 2017;
Levesque, Surace, et al., 2011;
Levesque, Taetzsch, et al., 2011;
Lucero et al,, 2017; Lund et al.,
2009; Morgan et al., 2011;
Morris-Schaffer et al., 2019;
Oppenheim et al., 2013;
Suwannasual et al., 2018;
Suwannasual et al.,, 2019;
Woodward et al., 2017; Woodward
et al., 2018)
Carbon Black  30-300 nm (Gilmour et al., (Niwa et al., 2008) (Onoda, Kawasaki, Tsukiyama, -
2004; Niwa et al., Takeda, & Umezawa, 2017; Onoda,
2008; Zhang et al., Takeda, & Umezawa, 2017;
2014) Umezawa et al., 2018)
Metal TiO, primary - 20  (Nurkiewicz et al., (Helfenstein et al.; Nurkiewicz (Bailey et al., 2018; Disdier et al,, -
containing nm, 2006; Park, Yoon, et al.,, 2006; Leblanc et al., 2010;  2017; Hougaard et al., 2010)
agglomerates et al., 2009) Halappanavar et al., 2011;
<200 nm Nichols et al., 2018; Kunovac
et al., 2019)
CeO, 83 +£1.8nm (Casseeet al,2012) (Gojova et al.,, 2009) - -
Cdo ~15+2nm (Blumet al, 2014) - - (Bertin & Averbeck, 2006)
Ni(OH), primary - 5 (Kang et al., 2011) (Kang et al., 2011) - -
nm,
agglomerates
—40 nm
Zn0 <100 nm - (Wang et al., 2010) - -
Mn 0.1-1 pm - - (Al-Lozi et al., 2017; Bailey et al., (Falcone et al., 2018)
2018; Bowler et al., 2006; Bowler
et al,, 2011; [jomone et al., 2019;
Park, Bowler, & Roels, 2009; Roels
et al., 2012; Tjalkens et al., 2017)
Fe 0.1-1 pm - - - (Falcone et al., 2018)
Fe,03 <100 nm - (Wang et al.,, 2010) - -
Cu 25 nm (Adamcakova-Dodd, - - -
Monick, Powers,
Gibson-Corley, &
Thorne, 2015)
Silver 45 nm - (Park et al., 2011; - -
Rosas-Hernandez et al., 2009)
Carbon Single wall diameter - (Li et al., 2007) - (Kisin et al., 2007;
nanotubes 0.4-1.2 nm, Rodriguez-Yafiez et al., 2013;
length 1-3 Sanchez et al., 2009; Sargent
pm et al., 2009; Senchukova,
2019)
Multi-walled diameter < - (Aragon et al., 2016; Mandler (Aragon et al., 2017) (Fukushima et al., 2018; Kasai
100 nm, et al, 2017; Mandler et al., 2018) et al,, 2016; Muller et al.,
length < 6 pm 2008; Rodriguez-Yafiez et al.,
2013; Sanchez et al., 2009;
Sargent et al., 2014;
Senchukova, 2019)
Silica Silica primary (Du et al., 2013) - - (Chen et al., 2014; Gehrke
contain-ing 12-200 nm et al., 2013; Shi et al., 1998)
Si0, 379 +33 - (Chen et al., 2008) - -
nm
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may be NP-dependent. Cadmium oxide NP exposure in mice for seven
days, for example, led to increased pro-inflammatory markers IL-1f3,
interferon-y, and TNF-a in the blood as well as in bronchiolar lavage
fluid at both 1 and 7 days following the last exposure (Blum et al.,
2014). Similarly, Park et al. demonstrated that after instillation of
nano-TiO, (5 mg/kg, 20 mg/kg, and 50 mg/kg), pro-inflammatory cyto-
kines IL-1, TNF-o, and IL-6 increased in the blood and bronchiolar la-
vage fluid at all concentrations acutely (1 day post) (Park, Yoon, Choi,
Yi, & Park, 2009). Park et al. also tracked blood and bronchiolar lavage
fluid cytokine concentration over the next two weeks to find a mixed re-
sponse of decreasing pro-inflammatory IL-6 and anti-inflammatory
IL-10 while pro-proliferative IL-2 and anti-inflammatory IL-4 were
found to significantly increase, reaching their highest concentration at
the end of the two-week period. Overall, peripheral cytokine induction
varies with NP type and dose, yet there remains evidence for organ in-
flammation even with minimal alteration in circulating cytokines, sug-
gesting other involved circulating mediators.

3.2. Cancer pathobiology

Metal nanomaterials, silica nanoparticulates, and combustion UFPs
have all demonstrated carcinogenic properties after inhalation. For ex-
ample, mice exposed (whole body inhalation) to a mean of 34.5 mg/
m? iron-abundant gas metal arc welding fumes for 8-weeks induced
lung carcinogenesis within 30 weeks of exposure (Falcone et al.,
2018). Silica particulates showed similar effects in vivo, exhibiting
signs of persistent oxidative stress, cell membrane damage, site-
specific cleavage of double-stranded DNA, and other DNA damage,
eventually leading to carcinogenesis in the lungs (Shi, Castranova,
Halliwell, & Vallyathan, 1998). Biomolecular mechanisms under study
for NP-induced pulmonary cancer include the nuclear translocation of
nuclear factor kappa B (NF-kB) proteins that activate reactions leading
to the displacement of inhibitor IkB and induction of activator protein-
1, which promotes tumor growth (Gehrke et al., 2013; Shi et al., 1998).

The oncogenic potential of CNTs is particularly concerning given
their physical similarity to asbestos fibers. Recent studies found
that CNTs can induce malignant tumors (Fukushima et al., 2018;
Senchukova, 2019). Kasai et al. showed that whole-body inhalation ex-
posure to MWCNT (0.2 and 2 mg/m?) for 104 weeks (5 days/week) pro-
moted lung carcinoma formation in male more so than female rats
(Kasai et al., 2016). They later reported that MWCNT-7 fibers in this
104 week model generated oxidants and cytokines leading to inflam-
mation and fibrosis, which they surmise drove cycles of cell and DNA
damage, forming the observed preneoplastic lesions with the potential
to form tumors (Fukushima et al.,, 2018). MWCNT induces cytotoxicity
and oxidative stress in human mesothelial cells, as affirmed in vitro,
and can transform those cells much like asbestos does through chromo-
somal aberrations by interacting with the mitotic spindle (Nagai et al.,
2011; Rodriguez-Yafiez, Mufioz, & Albores, 2013; Sanchez, Pietruska,
Miselis, Hurt, & Kane, 2009). Similar findings were also evident with
SWCNTSs. For example, Chinese hamster lung fibroblasts showed in-
creased micronucleus formation when exposed to 0.23% SWCNTs
in vitro (Kisin et al., 2007). Rat type Il pneumocytes and a human epi-
thelial cells (MCF-7) also exhibited induced clastogenic and aneugenic
micronuclei formation, respectively, when exposed to SWCNT and
MWCNT in vitro (Muller et al., 2008). Human airway epithelial cells
also showed fragmented centrosomes, aneuploid chromosomes, and
multiple mitotic spindle poles 24 h after exposure to SWCNTSs in vitro
(Sargent et al., 2009). Interestingly, Sargent et al. found that SWCNTs as-
sociated directly with cellular tubulin, indicating that with these nano-
tubes being of similar size to microtubules they can be incorporated
into the mitotic spindle apparatus directly and, thus, cause errors in mi-
totic spindle activities. CNT size and geometry can also influence pro-
inflammatory effects, with long and thin nanofibers resulted in higher
toxicity and carcinogenic activity than short, thick fibers in vitro
(Senchukova, 2019). Fraser et al. found genotoxicity, micronuclei

Pharmacology & Therapeutics 235 (2022) 108120

formation and oxidative stress across at least six of seven types of CNT
and two types of carbon nanofibers in vitro; however, severity was prin-
cipally dependent on a larger size in both length and diameter (Fraser
et al., 2020). Other physical attributes like specific surface area, dusti-
ness, metal residue or surface charge showed no discernable toxicity
pattern. Yet, the oncogenic potential of inhaled CNT appears limited
to the lung. For example, mice exposed to high amounts of MWCNT-7
(5 mg/m>, 5 h/d, 5 d/wk) for 15 days exhibited bronchiolo-alveolar ad-
enoma and lung carcinoma development at 17 months post exposure
without evidence of tumor formation in other organs (Sargent et al.,
2014). Interestingly, inhaled NPs are being hailed as a promising
means for targeted chemotherapy in lung cancer with improved inter-
nalization into cancer cells, warranting the need to balance nano-
carcinogenicity with the biomedical promise of NPs (Ahmad et al.,
2015).

3.3. Cardiovascular dysfunction

The most documented extrapulmonary effect of inhaled NP is upon
the cardiovascular system as illustrated in Fig. 1 (Medina, Santos-
Martinez, Radomski, Corrigan, & Radomski, 2007; Oberdorster et al.,
2005). Adverse cardiovascular effects have included altered heart rate,
hypertension, thrombosis, arrhythmias, increased myocardial infarc-
tion, and atherosclerosis. These effects have been similarly identified
across ultrafine/nanoparticulate exposures in humans (Andersen et al.,
2010; Chuang, Chan, Chen, Su, & Lin, 2005; Delfino, Sioutas, & Malik,
2005; Lanki et al., 2006) and animal models alike (Chen et al., 2008;
Elder et al., 2004; Kang et al., 2011; Leblanc et al., 2010; Park, Choi, &
Park, 2011; Wang, Wang, Ding, & Zhang, 2010), including epidemiolog-
ical studies that demonstrate correlations between UFP exposure
and increased cardiovascular pathological alterations (Ibald-Mulli,
Wichmann, Kreyling, & Peters, 2002; Sannolo, Lamberti, & Pedata,
2010; Strak et al.,, 2010). Yet the literature is of mixed opinion on
whether these outcomes are caused by direct NP translocation out of
the lung or by indirect mediators. Work with CeO, NP in vitro has
shown induction of a proinflammatory phenotype when directly placed
onto human aortic endothelial cells, which putatively contributes to va-
soconstriction and atherogenic lesion development (Gojova et al.,
2009). Likewise, 45 nm silver NPs elicited concentration-dependent en-
dothelial cell cytotoxicity and endothelial nitric oxide synthase (eNOS)
activation in vitro, and altered vasoreactivity with isolated rat aortic
rings ex vivo (Rosas-Hernandez et al., 2009). Cardiac myocytes exposed
to TiO, NP exhibited dose-dependent oxidative stress responses,
changes in cell function, and alterations in myofibrillar structure
in vitro (Helfenstein et al., 2008). And, combustion-derived diesel ex-
haust NPs inhibited acetylcholine-induced relaxation in isolated rat aor-
tic rings when directly exposed ex vivo (Mills et al,, 2011). Importantly,
in many of these direct exposures of internal cells to NPs, the doses are
quite high - it is notable that many effects are only observed in vitro
with concentrations of 10-100 pg/ml, when ambient concentrations
are 10-100 pg/m>, representing a difference in concentration of 10°. It
is less clear as to whether NPs translocate out from the lung at sufficient
levels to drive cardiovascular effects systemically without considering
an indirect pathway.

Indirect molecular mediators appear involved in NP-induced cardio-
vascular outcomes. Dispersing deep and broadly within the lung, NP-
stimulated pathology drives the release of bioactive mediators into the
circulation, which can include a mix of inflammatory cytokines,
oxidatively-modified lipids, and prothrombotic factors. Circulating IL-
6, monocyte chemoattractant protein-1, and C-reactive protein, for ex-
ample, were all acutely elevated in rats after 4-weeks of inhaled CB ex-
posure despite there being no evidence of particle translocation (Niwa,
Hiura, Sawamura, & Iwai, 2008). Instead, CB NPs were found concen-
trated within alveolar macrophages believed to be responsible for the
increased circulating cytokines. Oxidized LDL has also been found in-
creased acutely in the blood of animals (for seven days) and humans
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(for two hours) exposed to the NP fraction of combustion exhaust (Lund
et al.,, 2011). Oxidized low-density lipoprotein (ox-LDL) interacts with
leptin-like oxidized low-density lipoprotein receptor-1 (LOX-1) on vas-
cular endothelial cells, promoting oxidative stress with accompanying
sub-endothelial macrophage accumulation. Moreover, LOX-1 mRNA ex-
pression also increased acutely in the circulation, a recognized bio-
marker of progressive atherosclerosis. Evidence of systemic oxidative
damage has been found after SWCNT instillation into the lungs of
mice, which was found to increase mitochondrial DNA damage in the
lung and heart out at least 1 week after exposure, with evidence of bra-
chiocephalic atherosclerosis (Li et al,, 2007). And in a recent larger pop-
ulation epidemiological study, fine particulate matter levels, and not
other common air pollutants (nitrogen dioxide, ozone or sulfer dioxide),
was predictive of blood LOX-1 levels using data from the Multi-Ethnic
Study of Atherosclerosis (Ni et al., 2021). Notably, in a broader review
of the topic of particulate matter and cardiovascular effects, Mgller
et al. noted that while pulmonary and systemic inflammation often
occur in controlled particulate exposure studies of vascular toxicity,
they are not always seen, suggesting that systemic vascular effects
may occur due to pathways more subtle than canonical inflammation
signaling (Moller et al., 2016).

Alterations to vasoactive factors like endothelin-1 and nitric oxide
that impair blood flow are also increased acutely after NP inhalation
(Knuckles et al., 2012; Kodavanti et al., 2011). As well, genes involved
in complement and coagulation pathways have been found heightened
in the circulation five days after mouse inhalation of TiO, NP for 11 days
(Halappanavar et al., 2011). Indeed, the prothrombotic potential for
vessel occlusion is of paramount concern following pulmonary particu-
late exposures in general (Budinger et al., 2011; Li, Yu, Jon Williams, &
Liu, 2010). More recently, we have added that proteolytic byproduct
peptides are also shed into the circulation acutely following pulmonary
MW(CNT aspiration in mice (Mostovenko et al., 2019). Characterized as
a peptidomic response, we detected hundreds of peptide fragments in-
duced in the lung with linearly correlated release into the circulation.
Importantly, an isolated peptide fraction from the blood of MWCNT ex-
posed animals promoted endothelial inflammation, vasodilatory dys-
function, and inhibition of angiogenesis, highlighting a specific role for
molecular factors like bioactive peptides without any direct NP expo-
sure. Overall, there is growing evidence to support multiple indirect me-
diators of systemic toxicity following NP inhalation exposure, which we
discuss in a later section.

3.4. Systemic organ impacts involved in detoxification and clearance

Importantly, the toxicological profile of pulmonary NP exposure
extends well beyond the lung via the cardiovascular and lymphatic
systems. Generally smaller and more spherical, MeNPs in particular
translocate to other organ systems, principally those involved in
detoxification and clearance like the liver, kidneys and spleen
(Kermanizadeh, Gaiser, Johnston, Brown, & Stone, 2014). Hepatic toxic-
ity is generally greater with <50 nm NPs due to their translocation, but
also varies with the toxic nature of the metal ion(s) involved (Buckley
et al,, 2017; Rosario et al., 2021; Nayek, De Silva, Aguilar, Lund, &
Verbeck, 2021 & Nayek, Lund, & Verbeck, 2021). Low-solubility NPs,
for example made of Ag, Ir, TiO, or CdO, all translocate from the lung
and accumulate in liver and kidneys. Buckley et al. studied a size-
dependence directly with Ir-NP inhalation, selected for its low solubility
and capacity for radio-tracing (Buckley et al., 2017). While retention in
the lung was similar for acute Ir-NP ranging in size from 10 to 75 nm,
translocation to the liver and kidneys was increased with decreasing
NP size. Interestingly, they found that smaller Ir-NPs continued to accu-
mulate in higher amounts in the liver (studied beyond 100 days); how-
ever, kidney accumulation plateaued by 30d, suggesting greater liver
vulnerability with time. Nayek et al. directly imaged Ag-NP present
within the liver and kidneys after subacute inhalation exposure, a com-
mon material used for its antimicrobial properties in consumer goods
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and beauty products (Nayek, De Silva, Aguilar, Lund, & Verbeck, 2021).
Interestingly, they found a size bias with smaller NPs distributing
more to the liver while larger agglomerates appeared preferentially in
the kidneys. Correspondingly, the smallest Ag-NPs resulted in more pro-
nounced liver than kidney pathology, to include pro-inflammatory cy-
tokine upregulation (IL-6, IL-1b, TNF-at) and oxidative DNA damage.
However, liver lesions or fibrosis was not detected within the short 5-
day exposure and sampling timeframe. In contrast, a subchronic 6-
week inhalation exposure to 15 nm CdO-NPs produced prominent
liver pathology, with significant neutrophil infiltration, hydropic dystro-
phy and areas of necrosis (Dumkova et al., 2016). Comparatively, the
kidneys were less changed, with no overt cytology and only a modest
thickening of filtration membranes and lamina, again supporting
greater liver vulnerability. Dose is further important in determining sec-
ondary organ injury. Han et al. assessed this with 0.2 g/kg vs. 1.0 g/kg
instilled doses of 10-25 nm TiO, NPs in the rat (Han et al., 2020).
Insoluble TiO, was found within both liver and kidneys by 3-days
after either dose, with the lower dose producing disordered cytology
and lipid peroxidation in liver but mild increases in kidney membrane
thickness as consistent with studies mentioned above. However, within
the same timeframe, a 5-fold higher dose produced frank necrosis in
both organs along with dose-dependent genotoxicity. These studies re-
flect the complexity in assessing secondary organ injury with NP expo-
sures, whereby pathology is dependent on the interaction of dose and
duration of exposure on top of size, with most studies addressing just
one of these factors.

Further influencing the process of secondary organ toxicity is NP sol-
ubility. Liver and kidney injury is evident even with NPs that dissolve
before making it to these secondary exposed organs. For example, in a
chronic 10 mo. exposure study with NiO-NP (common in welding
fumes; 23 nm nominal size), liver and kidney dysfunction were evident
through higher blood bilirubin and proteinuria levels along with in-
creased DNA fragmentation, despite mild pulmonary pathology com-
pared with insoluble NPs (Sutunkova et al., 2019). Interestingly,
secondary organ histological findings were similar to that reported
with insoluble CdO or Ag NPs, with structural disturbance to hepatocyte
and Kupffer liver cell cytology and enlarged membranes and damage to
the tubular epithelium in kidneys. Yet, NiO-NPs could not be found in ei-
ther tissue, expectedly due to its solubility. Dose of exposure further in-
fluences how potentially soluble NPs are processed. For example, 10 nm
ZnO when inhaled subchronically at a lower 20 ug/m? concentration
could hardly be detected within the lung, having been endocytosed by
the epithelium and found in lysosomal bodies where the NPs dissolved
under acidic conditions (VyslouZil et al., 2020). Yet, at a much higher
625 pg/m> concentration, substantial lung buildup was evident after
the same 12-weeks, with endocytic clearance being overwhelmed and
limited pH-dependent dissolution in the lung. This correspondingly re-
sulted in a lower accumulation of Zn ion within the liver and kidneys as
more of the metal was retained in the lung.

Looking beyond MeNPs, size remains a dominant factor in secondary
organ toxicity. Silica NPs in the <50 nm range, much like TiO, or other
insoluble NPs, can readily leave the lung and translocate to the liver.
Cao et al. used ultrasound shear wave velocity imaging to monitor
liver edema that worsened over weeks after 20 nm silica NP installation
in live animals (Cao et al., 2017). Effects were dose dependent, with he-
patic injury enhanced when the silica was coated with a plastic film,
which appeared to enhance passage from the lung. Interestingly,
Fournier et al. found that inhaled 20 nm polystyrene nanoplastic as
well rapidly translocated out of the lung, with detection in spleen,
heart and even the uterus after just 24 h (Fournier et al., 2020).
What's more, they showed that inhaled nanoplastics could even trans-
verse the placenta and embed in fetal tissues, stunting fetal growth.
Even without direct translocation to secondary organs, non-MeNPs
can induce acute-phase inflammatory responses within the liver via in-
direct molecular mediators, as demonstrated with carbonaceous nano-
scale soot material (Ganguly et al.,, 2017). Inflammatory markers were
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up in both liver and heart with inhalation of 10-14 nm carbon nanopar-
ticles, which importantly could not be reproduced by injecting the ma-
terial directly into the blood, affirming a secondary molecular mediator
as the driving factor in acute hepatotoxicity. Given sufficient time,
<50 nm carbonaceous NP do translocate from the lung to the liver
just as MeNPs. Modrzynska et al. demonstrated this with 14 nm carbon
black, which accumulated in the liver to a similar degree as TiO, and
Ce0, of the same approximate size (Modrzynska et al., 2018). All
three NPs ended up in Kupffer cells and sinusoids over several weeks
after instillation. Yet, CB was considerably more genotoxic in the liver,
with the level of DNA strand breaks being 3.9-fold and 2.4-fold higher
than with TiO, and CeO,, respectively, after 180 days. CB generated or-
ders of magnitude more reactive oxygen species than either metal
oxide, demonstrating how NP type governs systemic toxicity under con-
ditions of similar size-dependent translocation.

How secondary organs are impacted differs when moving to NPs
with at least one dimension exceeds the nanometer scale as with
ENPs like nanotubes and fibers. Breakthrough from the lung is largely
limited to the lymphatics, the degree to which depends on the general
shape and agglomeration tendency of the NP. Knudsen et al. examined
across 11 different instilled MWCNT types and found that short and
thin fibers tended to agglomerate more and where more readily phago-
cytosed and cleared to the lymphatics by macrophages (Knudsen et al.,
2019). Longer and more rigid nanotubes tended to get lodged in the
lung interstitium. However, all types exhibited some degree of translo-
cation to secondary organs, though minimal even when assessed up to a
year from exposure. Because of this, nanotubes and fibers were found
less impactful on detoxification secondary organs like the liver than
were smaller, spherical NPs. Nanotubes and fibers clear the lung more
prominently via the lymphatics and with time end up more in the
spleen where they appear to exhibit dose-dependent and prolonged im-
mune system modulation (Migliaccio et al., 2021). Soluble metal con-
tent within the nanotubes, however, can amend this generalization,
with cobalt found to be particularly influential on hepatotoxicity
(Knudsen et al., 2019). Spherical <50 nm NPs can also act more as nano-
tubes when they form large aggregates in situ. Barium sulfate behaves
in this way when instilled into the lung (Molina et al., 2019). While
nominally 25 nm particles, they end up forming large aggregates of up
to 2 um in size in the lung and are thus primarily cleared via macro-
phage phagocytosis to the lymphatics over long periods extending out
at least 2 years. NPs were not largely evident within the liver or kidneys
over this time; however, slow dissolution of the NP resulted in barium
ion accumulation in the liver as well as bone. Moving to graphene, a pla-
nar material with only 1 nanoscale dimension, we see mucosillary clear-
ance and passage through the gut becoming the dominant means of
excretion (Mao, Hu, Pan, Xie, & Petersen, 2016). Yet this too is a poten-
tial oversimplification, as a small (<1%) fraction of the material escapes
the lung and can be viewed within liver and spleen after 4-weeks. This is
similar to the low percent of nanotube material that makes it to second-
ary organs, which reflects a portion of a graphene sample that fractures
into a more fiber-like fraction. These examples all demonstrate the chal-
lenge in generalizing NP toxicity. The general expectation that high-
aspect NPs tend to show limited hepatotoxicity can be amended by
the dissolution of metal content; that the ready translocation of
<50 nm sized NPs can be superseded by a materials ability to agglomer-
ate; or that the general tendency of a planar particle to clear the lung
much like non-nanoscale materials can be influenced by diversity in
shape within a sample.

Less well studied were the impacts of demographic factors such as
age and sex on secondary organ injury. Aging influences clearance ca-
pacity of NP from the lung, as demonstrated by Gaté et al. with acutely
inhaled TiO, exhibiting delayed clearance from the lung within
three months of exposure in aged animals (Gaté et al., 2017).
Correspondingly, younger animals exhibited greater phagocytic
clearance of TiO, to the lymphatics. Aging alone is associated with
chronic inflammation in the lung and other organs, which degrades
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the ability to address an acute NP exposure (Pomatto et al., 2018).
This also includes diminished enzymatic capacity to address oxidative
insult and misfolded protein accumulation in the lung as well as detox-
ification organs like the liver in aged animals. So, while NP inhalation in
the young animal (6 mo.) was capable of heightening clearance activity,
there was generally no added capacity left in these processes to address
the added burden of an NP insult in aged animals (21 mo.). Sex varies
both the total load accumulated in the lung at the same NP aerosol con-
centration and altered downstream effects on secondary organ systems.
Females exhibit significantly greater accumulation of nanoscale vs. mi-
croscale particulate as males for the same concentration (Sayers et al.,
2016). Moreover, sex differences impact immune system inflammatory
responses both in the lung and in secondary organs like the liver. In a
model of acute and subchronic Ni-NP exposure, You et al. showed that
males exhibit greater inflammation and immune cell infiltration into
the lungs than female animals (You, Lee, Taylor-Just, Linder, & Bonner,
2020). NP effects carried further to secondary organs like liver and
spleen, where inflammatory cytokine responses were higher in males
than females. Female sex hormones have known anti-inflammatory ac-
tivity but also appear to enhance macrophage-dependent clearance and
inflammation resolution (Villa, Rizzi, Vegeto, Ciana, & Maggi, 2015).
Overall, these limited findings substantiate the need to consider sex
and age factors in assessing secondary organ toxicity from inhaled NP
exposures. Indeed, the interaction of sex and age on secondary out-
comes has largely not been studied, raising the question as to whether
a sex bias remains throughout the lifespan or perhaps susceptibility
shifts between the sexes as hormone levels fall with age.

4. Nanoparticle exposure and the brain

Beyond those involved in detoxification and clearance, the brain is a
secondary organ of NP toxicity of considerable interest given its
prominence in regulating all that we do and who we are. Particular
focus is given to the impact of NP exposure on the brain with its
privileged protective blood brain barrier (BBB), its vulnerability to
neurodevelopmental impairment and its susceptibility to chronic pa-
thology impacting the higher order functions that as humans our lives
depend on.

4.1. Blood-brain barrier impairment

NP vascular impairment extends to the neurovascular unit of the
brain, which brings the potential for acute and chronic neurological im-
pairment. The BBB is an intricate assemblage of cerebrovascular endo-
thelial cells anchored together by tight-junction proteins, abluminal
pericytes that facilitate barrier integrity, which is all ensheathed by as-
trocytes to facilitate glucose uptake and serve as a line of defense
(Fig. 2). Barrier integrity is dynamic, and a wide variety of neuropathies
are associated with a more “open” BBB that is thought to be pathogenic
and a contributing factor in ongoing dysfunction. In our model of
acute pulmonary MWCNT exposure in mice, we identified pronounced
BBB disruption, with small-molecule fluorescein and macromolecule
albumin leakage into the parenchyma (Aragon et al.,, 2017). Yet accom-
panying the compromise barrier, we observed dose-dependent neuro-
inflammatory responses, including pronounced reactive astrogliosis
and microglial recruitment to the neurovascular unit. Interestingly, the
higher dose of MWCNT provoked reactive astrocytes to acutely migrate
close to the vessel lumen, as in early glial scar formation, suggesting a
protective response in the mouse brain that was not observed in the
lower MWCNT exposure (Mostovenko et al., 2021). Furthermore, glial
reactivity extended farther from the vessel wall at the lower dose, sug-
gesting greater potential for parenchymal perturbation. Indeed, we ob-
served greater synaptic perturbation at the lower MWCNT dose, with an
increased density of excitatory synapses extending farther from the ves-
sel lumen than with the higher dose. This was accompanied by a robust
decrease in inhibitory synaptic density for an overall hyperexcited
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Fig. 2. Vulnerability of the blood-brain barrier with inhaled nanoparticle (NP) exposure.
Dysfunction of the BBB has been found following pulmonary MeNP and carbonaceous
NP exposures. The targets include tight junction disruption, leakage into the parenchyma,
activation of adjacent astrocytes and recruitment of microglia to the neurovascular unit.
Cell surface receptors on cerebrovascular endothelial cells are susceptible to induced cir-
culating ligand peptides, cytokines and oxidized macromolecules that degrade barrier in-
tegrity.

phenotype that, together with BBB disruption and neuroinflammation,
are all characteristic of early pathogenesis in Alzheimer's disease.
Looking longer term, subchronic exposure of aged Fischer rats (19
months) to 10mg/m?> TiO, aerosol (<100nm) for 28 days (6 h/d, 5 d/
wk) exacerbated age-associated modulation of BBB integrity (Disdier
et al.,, 2017). Again, BBB alterations were accompanied by significant
pro-inflammatory responses to include up-regulated IL-1f3, vascular en-
dothelial growth factor, interferon-vy, interferon-y-inducible protein 10,
and fractalkine, which again was consistent with neurodegenerative
disease pathogenesis (Disdier et al., 2017). Interestingly, no pro-
inflammatory markers were detected in the blood of these animals,
and no TiO, NPs were detected in the brain, reinforcing the role of yet
unknown indirect mediators.

UFP-containing air pollutants have also been shown to elicit effects
on the human as well as animal brain, including BBB disruption, with ac-
tive research investigating a role in priming for neurodegenerative dis-
orders and brain cancers (Ljubimova et al., 2013; Raaschou-Nielsen
et al,, 2011; Wu, Yao, & Cai, 2012). In ApoE~/~ mice subchronically
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exposed to a mixture of gasoline and diesel engine vehicle exhaust
(100 pg/m?3, 6 h/d, 7d/wk., for 30d), BBB disruption was observed with
decreased expression of tight-junction proteins and P-glycoprotein as-
sociated transport (Lucero, Suwannasual, Herbert, McDonald, & Lund,
2017;Lund et al., 2009; Oppenheim et al., 2013). These effects were
partly mediated by matrix metalloproteinase (MMP)-9 (Lund et al.,
2009; Oppenheim et al., 2013) and modulation of lectin-like LOX-1 ex-
pression, known to affect MMP-9 levels in vascular endothelial cells.
Furthermore, neutralization of LOX-1 protected against subchronic ve-
hicle emissions-induced BBB disruption, lipid peroxidation, and par-
tially reduced overall ROS production (Lucero et al., 2017). Of further
importance, a high-fat diet was found to further compound the effects
of subchronic vehicle exhaust emissions on cerebrovascular permeabil-
ity, exacerbating changes in tight-junction and MMP-9 protein expres-
sion as well as plasma ox-LDL and LOX-1 levels (Suwannasual, Lucero,
McDonald, & Lund, 2018). Mechanistically, mixed high-fat diet and ve-
hicle exhaust also significantly increased circulating angiotensin Il and
expression of angiotensin Il receptor type 1 (AT1) in the cerebral micro-
vasculature subchronically, which is known to increase BBB permeation
(Suwannasual, Lucero, Davis, McDonald, & Lund, 2019). Supporting this,
when plasma from exposed animals was applied on endothelial cells
in vitro, expression of tight-junction proteins claudin-5 and occludin
was significantly reduced. Those effects were attenuated with AT1 re-
ceptor antagonist pretreatment, confirming angiotensin II-AT1 involve-
ment in regulation of BBB disruption following NP exposure.

While the focus of the present review is on indirect mediators of sys-
temic pathobiology, when discussing the brain, it is also important to
consider that inhaled NP and UFP may also circumvent the lung and
go directly to the brain through the nasal cavity (Block & Calderén-
Garciduefias, 2009). The olfactory region is topped with a thin, porous
bone called the cruciform plate, through which olfactory receptor neu-
rons project and may transport NP and UFP along axons to the olfactory
bulb if not other areas of the brain (Oberdérster et al., 2004). Attention
to the olfactory pathway originated with the transport of metals to the
brain, as found with different NPs and UFP, (Tjdlve & Henriksson,
1999). Yet, many of the metals under study, such as those from welding
fumes, were water-soluble within the nasal mucosa, and there has been
limited evidence for the translocation of actual NPs along this pathway
in humans (Boyes & van Thriel, 2020). Detailed modeling of NP deposi-
tion in casts of the human olfactory region demonstrate a significant NP-
size deposition dependency, with only the smallest (< 10 nm) particles
being retained in appreciable amounts (Garcia, Schroeter, & Kimbell,
2015). Thus, exposure to smaller NPs may very well result in direct
transport to the brain as well as potential indirect effects through a
lung-brain axis, which can confound the assessment of NP neurotoxicity
if not considered as part of a study design (e.g., comparing aspiration
into the lung vs. nasal instillation or inhalation).

4.2. Neurodevelopmental outcomes

Little has been researched regarding the impact of ENPs on
neurodevelopment, likely due to the emphasis on ensuring safety prin-
cipally for occupational exposures. Yet, children are potentially exposed
to ENPs through consumer products during gestational and postnatal
development. For example, prenatal subacute exposure to TiO, NPs in
mice caused significant consequences in the brains of offspring with
neurobehavioral abnormalities (Hougaard et al., 2010). Yet, the impact
of UFP in air pollution on neurodevelopment has gained considerable
attention for its potential to induce life-long behavioral and cognitive
outcomes in children (Costa et al., 2017; Newman et al., 2013; Suglia,
Gryparis, Wright, Schwartz, & Wright, 2008; Volk, Hertz-Picciotto,
Delwiche, Lurmann, & McConnell, 2011; Volk, Lurmann, Penfold,
Hertz-Picciotto, & McConnell, 2013). Modeled perinatal research in ro-
dents dosed with <200nm UFP traffic-related air pollution, there was
considerable BBB disruption, associated hippocampal microbleeds
detected, decreased neurogenesis and decreased AMPA receptors
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(Morgan et al., 2011; Woodward et al., 2018). Believed to be involved
was the stimulation of the toll-like receptor 4 pathway through in-
creased IL-1aw and TNF-a signaling, which is known to impact the bar-
rier and neurogenesis (Hanamsagar & Bilbo, 2017; Valero, Paris, &
Sierra, 2016). In utero subacute air pollution toll-like receptor 4 signal-
ing also alters microglia morphology during embryonic brain develop-
ment, particularly in males, and promotes a delay in neuronal
maturation (Bolton et al.,, 2017). Following UFP exposure, the offspring
exhibited significant impairment in contextual memory, depressive-like
behavior, and reduced food-seeking. Several more studies have shown
that gestational NP exposure results in persistent behavioral deficits in
adult offspring, more so in males (Bolton et al., 2012; Bolton et al.,
2013; Bolton, Auten, & Bilbo, 2014). Similar findings were observed
with subacute gestational CB exposure, where six-week old offspring
also exhibited frank astrogliosis around the cerebrovasculature
(Onoda, Takeda, & Umezawa, 2017) and a decreased inhibitory inter-
neuron density (Umezawa et al., 2018), despite the lack of overt signs
of pulmonary inflammation within the dams.

Neurodevelopment vulnerability to UFP is also a consideration in the
pathogenesis of autism spectrum disorders (ASD). Mice exposed to
traffic-related concentrated ambient UFPs (CAPs) at post-natal days
4-7 and 10-13, equivalent to third trimester human neurodevelopment,
produced a pattern of developmental neurotoxicity notably similar to
mechanistic underpinnings of ASD (Allen et al., 2017). This period is
characterized by BBB maturation (Xu & Ling, 1994), gliogenesis
(Catalani et al., 2002), and gray matter growth (Baloch et al., 2009;
Bockhorst et al., 2008). Exposed animals showed increased microglia
and astrocyte activation at post-natal days 14 and 270 (Allen et al.,
2014; Allen et al., 2014; Allen et al., 2017). Glutamate, glutamine and
GABA levels were all altered in frontal cortex of both male and female
CAPs treated animals and in the hippocampus of males with a shift to
hyperexcitation (Allen et al., 2014; Allen, Liu, Pelkowski, Palmer, et al.,
2014; Allen, Liu, Weston, Prince, et al., 2014) akin to the glutamatergic
disbalance in children and adults with ASD (Allen et al., 2017). Per sex-
dimorphic neuroanatomical effects, only males were found to exhibit
learning and memory dysfunction while females displayed behaviors
consistent with altered motivation (Cory-Slechta, Allen, Conrad,
Marvin, & Sobolewski, 2018). Male animals also exhibited social com-
munication deficits and reduced serum testosterone (Sobolewski et al.,
2018). Males also showed ventriculomegaly and reduced myelination
and size of the corpus callosum pointing to under-connectivity of the
two hemispheres consistent with social and language deficits and al-
tered hand preference found in children with ASD (Allen et al., 2017;
Allen, Liu, Pelkowski, Palmer, et al., 2014).

Interestingly, when subacute CAPs exposure was shifted to early
gestation, the sex-dimorphic findings also changed, pointing to distinct
windows of neurodevelopmental vulnerability. Ventricular areas were
enlarged only in females when observed at postnatal days 57-61, and
the corpus callosum was enlarged specifically in CAPs-exposed males.
Females, not male, also exhibited a 106% increase in iron deposition in
the corpus callosum, which was positively correlated with increased
MBP and negatively correlated with microglia cell count (Klocke et al.,
2017). Iron required for oligodendrocyte maturation and myelin bio-
synthesis (Badaracco, Siri, & Pasquini, 2010; Connor & Menzies, 1996)
has also been associated with air pollution-associated risk for cognitive
impairment with adult neurodegeneration (Bartzokis et al., 2007), sug-
gesting that iron homeostasis may also play a role in CAPs-induced neu-
rotoxicity.

4.3. Adult neurotoxicity and neurodegenerative disease

On the opposite end of the age-spectrum, NP exposure may also con-
tribute to the pathogenesis of neurodegenerative diseases (Block &
Calderén-Garcidueias, 2009; Oudin et al., 2016). Diesel engine UFP
emissions have been of particular concern, recognizing that upwards
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of 90% of the particle fraction is on the nanoscale (Kittelson, 2001).
Acute diesel exhaust particulate (250-300 pg/m?> for 6 h) induced neu-
rotoxicity, with greater inflammatory cytokine expression and lipid per-
oxidation in neurodegenerative disease-relevant brain regions after a
day (Cole et al., 2016). Alzheimer's and Parkinson's related pathology
was then evident with subchronic diesel particulate exposure along
with increased AR42, phosphorylated Tau [pS199], and a-synuclein
neuropathology in rats (Levesque, Surace, McDonald, & Block, 2011).
Mice exposed chronically to NPs (< 200 nm) from traffic pollution
showed neurite atrophy, decreased myelination, and increased microg-
lia activation in hippocampus (Woodward et al., 2017). In combination
with aging (18-month old animals), chronic traffic NP exposure im-
paired memory, with a 30% reduction in short- and long-term novel ob-
ject recognition test performance. Even in models of familial
Alzheimer's (5XFAD mice), chronic diesel exhaust particulate enhanced
AP42 accumulation with reduced brain function (Hullmann et al.,
2017). Yet chronic diesel exhaust-derived UFP has also been shown to
increase depression- and anxiety-like behaviors in mice (Ehsanifar
et al., 2019), with more research needed to investigate psychiatric out-
comes.

Neuroinflammation appears to be an underlying consequence of
modeled UFP exposures (Ehsanifar et al., 2019; Levesque et al., 2011;
Levesque, Surace, et al,, 2011). Chronic UFP exposure induces Nrf-2 ac-
tivation in conjunction with neurocognitive deficits (Guerra et al.,
2013). These effects were accompanied by moderate oxidative stress
in the brain as measured by reduced antioxidant enzyme heme oxygen-
ase 1 and mitochondrial superoxide dismutase SOD-2 mRNA levels in
disease-relevant striatal and hippocampal regions. Similarly, chronic
diesel exhaust UFP also upregulates neuronal nitric oxide synthase
levels in the brain (Ehsanifar et al., 2019). Such stress responses are ac-
companied by persistent microglial activation, whether from sub-
chronic direct motor vehicle exhaust or chronic mixed urban traffic
UFP exposures alike (Babadjouni et al.,, 2018; Mumaw et al., 2016). In-
terestingly, these studies found no change in circulating cytokine levels,
supporting the involvement of other indirect mediators.

NP-induced neurotoxicity is additionally associated with metal con-
tent, with the impacts of manganese and lead well known in neurode-
generative and neurodevelopmental disorders, respectively. In human
adults, chronic inhalation of manganese containing NPs, for example
in welding fumes, can cause severe neurotoxicological consequences
(Bailey, Kerper, & Goodman, 2018). In fact, there are a multitude of in-
dustrial processes that can result in manganese NPs, including mining,
ore-crushing, metallurgical operations, dry-cell battery production,
etc. Repeated studies have shown dose-dependent cognitive deficits,
particularly in working memory, in workers exposed to Mn-
containing fumes (Al-Lozi et al., 2017; Bowler et al., 2006; Bowler
et al., 2007; Bowler et al., 2011; Park, Bowler, & Roels, 2009; Roels
etal.,2012). Manganese in the NPs exists as different oxides and in com-
bination with fluorine and potassium, which have been shown to in-
crease manganese solubility in the lung. In the case of manganese, it is
solubility concerns that relate to induced neurotoxicity, driving reactive
oxygenated species production and inflammatory cytokines in the brain
(Tjalkens, Popichak, & Kirkley, 2017). Manganese-driven oxidative
stress in neurons drives calcium dysregulation and eventual apoptotic
cell death ([jomone, Aluko, Okoh, Martins, & Aschner, 2019). Manga-
nese selectively accumulates in dopaminergic neurons with repeated
rat exposure to welding fume NPs (Sriram et al., 2010), though exactly
why is still not known; however, this neuronal death produces the idi-
opathic Parkinsonian symptoms associated with manganism. Yet it
should be considered that NPs contain other metals that have their
own role in developing neurocognitive outcomes. Zinc, magnesium,
lead, lithium and even iron blood levels can influence mood and anxiety
levels (Mlyniec, Gawet, Doboszewska, Starowicz, & Nowak, 2017),
supporting the potential that a broader range of metal NPs can drive
neurobehavioral consequences.
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5. Indirect mechanisms of systemic toxicity

The health impacts of NP inhalation exposures extend to the circula-
tion and beyond to other organ systems (Table 1, Fig. 1), yet not always
with solubilization or NP transport to the periphery, directly or facili-
tated by macrophages. Studies where systemic effects occur through in-
direct mediators have been highlighted above. Traditional cytokine/
chemokine activation in the blood is evident only in some cases,
transiently, and often at levels insufficient to explain extrapulmonary
inflammation and organ injury. Reactive oxygenated species and
induced oxidative stress also manifests in other organ systems,
yet not always with a pro-oxidative state in the blood. In this next sec-
tion, we review the state-of-knowledge on indirect mediators of
extrapulmonary NP toxicity. The composition of augmented factors in
the circulation can include classical cytokine ligands as well as novel va-
soactive peptides derived from proteolytic processing in the lung, some-
times accompanied by lipid and protein peroxidation products and
extracellular vesicles (EVs) (Fig. 3). We review the evidence for these
circulating factors and arrive at the importance for a multivariate ap-
proach to analyzing blood compositional change in understanding the
toxicological profile of different NPs.

5.1. Oxidative species and reactive products

A defining characteristic of NPs is their high surface area-to-volume
ratio, which enhances composition-based particle reactivity. Especially
for MeNPs or metal-bound NPs, redox cycling may be readily promoted
(Shannahan, Kodavanti, & Brown, 2012), leading to ROS production and
oxidative stress in exposed tissues (Shvedova, Pietroiusti, Fadeel, &
Kagan, 2012). Oxidative stress occurs particularly with NPs having:
(i) transition metal content or contaminants, (ii) bound free radical in-
termediates, and (iii) adsorbed redox-active molecules on the NP sur-
face (Shvedova et al., 2012). NPs containing iron, copper, chromium,
vanadium, and silica are especially reactive through Haber-Weiss and
Fenton-type reactions. Silicate NPs also present free radical intermedi-
ates like SiO and SiO, on their surfaces, which promote hydroxyl and
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superoxide free radical formation. Additionally, with a large surface
area, carbon-based NPs can adsorb ambient reactive species like ozone
and nitrogen dioxide that provide additional oxidative potential
(Manke, Wang, & Rojanasakul, 2013). Yet, the high surface area-to-vol-
ume ratio does not entirely explain the reactivity of a NP in tissues. For
example, CB of different mean diameters produced similar cellular anti-
oxidant responses, suggesting that some oxidative effects are indepen-
dent of NP surface properties (Koike & Kobayashi, 2006). Of further
consideration, fullerenes and carbon nanotubes can scavenge hydroxyl
radical through interactions with dangling bonds at sites of defects in
the carbon framework (Fenoglio et al., 2008). Thus, the oxidative poten-
tial across different NPs is rather difficult to predict without empirical
determinations.

Within the lung, NP contact can result in accumulation of ROS as
well as reactive nitrogen species that can overwhelm intracellular anti-
oxidant capacity and oxidatively damage proteins, lipids, and DNA
(Shannahan et al., 2012). Under these conditions, ROS causes lipid per-
oxidation of polyunsaturated fatty acids (Barrera, 2012). Oxidized lipids
then promote the polymerization of membrane components, modifica-
tion of transmembrane potential, release of mitochondrial calcium, and
pro-apoptotic signaling through caspases-3 activation and DNA frag-
mentation (Bertin & Averbeck, 2006). However, the cellular response
is graduated. As ROS levels start to increase, nuclear factor-erythroid
factor 2 activation triggers defensive transcriptional responses to en-
hance antioxidant capacity. If ROS increases further, inflammatory re-
sponses are activated via c-Src, p38 MAP kinase, and NF-kB signaling
cascades (Wu & Tang, 2018). These cascades may further progress to in-
volve mitochondrial stress-associated pro-apoptotic signaling and
eventual cell death. Indeed, inhibition of the NF-kB pathway was
found sufficient to alleviate NP-mediated inflammation and fibrosis
pointing to this as a critical initiation step (Chen et al., 2014). This cas-
cade was nicely documented by Pardo et al. in a study of single versus
repeated mouse exposure to inhaled roadside particulates (Pardo,
Porat, Rudich, Schauer, & Rudich, 2016). ROS levels in the lung were de-
pendent on the number of repeated exposures; however, nuclear
factor-erythroid factor 2 activation only increased with the single dose
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Fig. 3. Indirect mechanism of systemic toxicity following nanoparticle (NP) inhalation. As illustrated, NPs penetrate deep into the lung to interact with cells of the alveolar-blood interface
and resident immune cells. There, NP stimulation triggers oxidative stress and inflammation with the generation of oxidative products, the activation of matrix proteases, and the release of
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the circulation. These indirect mediators interact systemically with the cardiovascular system, altering function, and negatively influencing extrapulmonary organs.
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and was driven down at the higher level of ROS with repeated doses.
This coincided with enhanced antioxidant capacity in the lungs of
singly-dosed animals, while glutathione, heme oxygenase 1 and other
antioxidant defense genes were all decreased in the lungs after repeated
exposures. The latter group exhibited pronounced lipid and protein ox-
idation in the lung not evident in single-exposure animals. Moreover,
repeat-exposure animals exhibited significant increases in pro-
inflammatory IL-6 and TNF-« in the blood that was not detected in
those animals exposed just once, pointing to co-morbid systemic out-
comes.

Pardo et al. did not, however, measure whether oxidized macromol-
ecule byproducts were increased in the circulation. Indeed, most studies
of peripheral organ toxicity following modeled pulmonary NP exposure
lack assessment of oxidized macromolecules in the blood, as reviewed
elsewhere (Dugershaw, Aengenheister, Hansen, Hougaard, & Buerki-
Thurnherr, 2020; Moller et al., 2010; Shvedova et al., 2012; Yu et al.,
2020). These studies instead propose NP translocation or proinflamma-
tory cytokine release from the lung into the circulation as the causal
agents of systemic oxidative stress. For example, Nichols et al. found sig-
nificant ROS production and mitochondrial respiratory dysfunction in
cardiac tissue following nano-TiO, inhalation in mice, demonstrating a
reversal of effects with phospholipid hydroperoxide glutathione
peroxidase treatment (Nichols et al., 2018). Yet, they attributed the
oxidative insult to nano-TiO2 translocation. However, lipid peroxidation
products are also potent stimulants of tissue inflammation, and their
role as indirect mediators of extrapulmonary toxicity needs to be con-
sidered, perhaps concomitant with cytokine release. Oxidized macro-
molecules have considerably longer half-lives than typical ROS
species, and so have greater potential to induce oxidative effects outside
the lung that can be independent from NP translocation (Shannahan
et al., 2012). Unfortunately, it is difficult to measure such oxidative
byproducts in the circulation. Common blood oxidant stress biomarkers
include the thiobarbituric acid reactive substances (TBARS) assay,
which measures levels of malondialdehyde and lipid hydroperoxides.
Peroxidation of arachidonic acid in lung tissue can also result in the re-
lease of prostaglandin F,-like compounds, with 8-iso-prostaglandin-Fo
(8-isoprostane) primarily assayed (Chen, Arjomandi, Balmes, Tager, &
Holland, 2007). The release of oxidized proteins can also be detected
through an increase in blood protein carbonyl levels (Shacter, 2000).
However, all these assays are influenced by oxidative stress and
background processes occurring throughout the body, challenging the
determination of a causal role. Indeed, the few studies that have
looked at oxidized macromolecules in the periphery are unable to
demonstrate causation. For example, Pirela et al. studied the
pulmonary and systemic effects of inhaled printer-emitted NPs in rats
(Pirela et al., 2019). They found modest lung injury and inflammation
with a mild increase in lactate dehydrogenase levels and significant,
though not pronounced, cytokine and chemokine activation along
with increased alveolar macrophage and neutrophil counts. In the
blood, they found a significant increase in 8-isoprostane levels at multi-
ple doses as early as one day after exposure, reflecting the potential for
systemic oxidative damage. Analysis of heart tissues, however, showed
no evidence of injury or inflammation to affirm systemic effects. Yet in a
later publication, the same group reported that printer-emitted NPs
promoted global metabolic changes within the circulation involving
glycerophospholipids, unsaturated fatty acids, and sphingolipids that
are in-kind modulated under pro-inflammatory conditions associated
with cardiovascular disease (Guo et al., 2019). Thus, further directed re-
search is needed to demonstrate a casual role for oxidized macromole-
cules as indirect mediators conveying NP toxicity from the lung to
peripheral organs.

5.2. Cytokines and chemokines

The deposition of NPs deep within the lung largely circumvents
mucociliary clearance and promotes an inflammatory reaction with
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immune-cell stimulating cytokine and chemokine release (Fujii,
Hayashi, Hogg, Vincent, & Van Eeden, 2001). Yet the story is more com-
plicated, with different particulates promoting varied degrees of
T helper cell 1 (more prominent with vehicle emissions) or 2 immune
responses (Hamilton, Holian, & Morandi, 2004). This is further compli-
cated by the varying degree to which particulate-driven inflammation
in the lung is accompanied by an increase in circulating pro-
inflammatory factors. For example, Inoue et al. showed that diesel ex-
haust particulate, separated from the soluble organic fraction, promoted
greater inflammation in the lung and pro-inflammatory cytokine and
chemokine release into circulation (Inoue et al., 2006). Yet this was lim-
ited to mice co-treated with lipopolysaccharide, while circulating cyto-
kines were not significantly increased by diesel particulate treatment
alone. Similarly, Wang et al. showed that urban pollution fine particu-
late alone produced no significant increase in circulating IL-6, but in a
co-exposure with ozone they observed a particulate dose-dependent
increase in serum IL-6 (Wang, Jiang, Zhao, & Song, 2013). Moreover,
Hullmann et al. showed pronounced neurological effects of repeated
diesel exhaust particulate inhalation in mice with no significant pulmo-
nary histopathology or increases in serum levels of IL-1, IL-6, IL-17,
keratinocytes-derived chemokine, MIP-1, or monocyte chemoattractant
protein 1 (Al-Lozi et al., 2017). In human exposures, Mills et al. showed
that acute diesel exhaust produced significant cardiovascular outcomes
related to vascular tone and fibrinolysis; however, again there was no
change in proinflammatory IL-6, C-reactive protein or TNF-a (Mills
et al.,, 2005). Thus, while release of pro-inflammatory cytokines and
chemokines into the circulation is possible with particulate inhalation,
which can drive cardiovascular deficits (Hadei & Naddafi, 2020), it can-
not be assumed that particulate alone is able to induce these factors in
the blood as a causal factor of other systemic effects.

In contrast, pulmonary MeNP exposure appears to more readily
evoke blood cytokine responses than does diesel engine emissions ex-
posure. For example, Holland et al. reported that instillation of 20 nm
silver NPs resulted in significant increases in circulating IL-1, IL-6, IL-
10, IL-13, IL-17, IL-18, MIP-1, and TNF-« after a day and as long as a
week, yet lung tissue injury was surprisingly minimal (Holland et al.,
2015. The silver NP did not readily dissolve, appearing prominently
within the lung at one week, yet the particles were actively being
phagocytosed by pulmonary macrophages, which may have caused
the release of cytokines into the blood. They also found significant car-
diovascular inflammation and depressed vascular reactivity consistent
with the circulatory responses observed, though breakthrough of the
silver NP into the circulation or vascular tissues was not assessed and
so could not be ruled out. We already discussed that MeNPs are more
likely to make it to the periphery owing to their smaller size. This was
the case in a study by Du et al. where instilled silica NP exposure also
prompted significant increases in circulating IL-1, IL-6, C-reactive pro-
tein and TNF-q, but the silica NPs were also found in the bloodstream
and cardiac tissues making it hard to disentangle the contribution of di-
rect and indirect effects (Du et al., 2013). Interestingly, Coccini et al.
compared the toxicological profile of cadmium-doped silica NPs with
non-doped silica NPs, finding that after instillation of both there was
an increase in circulating IL-6, but the translocation of the cadmium-
doped silica NPs produced significant renal toxicity that entirely absent
with non-doped silica NPs (Coccini, Barni, Mustarelli, Locatelli, & Roda,
2015). This emphasizes that in this case the particle translocation with
nephrotoxic cadmium is a key determinant, not the capacity to increase
circulating cytokines with or without NP transport from the lung.

Yet it cannot be overlooked that dose plays a significant role, with
many modeled exposures being performed at exaggerated levels of NP
exposure. For example, Erdely et al. showed that mice which aspirated
a 40-pg bolus of ultrafine CB, SWCNT or MWCNT exhibited significant
increases in serum cytokines and chemokines (IL-6, CCL11, CXCL1,
CCL22), more so with MWCNT than the other two NPs (Erdely et al.,
2009). Later, they extrapolated that for an average 10.6 ug/m>
MWCNT concentration in industrial manufacturing facility under
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typical ventilation conditions: a 40 pg deposition in the mouse lung
would equate to 20,000 8-h workdays of exposure, roughly 76 years
of a work life (Erdely et al., 2013). Yet, if a high dose was the major de-
terminant, then it is of note that with a high 100 g bolus instillation of
MWCNT in the rat, Thompson et al. observed no significant change in
serum IL-6 (Thompson et al., 2016). Instead, they measured a significant
decline in gp130, an antagonist to the IL-6 receptor, which may have
had a pro-inflammatory effect in the periphery. It is hard to reconcile
these findings, since the two models differed in species used, the admin-
istration type, and the vehicle used. To the later point, Thompson et al.
used saline while Erdely et al. devised a dispersion media containing
serum albumin and the phosphocholine DPPC to minimize nanotube
aggregation and facilitate better dispersion within the lung, which
seemingly would make for a more potent exposure. Additionally, cyto-
kine release into the periphery may occur transiently as a short-
duration, acute response. Erdely et al. first reported a significant rise in
circulating cytokines 4-h post 40 pug CB, SWCNT and MWCNT exposure
(Erdely et al., 2009); however, measures of the same mediators were
not significantly different by 24 h post exposure (Erdely et al., 2011).
Similar findings were found by Urankar et al. 24 h after an even higher
dose (100 pg) aspiration of three different types of MWCNT, where only
serum eotaxin levels reached significance with one type of MWCNT;
yet, they still reported significant cardiovascular consequences
(Urankar et al., 2012). Thus far, modeling studies with non-MeNPs
have been less than conclusive in defining a role for cytokine factors,
pointing towards other indirect mediators.

Addressing modeling concerns, Beard et al. assessed the correlation
of blood cytokine levels with real-world exposure to carbon nanotubes
and nanofibers (Beard et al., 2018). Assessing across 102 workers from
12 different primary and secondary manufacturing sites using these
materials, they found no significant associations between inflammatory
cytokines IL-1, IL-6 and TNF-« in serum of workers, though they did find
a significant association with decreased chemokines CXCL8 and CCL11
that would suggest a suppressed immune-cell response. Indeed, this
group later demonstrated in the population that the blood of workers
exposed to higher levels of carbon nanomaterials exhibited greater sup-
pression of immune cell activation after ex vivo LPS and SE-B stimula-
tion (Schubauer-Berigan et al., 2020). In all, the role of circulating
cytokines in manifesting systemic health outcomes is largely inconclu-
sive: most studies show a minimal association with engine exhaust or
urban air particulates; MeNPs seems to produce a pronounced response
in circulating cytokines that is confounded by those particles breaking
through into the circulation where they may act on the vasculature to
drive of blood cytokine levels; high-aspect NPs like MWCNT that are
more largely restricted to the lung only seem to promote cytokine re-
lease into the circulation under extreme conditions, while actual carbon
nanomaterial exposure in workers seems to suppress the immune cell
response in the circulation.

5.3. Vasoactive proteins and peptides

As we have thus reviewed, the pathological response to NP exposure
in the lung is complex and no single released factor can fully explain the
extrapulmonary burden. Indeed, omic research is revealing a wide di-
versity of circulatory changes, with a host of vasoactive and pro-
pathological factors released to the periphery. For example, Thompson
et al. used proteomic analysis to show at least 66 proteins augmented
in rat blood after diesel exhaust inhalation (particle size 120-140nm)
(Thompson et al., 2019). Using ex vivo assays, they demonstrated the
bioactivity of the blood molecular milieu by placing serum on naive
cells, an approach previously used with ozone as an inhaled pollutant
that cannot escape the lung (Postlethwait et al., 1998; Pryor et al.,
1995) and thereby affirming a causal, contributing role for indirect me-
diators (Mumaw et al., 2016; Robertson et al., 2013). Evident in the
blood was a wider array of proteinaceous changes beyond classical cyto-
kines that promote receptor-mediated cardiovascular responses. For
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example, blood levels of angiotensin increased with vehicle exhaust ex-
posure, stimulating angiotensin receptors to augment cardiovascular
function (e.g., vasoconstriction) and even compromise the BBB
(Ferrario, 2006; Suwannasual et al., 2019). Inhaled vehicle emissions
also promoted increases in oxidized low-density lipoprotein (0x-LDL),
which is yet another vasomodulatory protein response (Suwannasual
etal., 2018), and which cross-activates with angiotensin their respective
endothelial receptors, LOX-1 and AT1, modulating pathways involving
nitric oxide and ROS responses (Li, Saldeen, Romeo, & Mehta, 2000; Li,
Zhang, Philips, Sawamura, & Mehta, 1999; Morawietz et al., 1999).
However, the influence of diesel exhaust or concentrated ambient
urban particulate via blood-borne ligands on the renin-angiotensin sys-
tem has even wider implications by affecting the neuroendocrine stress
axis that regulates everything from mood, immune function to digestion
(Qiu et al., 2018; Sack et al., 2016).

Yet another vasoactive protein of importance is thrombospondin
(TSP), a prominent modulator of arteriolar vasodilation that promotes
anti-angiogenesis via endothelial cell-surface receptor interactions
(Miller, Isenberg, & Roberts, 2010). Work by us and others have
shown increased TSP levels within the circulation and extrapulmonary
tissue after MWCNT exposure in the lung (Aragon et al., 2017;
Mandler, Nurkiewicz, Porter, & Olfert, 2017). Mandler et al. further
demonstrated a causal role for TSP whereby vasodilatory dysfunction,
endothelial nitric oxide pathway inhibition, and endothelial leukocyte
adhesion were all significantly muted after MWCNT exposure in TSP
knockout animals (Mandler et al., 2017; Mandler, Nurkiewicz, Porter,
Kelley, & Olfert, 2018). They went on to also show a role for the cell sur-
face receptor CD47 with a knockout mouse and MWCNT treatment
(Mandler et al., 2018). TSP-CD47 signaling caused eNOS uncoupling
and ROS generation, with declining nitric oxide levels found after
MWCNT treatment in wild-type animals. However, effects on nitric
oxide levels were absent in TSP and CD47 knockout animals treated
with MWCNT. Moreover, Mandler et al. demonstrated that these vaso-
dilatory and nitric oxide responses were produced in the absence of ei-
ther lung or blood activation of IL-6, IL-10 or TNF-a after MWCNT
exposure, supporting an independent role for TSP in mediating NP sys-
temic cardiovascular outcomes.

Interestingly, both ox-LDL and TSP are ligands for another endothe-
lial cell surface receptor, CD36 (Febbraio, Hajjar, & Silverstein, 2001).
Binding of ox-LDL to CD36 has been shown to deplete endothelial cho-
lesterol from the plasma membrane, which dislocates membrane-active
eNOS, reducing nitric oxide, and altering vascular responses while stim-
ulating atherogenesis (Uittenbogaard, Shaul, Yuhanna, Blair, & Smart,
2000). TSP activation of CD36 separately drives p38 MAP kinase activa-
tion and proapoptotic signaling. TSP-CD36 interactions also inhibit
myristate uptake, which reduces eNOS activity further while also
influencing potentially many other myristoylation-regulated processes
(Isenberg et al., 2007). However, the TSP concentration needed to acti-
vate CD36 is some two-orders greater than that needed to modulate
CD47, with the latter operating more as a sensor to physiological shifts
in TSP, while CD36 responds to more pathological TSP levels (Isenberg
et al,, 2006). MWCNT exposure in the lung indeed produced sufficient
TSP-related signaling in the blood to drive CD36-mediated endothelial
responses ex vivo with impaired vasorelaxation in wild-type vessels ab-
sent in CD36 knockout vessels (Aragon et al.,, 2016). Yet assessments of
circulating TSP showed only a modest increase in MWCNT treated ani-
mals (Erdely et al., 2009). While significant, the magnitude was insuffi-
ciently elevated from physiological levels to mediate the observed CD36
dependence, suggesting an alternative exposure-induced peptide li-
gand.

Importantly, blood from MWCNT-treated mice that had MMP-9
knocked out was unable to initiate the ex vivo CD36-dependent vasore-
laxation deficits found in wild-type animals, implicating a role for MMP-
9 (Aragon et al., 2016). This supported the hypothesis that matrix re-
modeling in the NP-exposed lung promoted generation and release
into the circulation of proteolytic fragments of which a subset would
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have ligand functionality. Indeed, not only was MMP-9 expression ele-
vated in the lung after MWCNT exposure (Erdely et al., 2009), so were
amultitude of other matrix proteases and cathepsins involved in the ex-
tracellular release of proteolytic fragments (Mostovenko et al., 2019).
Not surprisingly, the resulting shift in circulating peptides was equally
complex, which in aggregate comprises a peptidomic response to NP
exposure. Employing quantitaive peptidomic mass spectrometry, we
assertained that 841 peptides (with masses between 1 and 7 kDa)
were significantly altered after MWCNT exposure across matched lung
lavage and serum biofluids, with 567 exhibiting correlative exchange
between the two biofluids. Importantly, pre-treatment with the pan-
MMP inhibitor, marimastat, directly into the lung muted most though
not all of the peptide fragment release into the blood, affirming a pul-
monary source, involvement of MMPs, and the co-involvement of
other proteases not antagonized by marimastat (Young et al., 2021).
The identified peptides were enriched with factors associated to
abnormal cardiovascular responses. This was further observed in the
peptidomic response within cerebral spinal fluid, which was further in-
dicative of ongoing neuroinflammation and synaptic remodeling proxi-
mal to the neurovascular unit that was consequent ligand-mediated
cerebrovascular dysfunction (Fig. 2) (Mostovenko et al., 2021). Thus,
the peptidomic response was consistent with the reported impacts to
the vasculature at different doses of MWCNT in the lung, providing pu-
tative biomarkers of exposure and extrapulmonary pathological effects.

Moreover, when separated from whole serum, circulating peptides
induced with MWCNT exposure were able to cause ex vivo vasorelax-
ation deficits and inhibited endothelial angiogenesis (Aragon et al.,
2016; Mostovenko et al., 2019). Among the identified peptides was a
59-mer TSP fragment derived from the type 1 repeat domain containing
the CD36 binding motif, which was elevated in the blood to a concentra-
tion of 20-24 nM, sufficient to activate CD36. Synthesizing the peptide,
we further affirmed its ligand functionality in inducing endothelial dys-
function at 22 nM in culture. However, the circulating peptide fraction
induced with MWCNT exposure was able to stimlate other pro-
inflammatory responses, including increases in endothelial Ccl2,
Vcaml1, Icam1, and TNF-q, that were independent of CD36 and implica-
ted integrin signaling with c-jun-induced cytokine transcription. Other
peptide fragments of fibronectin, collagens and laminins were identified
and hold ligand potential for integrin receptor signaling pathways.
What's more, peptides released into the circulation can be further
acted upon by blood-borne proteases, further complicating the
peptidomic dynamics and the associated bioactivity. Additionally,
extrapulmonary responses following NP inhalation can add to the circu-
lating peptidomic response. Circulating factors we've already discussed,
from cytokines and oxidative products to angiotensin, can stimulate
endothelin converting enzyme and the release of the vasoactive 21-
mer peptide endothelin-1 (Yanagisawa et al., 1988). For example, inha-
lation exposure in rats to urban air particulates is known to increase
endothelin-1 levels in the circulation (Kumarathasan et al., 2015;
Thomson, Goegan, Kumarathasan, & Vincent, 2004); however, more re-
search is needed to explore the broader complement of peptide re-
sponses generated in the periphery following an NP-induced insult in
the lung.

5.4. Extracellular vesicle involvement

EVs are an emerging subject of cell-to-cell communication research
with putative prognostic and diagnostic value for respiratory pathology
(Holtzman & Lee, 2020). Circulating EVs comprise a mix of
microvesicles and exosomes, both being submicron in diameter, though
exosomes have an overall smaller size distribution (Lie, Johansson,
Mossberg, Kahn, & Karpman, 2019). Microvesicles are generated extra-
cellularly through budding of the plasma membrane during physiolog-
ical and pathological remodeling in the lung, though shedding
increases with cellular stress (Bewicke-Copley et al., 2017; Park et al.,
2012; Xu et al., 2015). Exosomes are formed through the exocytosis of
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multivesicular bodies such as stress granules and, thus, will contain
macromolecular cargo derived from various intracellular organels com-
partments. Integral to homeostatic functioning, and carrying a cadre of
RNAs and proteins, EVs are regularly shed under stress and manipulate
recipient cells over a long distance. It is possible that EVs may also trans-
port smaller-sized NPs from the lung to the periphery. Logozzi et al.
demonstrated that 20 nm gold NPs endocytosed by macrophages
ended up being released again within exosomes, which may facilitate
NP distribution throughout the body (Logozzi et al., 2019).

NP exposure in the lung has been demonstrated to evoke EV release
to enact peripheral responses. For example, with further examination of
the serum peptidomic response to MWCNT pulmonary exposure, we
observed that 40% of identified peptides were fragments from known
exosome-associated proteins. Both the exosome concentration and
size distribution in the serum were significantly altered following
MWCNT exposure, supporting that bioactive products of pulmonary pa-
thology can be shuttled to the periphery via EVs (Mostovenko et al.,
2019). While these results may be the first to imply peptide transport
via circulating exosomes, the concept that EVs can act as signaling con-
veyors after NP insult has been considered for some time though with
rather limited exploration. Nemmar et al. first pubished on the release
of leukocyte-derived microvesicles into the blood after pulmonary
MWCNT exposure (Nemmar et al., 2007). Moreover, they demonstrated
that blood-isolated microvesicles from MWCNT treated animals in-
duced thrombin generation to suggest increasd thrombosis risk. Zhu
et al. demonstrated that pulmonary macrophages release exosome-
like EVs following inhalation of magnetic iron oxide nanoparticles, a
common dust component in mining (Zhu et al., 2012). They found
that these EVs were quickly cleared from the alveoli, presumed to be re-
leased into the circulation. They then demonstrated that the NP
exposure-induced EVs were potent activators of T-cells that would ex-
acerbate peripheral inflammation.

Several studies have suggested circulating EVs may be useful for di-
agnosing ambient particulate matter exposure, principally through
quantificaiton of EV-derived micro-RNA. Bollati et al. were one of the
first groups to show this relationship, where they assessed blood
microvessicle-derived micro-RNA from 55 steel plant workers (Bollati
etal, 2015). miR-128 and miR-302c, two micro-RNAs known to be as-
sociated with cardiovascular disease, were both significantly increased,
14-fold and 5.6-fold respectively, within blood EVs from matched sam-
ples collected at the start of a work week and after 3 full work days. In a
follow-up study with the same worker cohort they performed more de-
tailed regression modeling with particulate sub-fractions and metal
levels (Pavanello et al., 2016). As many as 17 different micro-RNAs
were found associated across the different measures. miR-200c, miR-
302b and miR-30d were associated with oxidative stress and inflamma-
tion processes, though these three were principally correlated particu-
larly with metal levels, not specific subfractions of the particulate
matter. Rodosthenous et al. separately reported 16 EV-derived micro-
RNAs found significantly associated with ambient in-home particulate
matter levels evaluated as a moving average across a one-year period
that were not complicated by high-levels of metal components
(Rodosthenous et al., 2016). Importantly, associations improved with
a longer period of time, suggesting a cumulative burden. Bonzini et al.
provided one of the first examinations of circulating EV counts in asso-
ciation with ambient particulate matter exposure in healthy subjects
(Bonzini et al.,, 2017). They further used flow-cytometry to sub-
classify EVs by their cellular origins using specific markers. Interestingly,
they found no overall correlation between personal breathing zone par-
ticulate levels and total circulating EV counts, but when examining sub-
classes of EVs, both CD105+ endothelial-originating EVs and CD14+
macrophage-originating EVs were significantly associated. Somewhat
surprisingly, however, they found no difference in this association be-
tween course and fine particulate levels, suggesting that the particulalte
fraction had no influence on EV release into the circulation. That said,
none of these studies seprately assessed the contribution of the UFP
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fraction, which we can only speculate may have a more pronounced in-
fluence as discussed for other NP responses reviewed earlier. Of addi-
tional note, Bonzini et al. also found that the association between
particulate matter exposure and circulating EV counts was significantly
interactive with a subject's body mass index. The finding emphasizes
the importance in considering other known risk factors for cardiovascu-
lar disease as a contributing factor in manifested indirect mediators of
systemic health outcomes.

6. Conclusions and future directions

Mechanisms underlying the extrapulmonary health outcomes of in-
haled NP exposures remain incompletely understood, with a wide di-
versity of particulates producing disparate impacts in the lung and
beyond. Metal and metal oxide NPs can produce cellular effects distinct
from carbonaceous NPs, influenced in part by the solubility and size of
the NP, but also by the reactive nature of the bulk material or surface-
adsorbed contaminants. UFP from combustion sources represents a
complex mixture of both metal and carbonaceous components with
mixed-mode surface reactivity and solubility properties impacting
health outcomes. Thus, while we've reported that different NP/UFP ex-
posure impact the vasculature and extrapulmonary organs like the
brain, the underlying mechanisms vary and can be mixed. Too few stud-
ies compare outcomes directly between different types of NP/UFPs, yet
this is needed to understand the relative peripheral impact between
materials. What's more, studies tend to assess systemic burden with a
single exposure duration, typically acutely or subchronic. Longitudinal
studies would allow a clearer picture of how different NP/UFP exposure
produce evolving pathology from acute inflammation onto chronic dis-
ease. Likewise, further studies are needed to assess how aging and sex
impact the longitudinal course of disease with NP/UFP exposure, with
very little known for occupational exposures and only a modest number
of studies assessing environmental UFP across ages.

Additionally, we are just beginning to divulge the complex interac-
tions of indirect factors shed from the lung into the circulation, and
how they augment tissues in the periphery. It is unclear whether the dif-
ferent indirect mediators reviewed here are significant in only a subset
of NP/UFP exposures or how the role of each mediator might evolve
across time, again because few studies have compared across types of
NP/UFP or looked at outcomes longitudinally. More likely, all the dis-
cussed indirect mediators contribute at different time scales, with out-
comes further modulated by varied degrees of compensation within
the organism. Yet while it is easy to suggest these needs for future re-
search, the resources required to conduct such an expansion in experi-
mental design are appreciably and requires consideration by those
involved in funding decisions. The community would also benefit
from establishing a common framework to standardize NP/UFP dose
guidelines by type and route and aligned with target exposure scenarios
while also setting the number of days to repeat exposure for acute, sub-
acute, subchronic and chronic outcomes.

Omic analyses at the protein, peptide, lipid, and metabolite levels are
also desired to reveal the complex response in the circulation after NP/
UFP exposure, which again will differ with dose, duration, and type of
particulate, often in non-linear and additive ways. Peripheral patholog-
ical alterations are, in part, driven by a subset of these byproducts, for
example by acting as cell-surface ligands, compromising the endothe-
lium, and releasing molecular moities or immune cell invasion into
other organs. Moreover, by-products of lung pathological responses
can be translocated to the periphery encapsulated within EVs, which
can be endocytosed and allow micro-RNA, protein, and peptide cargo
to compromise intracellular processes that influence function and cell
survival. Thus, further big-data research is warranted to investigate
the role of indirect factors transducing the breadth of toxicological im-
pacts occurring different NP exposures.
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