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PREFACE 

 This doctoral dissertation is presented as two separate manuscripts for publication.  

Chapters I and II provide an introduction to the project, and study methods, respectively.  

Chapters III and IV were written in manuscript form suitable for publication.  Chapter III has 

been accepted for publication in The American Journal of Epidemiology.  Chapter V provides 

a summary of results and conclusions from the two manuscripts. 

 This dissertation uses data from the Centers for Medicare and Medicaid Services 

(CMS) under Data Use Agreement 21177, and from the U.S. Environmental Protection 

Agency (EPA).  While completing this work, I was funded as an Occupational Epidemiology 

trainee as part of the NIOSH Southwest Center for Occupational and Environmental Health 

Training Grant #T42OH008421.  
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 Few recent estimates of childhood asthma incidence exist in the literature, although 

the importance of incidence surveillance for understanding asthma risk factors has been 

recognized.  Asthma prevalence, morbidity and mortality reports have repeatedly shown that 

low-income children are disproportionately impacted by the disease.  The aim of this study 

was to demonstrate the utility of Medicaid claims data for providing statewide estimates of 

asthma incidence.  Medicaid Analytic Extract (MAX) data for Texas children ages 0-17 

enrolled in Medicaid between 2004 and 2007 were used to estimate incidence overall and by 

age group, gender, race and county of residence.  A 13+ month period of continuous 

enrollment was required in order to distinguish incident from prevalent cases identified in the 

claims data.  Age-adjusted incidence of asthma was 4.26/100 person-years during 2005-2007, 

higher than reported in other populations.  Incidence rates decreased with age, were higher 

for males than females, differed by race, and tended to be higher in rural than urban areas.  

With this study, we were able to demonstrate the utility of MAX data for estimating asthma 

incidence, and create a dataset of incident cases to use in further analysis. 



 

 

 In subsequent analyses, we investigated a possible association between ambient air 

pollutants and incident asthma among Medicaid-enrolled children in Harris County Texas 

between 2005 and 2007.  This population is at high risk for asthma, and living in an area with 

historically poor air quality.  We used a time-stratified case-crossover design and conditional 

logistic regression to calculate odds ratios, adjusted for weather variables and aeroallergens, 

to assess the effect of increases in ozone, NO2 and PM2.5 concentrations on risk of developing 

asthma.  Our results show that a 10 ppb increase in ozone was significantly associated with 

asthma during the warm season (May-October), with the strongest effect seen when a 6-day 

cumulative lag period was used to compute the exposure metric (OR=1.05, 95% CI, 1.02–

1.08).  Similar results were seen for NO2 and PM2.5 (OR=1.07, 95% CI, 1.03–1.11 and 

OR=1.12, 95% CI, 1.03–1.22, respectively).  PM2.5 also had significant effects in the cold 

season (November-April), 5-day cumulative lag: OR=1.11, 95% CI, 1.00–1.22.  When 

compared with children in the lowest quartile of O3 exposure, the risk for children in the 

highest quartile was 20% higher.  This study indicates that these pollutants are associated 

with newly-diagnosed childhood asthma in this low-income urban population, particularly 

during the summer months. 
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CHAPTER I:  BACKGROUND AND INTRODUCTION 

The Burden of Asthma 

The Centers for Disease Control and Prevention (CDC) estimates that nearly 10% of 

U.S. children had asthma in 2009 (1).  Asthma is a leading cause of illness and 

hospitalizations among children, with significant impacts on both health and quality of life.  

The direct and indirect costs of asthma are substantial, ranging from those associated with 

medical care, to missed work and school days (2).  Recent analysis of the Medical 

Expenditure Panel Survey (MEPS) underscored the significant cost of asthma in the US:  in 

1996, among children ages 5 to 17, 2.52 million were treated for asthma at a cost of $1009.8 

million, 6.3 million missed days of school were attributed to asthma, $719.1 million in costs 

were associated with productivity loss of parents with asthmatic children, and an estimated 

211 children died (3). 

Children enrolled in Medicaid have been shown repeatedly to have a higher risk of 

morbidity, complications and hospitalization related to asthma than privately insured children 

(4, 5).  Studies have shown that they are more likely to present to the hospital with severe 

asthma symptoms compared to privately insured children (4), and more likely to be re-

admitted to the hospital after an initial stay for asthma treatment (6).  Over 123,000 Medicaid 

enrollees in Texas were treated for asthma in 1999, with costs totaling $41.6 million (7). 

Many studies have investigated factors leading to the exacerbation of symptoms 

among asthmatic children, but less is known about factors leading to its development.  

Genetic factors are known to play a role, and there is evidence that indoor and possibly 

outdoor pollutants may be related to asthma incidence as well (8-10).  Asthma is more 
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common in male children than in females, and in black children compared to whites or 

Hispanics, although it is not clear if this is due to socioeconomic factors rather than 

race/ethnicity (8, 11).  A better understanding of asthma incidence is critical to the 

determination of risk factors for the disease, leading the CDC to call for a greater emphasis 

on tracking asthma incidence in U.S. asthma surveillance programs (12). 

Estimates of Asthma Incidence and the Use of Health Claims Data 

Estimates of childhood asthma incidence are rare in the literature.  Rudd and 

Moorman published one of the few comprehensive studies estimating asthma incidence in the 

U.S. (13).  Using data from the National Health Interview Survey (NHIS), they calculated 

incidence rates of self-reported physician-diagnosed asthma between 1980 and 1996.  

Incidence rates among children in this study ranged from 5.7/1,000 in 1980 to 10.1/1,000 in 

1996.  The question regarding asthma onset was removed from the NHIS in 1997, so 

estimation of asthma incidence for the years since 1996 is not possible using this data source.  

A recent Canadian study reported incidence in 2004-2005 ranging from 31.3/1,000 person-

years for children under 5 to 5.6/1,000 person-years in 10-14 year-olds (14).  Others have 

reported incidence rates in children ranging from 4.8/1,000 person-years to 24.6/1,000 

person-years (15, 16). 

The feasibility of using longitudinal claims data to estimate the incidence of chronic 

diseases has been demonstrated.  This methodology generally involves defining an algorithm 

to identify cases (i.e., based on diagnosis, procedure or drug codes) during a particular 

calendar year, examining claims data to identify those meeting the case definition and 

selecting the earliest claim date as the diagnosis date, then for each case identified, 

examining claims for a period of time (e.g., 12 months) prior to the diagnosis date in order to 
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eliminate prevalent cases.  This requires defining a population without gaps in medical plan 

enrollment.  Researchers have used Medicare and Medicaid claims data to study the 

incidence of breast cancer (17-22), colorectal cancer (23), prostate cancer (24), lung cancer 

(25) and chronic eye disease (26).  Other studies have estimated incidence of asthma (27) and 

osteoporosis-related fractures (28) using commercial health insurance claims data.   

Only two studies were found which used claims data to estimate asthma incidence 

(14, 27).  Siwik et al. reported an annual incidence rate of 2.5% among 6-8 year old 

privately-insured children during five years of follow-up (27).  Asthma cases were defined 

based on medical claim diagnosis codes and prescription claim records.  The Canadian study 

described previously used claims records from their universal health system administrative 

data to identify incident cases of childhood asthma (14).  No studies were found which 

attempted to estimate state or national level incidence rates using claims data. 

Numerous studies have used Medicaid claims data to describe asthma prevalence and 

patterns of care (29-32).  These data have been used to look at ethnic (33-35) or geographic 

(36) disparities in care, and trends in adherence to treatment guidelines (37, 38).  Others have 

evaluated the impact of gaps in enrollment on quality of care (39).  However, no studies were 

found which used these data for incidence estimates.  Medicaid claims data is a readily-

available source of medical and pharmacy encounters for children at perhaps the greatest risk 

of developing asthma, and were used in this study to estimate asthma incidence among this 

population of Texas children.   

Ozone and Asthma 

Elevated levels of ambient ozone (O3) have been associated in several studies with 

worsening lung function and asthma symptoms (40-43) and similar results have been seen in 
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studies of PM2.5 and NO2 (41, 44, 45).  The design and results of a number of these recent 

studies are summarized in Appendix A.  A recent cross-sectional study found that children 

from communities in the highest quartile of ambient O3 levels (maximum 8-hour O3 

level=30.8-40.2 ppb) were 38% more likely to have had an asthma attack in the previous year 

than children in the lowest quartile (2.3-11.7 ppb), and each 5 ppb increase in O3 

concentration was associated with an 8% greater likelihood of having a current asthma 

diagnosis (41).  Ko et al reported a slight increase in risk of asthma hospitalization with each 

10 µg/m
3
 increase in average 8-hour O3 (relative risk [RR]=1.034, 95% confidence interval 

[CI]=1.029-1.039) (42).  Another recent study of a New York state birth cohort found that 

each 1 ppb increase in maximum 1-hour O3 was associated with a 16% higher risk of asthma 

hospitalization.  The association was stronger in younger children (<2 yrs), blacks and 

Hispanics, and those with low family income (43).  Two studies have reported greater risk of 

asthma hospitalization for Medicaid vs. non-Medicaid beneficiaries (43, 46).  However, other 

recent investigations of an O3/asthma association have shown no effect (47-50). 

There are some indications that high ambient O3 levels may increase the risk of 

asthma development in children as well, particularly among those with higher baseline risk 

due to activity patterns or genetic susceptibility (9, 10, 51).  Asthma incidence studies that 

have appeared in the literature have been based on a small number of cohorts, including the 

Children’s Health Study (CHS) in Southern California, the Prevention and Incidence of 

Asthma and Mite Allergy Study (PIAMA) in the Netherlands (52), and other datasets in 

Europe (53), Canada (54) and France (55).  These studies have shown positive effects of 

traffic-related pollutants (47, 52), NO2 (47, 56), PM2.5 (54) and O3 (51).  The O3 findings are 

primarily from the CHS.  McConnell et al. reported a greater risk of asthma development 
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among children living in Southern California communities with higher O3 levels, although 

the effect was seen only in those with a high level of sports participation.  For children living 

in communities with higher ambient O3 concentrations (mean daytime O3=56.9 ppb), those 

involved in 3 or more sports had more than a three-fold risk of developing asthma over a 5-

year period compared to those with no sports participation.  There was no increased risk of 

incident asthma, however, when O3 levels were examined across all levels of sports 

participation, or when low O3 communities were compared to high O3 communities (51).   

Air Quality in the Greater Houston Area 

Houston is the nation’s fourth largest city and sixth largest metropolitan area (57).  In 

2004, the Houston-Galveston-Brazoria area was designated a non-attainment area for the 

eight-hour O3 standard which went into effect in 1997 (58).  Since October 2008, the greater 

Houston area has been designated a severe non-attainment area, with an attainment date of 

June 2019 (58).  More than 140,000,000 person-miles are driven on Houston roads on an 

average day and the city is characterized by an extensive industrial area, and automotive and 

industrial emissions (e.g., nitrogen oxides and volatile organic compounds), combined with a 

warm, sunny climate,  produce O3 and present unique challenges in terms of air quality (59, 

60) 

In addition to estimating asthma incidence in Texas, this study also investigated the 

effects of temporal and spatial variation in ambient O3 levels on the development of asthma 

among Medicaid children residing in Harris County between 2004 and 2007.  We 

characterized exposure levels for each zip code in Harris County, and evaluated the effects of 

both temporal and spatial changes in O3 exposure on asthma development.  We also 

evaluated co-pollutant effects of NO2 and PM2.5. 
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The Case-Crossover Design in Air Pollution Epidemiology 

 This study used a case-crossover design (61), which is well-suited to investigate 

short-term acute effects of air pollution since it allows the researcher to control for person-

level (i.e., genetic and lifestyle) and time-dependent (i.e., air monitoring levels by day of the 

week, season of the year, etc.) factors.  This design has been used in many air pollution 

epidemiology studies (62), including some among Medicare beneficiaries.  Wellenius et al. 

published a series of case-crossover studies looking at cardiovascular disease 

hospitalizations, reporting increases in congestive heart failure (63, 64), and stroke (65) 

admissions following short-term increases of particulate air pollution.  Another study found 

that increases in traffic-related pollutants were related to higher rates of hospital admissions 

for myocardial infarction and pneumonia among Medicare beneficiaries in Boston (66). 

Several case-crossover studies have evaluated associations between air pollutants and 

asthma (summarized in Appendix B).  Some have focused on emergency room (ER) visits 

for asthma among children in France (67), Australia (68), Korea (69) and Canada (70), and 

found positive associations with O3.  Risk estimates for asthma ER visits are generally within 

the range of a 4-16% higher with each interquartile range (IQR, range: 17 to 25 ppb) increase 

in O3 level, or 6-10% higher for each 10 µg/m3 increase.  Effects were typically seen only in 

warm weather months, and differed by age group, lag period chosen and socioeconomic 

status.  Other researchers have studied the association of asthma morbidity (particularly 

hospital admissions) and short-term changes in air pollutant levels (71-75).  Several studies 

reported increased risk of hospitalization following episodes of higher pollutant levels, 

although the risk magnitude for specific pollutants varied across studies.   
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Public Health Significance 

Medicaid-enrolled children are at greater risk for asthma, and the treatment of 

pediatric asthma accounts for a significant portion of Medicaid resources.  Nearly 2.5 million 

Texas children are enrolled in Medicaid, the second highest enrollment count of any state in 

the U.S.  Current studies focusing on asthma morbidity have shed light on effective treatment 

strategies and health care disparities, but a better understanding of who develops asthma 

could elucidate risk factors for the disease.  Despite this, few national or statewide estimates 

of asthma incidence exist.  

 There were two major contributions of this study.  First, we demonstrated the utility 

of Medicaid claims data for estimating pediatric asthma incidence among Texas Medicaid 

beneficiaries.  Secondly, we used a time-stratified case-crossover design to study the impact 

of ambient O3, NO2 and PM2.5 levels in Harris County, TX on the development of asthma, 

using exposure estimates which incorporated both temporal and spatial variability during the 

study period.  While air pollutants have been associated with asthma morbidity, less data is 

available on whether they also contribute to the initial development of the disease. 

Specific Aims 

This study contributed to the literature in the areas of asthma incidence, and its 

association with ambient O3, NO2 and PM2.5 concentrations, using a large population at high 

risk and living in an area with historically poor air quality.  The results of this study help 

bridge a gap in our knowledge of asthma incidence rates in the U.S. among this group of 

children, and offer opportunities to explore factors associated with their increased risk of 

asthma. 

 The specific aims of this study were: 
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1. To estimate the annual incidence and prevalence of asthma from 2005- 2007 

among Texas children enrolled in the Medicaid Program.  Asthma cases were identified 

using Medicaid medical and pharmacy claims data from 2004 through 2007.  For each 

asthma case identified, the date of the earliest claim meeting our asthma case definition was 

the diagnosis date, and claims history immediately prior to the diagnosis date (minimum 12 

continuous months) was used to determine whether the case was incident or prevalent.  Cases 

were excluded if they did not have at least 12 months of continuous enrollment immediately 

before the diagnosis date (due to gaps in enrollment or if the case first appeared in 2004), or 

if they were determined to be prevalent cases. 

2. To determine whether temporal variations in ambient O3, NO2 and PM2.5 

levels are related to the risk of developing asthma among Medicaid-enrolled children in 

Harris County, Texas between 2005-2007.  Using U.S. Environmental Protection Agency 

(EPA) monitoring data from 2005-2007, daily maximum 8-hour average O3 levels, 1-hour 

maximum NO2 and 24-hour average PM2.5 were averaged across all monitoring sites in 

Harris County, and cases of childhood asthma were determined based on Medicaid medical 

and pharmacy claims data. 

3. To evaluate the air pollutant/incident asthma association using ambient O3 and 

NO2 measures which also incorporate spatial variability across Harris County.  Air pollutant 

levels were estimated for each zip code using the average of measurements from the three 

closest monitors to the centroid of the zip code.  Sensitivity analysis was also performed for 

enrollees residing within close proximity (e.g., 6 miles) of an O3 or NO2 monitoring site to 

validate the risk estimates based on these averaged values.  PM2.5 was not included in this 

analysis due to the small number of monitors in Harris County. 
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CHAPTER II:  METHODS 

Data Sources 

Centers for Medicare and Medicaid Services – Enrollment and Claims Data  

Medicaid enrollment and claims data were obtained from the Centers for Medicare 

and Medicaid Services (CMS), specifically, Medicaid Analytic Extract (MAX) personal 

summary (PS), inpatient (IP), other services (OT) and pharmacy (RX) files for the state of 

Texas for 2004, 2005, 2006 and 2007.  MAX files contain beneficiary-level enrollment and 

health care utilization data for each calendar year, including final adjudicated claims, and 

have undergone extensive edit checks.  The files are considered ‘research identifiable’ as 

they contain variables such as zip code of residence, date of birth and dates of service; 

however, other identifiers including SSN, name and residence address are not provided in the 

files. CMS data files are made available for epidemiology research under the Privacy Act 

Disclosure Exceptions (Research Routine Use exception), and only after an extensive 

application, review and approval process. 

The PS file included a record for each person enrolled in Medicaid at least one day 

during the calendar year and was the initial file used to identify the study populations and 

confirm at least 12 months of continuous enrollment.  The IP and OT files contained medical 

claims records for the calendar year including dates of service and ICD-9 diagnosis codes.  

The RX file contained a record for each final action paid pharmacy claim, including a 

National Drug Code (NDC) for each prescription.  Specific variables from each file used in 

the analysis are listed below. 

From the ‘Personal Summary’ files, 2004-2007: 

 ELIGIBLE BIRTH DATE (to calculate age) 
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 ELIGIBLE SEX CODE 

 ELIGIBLE RACE/ETHNICITY CODE 

 ELIGIBLE RESIDENCE COUNTY CODE 

 ELIGIBLE RESIDENCE ZIP CODE 

 MAX UNIFORM ELIGIBILITY CODE (Months 01-12) – to determine duration of 

continuous coverage 

 RESTRICTED BENEFITS FLAG (Months 01-12) – indicates whether enrollee was 

entitled to a full range of benefits 

 RECIPIENT INDICATOR – indicates whether the enrollee had only capitated 

payment claims 

 PRIVATE INSURANCE MONTHS COUNT 

From the ‘Inpatient Record’ files, 2004-2007: 

 MAX TYPE OF SERVICE CODE (i.e., physician, inpatient hospital, etc.) 

 SERVICE BEGINNING DATE 

 ENDING DATE OF SERVICE 

 PRINCIPAL DIAGNOSIS CODE (select records with value of 493.xx) 

From the ‘Other Services Record’ files, 2004-2007: 

 MAX TYPE OF SERVICE CODE (i.e., physician, inpatient hospital, etc.) 

 SERVICE BEGINNING DATE 

 ENDING DATE OF SERVICE 

 DIAGNOSIS CODE-1 (select records with value of 493.xx) 

From the ‘Drug Record’ files, 2004-2007: 
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 PRESCRIBED DATE 

 PRESCRIPTION FILLED DATE 

 NEW OR REFILL INDICATOR (if refill, will indicate how many times it was 

refilled) 

 NATIONAL DRUG CODE 

 QUANTITY OF SERVICE (i.e., # of pills, # of inhalers, etc.) 

 DAYS SUPPLY 

Study Subjects 

Two study populations were constructed based on Medicaid enrollment and claims 

files: 

1. ‘State of Texas’ population defined as all children enrolled in the Texas Medicaid 

program between January 1, 2004 and December 31, 2007, who had at least 12 months of 

continuous enrollment during the 4-year period, and resided in Texas during this entire 12+ 

month period.  This population was used to address specific aim #1. 

2. ‘Harris County’ population defined as all children enrolled in the Texas Medicaid 

program between January 1, 2004 and December 31, 2007, who had at least 12 months of 

continuous enrollment during the 4-year period, and resided in Harris County during this 

entire 12+ month period.  This population was used to address specific aims #2 and #3. 

An asthma case was defined as a beneficiary with one or more outpatient or inpatient 

records having a primary diagnosis of asthma (ICD-CM, 9th revision = 493.xx), or 4 or more 

asthma medication dispensing events during a 365-day period.  Asthma medications were 

compiled based on the National Drug Code list used by the National Committee for Quality 

Assurance in their Healthcare Effectiveness Data and Information Set asthma compliance 
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measures, and included all medications used for treatment or prevention of asthma during the 

study period.  A dispensing event was defined as an asthma prescription for up to a 30-day 

supply.  If a pharmacy record indicated a supply greater than 30 days, this value was divided 

by 30 and rounded up to calculate the number of 30-day dispensing events. This is the 

standard definition used to identify asthma cases by the CDC and CMS (personal 

communication, Dr. Beth Benedict, CMS), and was the proposed case definition to use in a 

standardized national framework for asthma surveillance (76).  The diagnosis or ‘event’ date 

was defined as either the date of service associated with the first asthma claim seen for the 

child, or the date the first of 4+ asthma medication prescriptions was written.  

U.S. Environmental Protection Agency – Ambient Air Monitoring Data (Specific Aims #2 

and #3) 

O3, NO2 and PM2.5 measurements for 2005, 2006 and 2007 were obtained from the 

publically-available U.S. EPA Air Quality System (AQS) (77).  Data were available from 22 

O3 monitoring stations located in the Houston-Galveston-Brazoria (HGB) metropolitan area.  

The monitors were concentrated in Harris County (n=17), with two monitors in Galveston 

County, two in Brazoria County, and one in Montgomery County.  The sampling duration 

was one hour, and samples were taken 24-hours a day, 365 days per year.  One-hour NO2 

samples were collected 24-hours a day, 365 days per year at 17 monitoring sites across the 

HGB metropolitan area: 12 in Harris County, two in Brazoria County, two in Galveston 

County and one in Montgomery County.   

There were seven monitoring sites in Harris County and two sites in neighboring 

counties which performed 24-hour PM2.5 (local conditions) measurements between 2005 and 

2007.  Beginning in September 2005, measurements were discontinued at the two sites in 
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adjacent counties, and the number of monitoring sites in Harris County measuring this 

parameter decreased from seven to four.  Also, two of the four monitors were co-located at a 

single site, one which took daily samples, and a second which took samples every six days, 

and we used only the sample measurements taken daily from this location.  PM2.5 

measurements were collected from the other area monitors every six days.  PM10-2.5 and PM10 

were also pertinent pollutants to explore in relation to asthma but due to the small number of 

PM10 samples taken each week (monitoring was performed at seven sites across Harris 

county, with samples taken every sixth day), we were not able to include them in the study.  

Meteorological and Aeroallergen Data 

 These data were used to assess potential confounding effects, as has been done in 

many prior studies of asthma and air pollution (70, 78-82).  Daily maximum outdoor 

temperature and daily average percent relative humidity were measured at 24 and 6 

monitoring sites across Harris County, respectively, and these data were also obtained from 

the AQS (77).  Mold spore and tree, grass and weed pollen counts were available for the 

Houston area from the City of Houston archives (83), and measured as counts per cubic 

meter of air.  These measurements were generally available for each weekday during the 

study period, except holidays or days that measurements could not be taken because of rain. 

Data Analysis 

Estimation of asthma prevalence and incidence (Specific Aim 1) 

Annual asthma prevalence was estimated for each of the three years (2005-2007) in 

order to assess consistency with rates from other published reports (e.g., NHIS).  Prevalence 

proportions were calculated using a count of all asthma cases identified during the calendar 

year in the numerator, and the number of children with 11 or more months of enrollment 
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during the year in the denominator.  Incidence rates for the three-year period were calculated 

using newly identified cases in the numerator, and the sum of person-months of follow-up for 

each child during the same period.  Both prevalence proportions and incidence rates were 

directly age- and sex-adjusted using the 2000 U.S. population as the standard population, and 

incidence rates were expressed per 1,000 person-years.  The PS file was used to derive the 

denominator for state and county rates, and by gender, age group (prevalence: 0-4, 5-9, 10-

14, 15-17; incidence: 1-4, 5-9, 10-14, 15-17) and race (i.e., white, black, Hispanic, other).   

For each case identified during one of these years, data from the child’s prior claims 

history were used to confirm that he or she was an incident rather than prevalent case.  

Specifically, for each asthma case identified in the 2005-2007 claims data, the case’s prior 

claims history (for a minimum of 12 continuous months prior to earliest diagnosis date, but 

including all available claims for the child between 2004 and 2007) were examined for a 

previous asthma diagnosis.  If one was found, the child was considered a prevalent case, and 

excluded from the incidence rate calculation.  If no asthma claim was found prior to the 

2005-2007 diagnosis, the child was considered an incident case.  Cases were excluded if they 

did not have at least 12 months of continuous enrollment immediately before the diagnosis 

date (due to gaps in enrollment, or if the case first appeared in 2004), or if they were 

determined to be prevalent cases based on examination of their previous claims.  Claims files 

from 2004 were used only to determine whether cases identified in 2005 were incident or 

prevalent.  (Chapter 3 describes our results for estimating asthma incidence among Texas 

Medicaid-enrolled children ages 0-17, 2005-2007; refer to Appendix C for our age-adjusted 

estimates of asthma prevalence).    
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Association of asthma with temporal variation in ambient ozone levels (Specific Aim 2) 

The analysis of temporal trends in O3 levels and asthma incidence used a time-

stratified case-crossover design(61), with cases (and controls) identified using Medicaid 

medical and pharmacy claims files for children enrolled between 2004 and 2007, limited to 

beneficiaries residing in Harris County.  In a case-crossover study, rather than assembling a 

population of cases and controls who are different individuals, the case/control set represents 

a single individual, but the two are distinguished by the date of exposure.  The case-crossover 

design allowed for the control of individual-level confounders such as smoking in the home, 

genetic factors associated with asthma risk and socioeconomic status, as well as co-pollutants 

(e.g., PM2.5, NO2,) and seasonal aeroallergens. This design allowed us to study different lag 

periods (i.e., same-day ambient levels vs. several days prior to the asthma event) and 

averaging periods (i.e., single day vs. multi-day averaged levels) to help identify the pertinent 

window of susceptibility and exposure metric(s) related to asthma outcomes.  We specified 

28-day strata beginning with January 1, 2005, and matched each asthma case-day with the 

three referent dates in the pre-defined strata which were the same day of the week as the 

case-day (84, 85).  For example, a case occurring on Wednesday, January 12, 2005 was 

matched to control dates on the remaining Wednesdays in the stratum (i.e., January 5, 19 and 

26), as shown in Figure 1 below.
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January 2005 

Sun Mon Tue Wed Thu Fri Sat 

      1 

2 3  

Case 2 – Control date 

4 5 

Case 1 – Control date 

6 7 

Case 3 – Control date 

8 

9 10 

Case 2 – Control date 

11 12 

Case 1 – Asthma 

diagnosis date 

13 14 

Case 3 – Control date 

15 

16 17 

Case 2 – Asthma 

diagnosis date  

18 19 

Case 1 – Control date 

20 21 

Case 3 – Control date 

22 

23 24 

Case 2 – Control date 

25 26 

Case 1 – Control date 

27 28 

Case 3 – Asthma 

diagnosis date 

29 

30 31 

 

     

 

Figure 1. Illustration of the method for selecting case and control dates for a case-crossover study using pre-defined 28-day strata.  
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Daily pollutant and meteorological variable values were calculated by averaging 

measurements (i.e., maximum 8-hour O3, 24-hour mean PM2.5, daily 1-hour maximum NO2) 

from all monitors in Harris County on that date.  A total of 12 exposure variables were 

constructed for each pollutant on each case and control date, including lagged values and 

cumulative mean exposure levels.  Lag periods were chosen with consideration of both the 

irritant nature of the pollutants, and the potential number of symptomatic days that might 

pass before a physician’s visit was scheduled.  For each case/control date, we constructed 

single-day measures for maximum 8-hour average O3,  1-hour maximum NO2 and 24-hour 

mean PM2.5 using lagged values of 0 days (i.e., L0 =  same-day pollutant measurement, taken 

on the case or control date), one day (L1 = pollutant measurement the day before the case or 

control date), two days (L2 = two days before the case/control date), three days (L3 = three 

days before the case/control date), four days (L4 = four days before the case/control date) and 

five days (L5 = five days before the case/control date).  In addition to the single-day 

measures, variables were constructed for each of the three pollutants using multi-day 

averaging periods:  two-day (L01 = average of case/control date and the prior day), three-day 

(L02 = same day and prior two days), four-day (L03 = same day and prior three days), five-

day (L04 = same day and prior four days) and six-day (L05 = same day and prior 5 days).  

For specific aim #2, we considered only temporal changes in pollutant concentrations, 

meaning that exposure was estimated for each calendar day, but for that calendar day, was 

the same regardless of where in Harris County the child resided.   

Each case date was matched to 3 control dates (i.e., 1:3 matching) (86).  We used 

conditional logistic regression to calculate odds ratios which estimated the change in risk of 

incident asthma associated with changes in ambient pollutant concentration, while 
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controlling for same-day maximum temperature, mean percent relative humidity, and tree 

pollen, grass pollen, weed pollen and mold spore counts.  We evaluated each pollutant on a 

linear scale as well as through the use of categories (i.e., quartiles of exposure).  We also 

evaluated possible effect modification by age group, gender and race using stratified analysis. 

Association of asthma with temporal and spatial variation in ambient ozone levels (Specific 

Aim 3) 

This analysis considered spatial variability in O3 and NO2 exposure, in addition to 

temporal variability.  That is, pollutant estimates for each case/control day were based on the 

average of measurements from the three closest monitors to the centroid of the zip code of 

residence.  GIS software was used to identify the appropriate O3 and NO2 monitoring sites 

for each case.  As in specific aim #2, occurrence of asthma on that date was the dependent 

variable, and pollutant exposure level was the independent variable.  Conditional logistic 

regression was used to calculate odds ratios for the development of asthma, but daily O3 and 

NO2 estimates potentially differed on a given calendar day depending on the place of 

residence within Harris County.  Same-day maximum temperature, average percent relative 

humidity and aeroallergen counts were included in all models.  PM2.5 values were averaged 

across Harris County for this analysis due to the small number of monitors measuring this 

pollutant.  Other spatial modeling methods such as inverse distance weighting were not used 

due to the unavailability of street address in the MAX PS files. 

A weakness of the spatial averaging method described above is that zip codes without 

nearby monitors have less accurate exposure values, which may result in inaccurate exposure 

estimates for cases who reside a greater distance away from a monitoring station.  For this 

reason, we performed a sensitivity analysis restricted to asthma cases living in zip codes in 
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which the centroid was within six miles of at least one O3 or NO2 monitoring station.  We 

calculated average pollutant values across all monitors within a six mile radius on this sub-set 

of cases to evaluate whether odds ratios resulting from these exposure estimation methods 

were robust, irrespective of whether the case lived near a monitoring site.  

Sample Size Calculation and Study Power 

There were approximately 2.5 million Texas children enrolled in Medicaid in 2006.  

Based on data presented in the MAX data validation tables, approximately 50% of 

beneficiaries were enrolled for a continuous 12-month period (personal communication, 

Gerri Barosso, Research Data Assistance Center [ResDAC]).  If we assumed that 50% of 

beneficiaries were enrolled for at least 12 continuous months between 2004 and 2007, the 

‘State of Texas’ study population would comprise approximately 1,250,000 children, before 

excluding prevalent asthma cases.  Similarly, there were approximately 350,000 children 

enrolled in Medicaid in Harris County.  If we assumed 50% were enrolled for at least 12 

continuous months, the ‘Harris County’ population would include approximately 175,000 

children.   

Recent estimates of childhood asthma incidence in the literature have ranged from 

5.6/1,000 person-years to 31.3/1,000 person-years, with higher rates expected in lower 

income, minority populations.  Assuming an incidence rate of 2.25/100 person-years, and an 

11.5% prevalence of asthma among Texas Medicaid children (87, 88), we expected to 

exclude approximately 144,000 children from the Texas population, leaving approximately 

1,106,000 for follow-up in 2005-2007, and an estimated 25,000 new cases each year 

statewide.  Similarly, in the Harris County population, we expected to find approximately 

20,000 prevalent cases of asthma, leaving a study sample of ~ 155,000 and approximately 
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3,400 new cases each year.  Texas has the second highest number of Medicaid-enrolled 

children in the U.S. (89) and this large sample size allowed stable statewide estimates, as 

well as estimates by county, age group, gender and race/ethnicity. 

The following calculations used an interactive program by DuPont and Plummer to 

estimate study power for a matched case-control analysis (90, 91).  We estimated the power 

of the study to detect odds ratios between 1.05 and 1.25, comparing risk of asthma 

development among children in the highest tertile of ozone exposure compared to the lowest 

tertile (i.e., prevalence of exposure among controls = 0.33), and assuming exposure 

correlation coefficients of cases vs. controls (Φ) of 0.2, 0.4, 0.6 and 0.8 (i.e., estimation of the 

percent of cases and controls with the same level of exposure) (92).  The calculations also 

assumed a Type I error level of 0.05, and four controls per case.  Figures 2, 3 and 4 below 

show power curves assuming the identification of 2,000, 3,000 and 4,000 new cases of 

asthma each year in Harris County, respectively, during the three years of follow-up.   
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Figure 2. Power curves for the study of ozone exposure and development of asthma among 

Medicaid-enrolled children in Harris County TX, assuming the identification of 6,000 new 

cases of asthma between 2005 and 2007 (2,000 cases per year). 

 

 
Figure 3. Power curves for the study of ozone exposure and development of asthma among 

Medicaid-enrolled children in Harris County TX, assuming the identification of 9,000 new 

cases of asthma between 2005 and 2007 (3,000 cases per year). 
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Figure 4. Power curves for the study of ozone exposure and development of asthma among 

Medicaid-enrolled children in Harris County TX, assuming the identification of 12,000 new 

cases of asthma between 2005 and 2007 (4,000 cases per year). 

 

Data Analysis Software 

  All analysis was performed using SAS (Version 9.2, SAS Institute, Inc, Cary, NC).  

ArcGIS (Version 10, Environmental Systems Research Institute, Inc, Redlands, CA) was 

used to generate a map of county-specific IRs in Texas, and to identify the O3 and NO2 

monitoring sites nearest each zip code. 

Human Subjects  

 

We obtained approval from the Committee for the Protection of Human Subjects at 

the University of Texas Health Science Center at Houston (Reference Number: 064546).  To 

ensure the privacy of beneficiaries whose information was contained in the CMS files, the 

data files were stored and processed within the following data security framework.  CMS 

data files were uploaded to a secure UTSPH server protected by three distinct firewall 

products and with no access to the general internet in any direction.  The server was backed 
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up every evening, and permissions were assigned only for those who need access.  Data were 

accessed for analysis from either the University of Texas School of Public Health (UTSPH) 

data center or remotely via the school’s VPN system (virtual private network) using a file 

repository and sharing system known as XFiles.  Data were fully encrypted when in transit 

over the network, including all sessions using the VPN.  Physical storage media containing 

the original files from CMS were placed in locked storage within the UTSPH data center.  

All investigators participating in the study had undergone training in the protection of human 

subjects and the study was reviewed by the Committee for Protection of Human Subjects. 

 The UTSPH computing system is a member of the University domain and is enrolled 

in a number of security policies and systems, including: 

• Automated application and operating system patch management using Microsoft 

WSUS server.  All operating system patches are tested and pushed within 48 hours of 

release. 

• Automated virus/malware patch management using McAfee Electronic Policy 

Orchestrator (EPO):  Virus definitions and engine updates are pushed from McAfee daily, 

even before there is public knowledge of a given patch release. 

• Domain Group Policy Objects: All desktop computers must comply with University 

GPO’s including screen saver timeouts and strong password enforcement. 

• Desktop Firewall:  While the University maintains a complex and robust enterprise 

firewall for the network, all desktops additionally have a software firewall implemented to 

further restrict incoming requests for service or data.   

The UTSPH maintains a high speed Local Area Network based on gigabit technology 

with 100 megabit per second access to each workstation within the building.  Advanced 
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network monitoring technologies supply the school with diagnostic and corrective tools to 

maintain the ever expanding network.  IT Services maintains advanced server technology for 

database development and access.  Additional servers are used to provide high end data 

storage, backup services and auditing and control systems.  All servers containing non-public 

confidential information are placed behind a sophisticated firewall system with only 

privileged access allowed. 

All data storage environments are housed at the UTSPH Data Center which is 

protected with high end surveillance equipment and access protocols, a FM200 fire 

suppression system and uninterruptible power and emergency power if needed.  The room 

meets HIPAA certifications for data protection. The data center has also been weather-

proofed against possible hurricanes as it is located on the 8th floor, has no external walls, no 

windows, and dual layer walls of gypsum with wood and steel reinforcement.  All storage 

systems are clustered and using RAID 5 storage for the highest level of data protection 

possible.  Only authorized systems administrators have access to the data center.  In addition, 

the UTSPH building utilizes an electronic card key door access system to gain entrance 

through the main doors of the building and to gain entrance into the work areas for each floor 

from the elevator lobbies. The electronic card key door access system is activated to lock the 

doors after work hours and on weekends to provide restricted building access. Also, a 

University of Texas security officer is stationed in the main lobby of the building.  An event 

log tracks who gains access to the servers. 

UTHealth policy mandates encryption of all data in transit on the network, and the 

use of built-in encryption technology on all USB and external drive media.  The policy is 

intended to limit the use of encryption to methods that receive substantial public review and 
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work effectively, and provides direction to ensure compliance with Federal regulations.  The 

policy specifies that: 

• Proven, standard encryption methods (e.g. DES, Blowfish, RSA, RC5, IDEA, etc.) 

must be used as the basis for encryption technologies.  

• Symmetric Cryptosystem key lengths must be at least 128 bits. 

• Asymmetric Cryptosystem keys must be of a length that yields equivalent strength. 

• UTHealth’s key length requirements are reviewed annually and upgraded as 

technology allows. 

• Authorized users may not use proprietary encryption algorithms for any purpose. 

Local system audits are conducted by the Office of Institutional Compliance, a non-

IT entity employing attorneys with technology emphasis to conduct compliance and security 

audits throughout the year.  In addition, the University IT Security department conducts 

credentialed quarterly scans of all servers for security and compliance matters.  The 

University has employed two full-time network security analysts to watch and oversee real 

time data movement issues throughout the system, looking and taking action on any 

anomalies occurring. 

No data for this study were stored on a laptop or desktop computer.  No CMS data 

were transmitted via email or other unsecured means, and hard copy output were secured in a 

locked cabinet within the UTSPH.  As requested by CMS, we suppressed printing table cells 

containing fewer than 11 observations in any of our reported results.  Upon the conclusion of 

the study, the data will be destroyed and a “Certification of Destruction” will be forwarded to 

CMS.  
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CHAPTER III: ESTIMATION OF ASTHMA INCIDENCE AMONG LOW-INCOME 

CHILDREN IN TEXAS:  A NOVEL APPROACH USING MEDICAID CLAIMS 

DATA 

Abstract 

 Few recent estimates of childhood asthma incidence exist in the literature, although 

the importance of incidence surveillance for understanding asthma risk factors has been 

recognized.  Asthma prevalence, morbidity and mortality reports have repeatedly shown that 

low-income children are disproportionately impacted by the disease.  The aim of this study 

was to demonstrate the utility of Medicaid claims data for providing statewide estimates of 

asthma incidence.  Medicaid Analytic Extract (MAX) data for Texas children ages 0-17 

enrolled in Medicaid between 2004 and 2007 were used to estimate incidence overall and by 

age group, gender, race and county of residence.  A 13+ month period of continuous 

enrollment was required in order to distinguish incident from prevalent cases identified in the 

claims data.  Age-adjusted incidence of asthma was 4.26/100 person-years during 2005-2007, 

higher than reported in other populations.  Incidence rates decreased with age, were higher 

for males than females, differed by race, and tended to be higher in rural than urban areas.  

This study demonstrates the utility of MAX data for estimating asthma incidence and 

describes the methodology required for a population with unstable enrollment. 

Introduction 

 Nearly 10% of children in the U.S. had asthma in 2009 (1).  Asthma is a leading 

cause of illness and hospitalizations among children, with significant impacts on health and 

quality of life.  Direct and indirect costs of asthma are substantial, from increased medical 

care to missed school days (1, 2).  Low-income children are disproportionately impacted, 
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accounting for 37% of the U.S. population, but 58% of prevalent asthma cases (3).  

Medicaid-enrolled children have higher risk of asthma-related morbidity, complications and 

hospitalization than privately-insured children (4-6).   

 While asthma prevalence and morbidity are well described, estimates of childhood 

asthma incidence are rare.  Rudd and Moorman estimated annual asthma incidence in U.S. 

children ranging from 5.7/1,000 in 1980 to 10.1/1,000 in 1995 (7).  A recent Canadian study 

reported incidence in 2004-2005 ranging from 31.3/1,000 person-years for children under 5 

to 5.6/1,000 person-years in 10-14 year-olds (8).  Others have reported incidence rates in 

children ranging from 8.4/1,000 person-years to 24.6/1,000 person-years (9, 10). 

 Medicaid provides health and long-term care coverage to nearly 60 million low-

income and disabled Americans, including 30% of U.S. children, and is funded jointly by 

state and federal governments (11).  Broad federal guidelines mandate that states cover 

certain benefits like hospital and physician services, but other benefits are optional, including 

prescription drug coverage.  States set eligibility criteria and cost sharing requirements, 

within federal standards (12). 

 Medicaid claims data have been used to describe asthma prevalence, morbidity and 

healthcare utilization patterns (13-22).  While two studies estimated asthma incidence using 

claims data (8, 23), we found none which used Medicaid data to estimate national- or state-

level incidence.  Thus, we conducted this investigation to demonstrate the utility of Medicaid 

claims data for estimating asthma incidence among Texas children enrolled in Medicaid, a 

population of over 2.5 million (24). 
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Materials and Methods 

We used Centers for Medicare and Medicaid Services (CMS) Medicaid Analytic 

Extract (MAX) files, produced by CMS specifically for research.  MAX files contain annual, 

person-level data on Medicaid eligibility and healthcare utilization reported by the states.  

The files contain final adjudicated claims by date of service and have undergone quality 

checks and corrections (25, 26).  We obtained enrollment ('Personal Summary, (PS)'), 

inpatient and outpatient medical claims, and pharmacy claims files from CMS for Texas 

beneficiaries ages 0- 17 enrolled in Medicaid for any length of time between 2004 and 2007.  

Claims submitted only to reflect capitated payments were not included in the CMS files.  

Identification of study population 

The PS files contained indicators which were used to determine which months each 

child was enrolled and eligible for the full scope of Medicaid benefits, until their 18
th

 

birthday.  Even if enrolled, children were considered ineligible during any year they had 

private insurance coverage, as this could result in incomplete claims history.  Children with 

only premium (i.e., capitated) payment claims during the year were also considered ineligible 

to eliminate follow-up time during which no medical or pharmacy claims would be found in 

the MAX files.  Once eligible months were determined for each child, the 4 PS files were 

combined into a single enrollment file (Figure 1). 

The beginning and ending months for each child's period(s) of enrollment were 

derived from the combined, 4-year enrollment file.  Children were included in the study 

population if they had 1 or more continuous 13+ month span of enrollment between 2004 and 

2007, allowing for a single 1-month enrollment gap during the 4-year period.  This 
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continuous enrollment span provided a ‘wash-out’ period which enabled us to distinguish 

incident from prevalent cases. 

Identification of asthma cases 

 We combined all medical and pharmacy claims for the 4-year period, and defined 

cases as children with a primary diagnosis of asthma (International Classification of 

Diseases, 9th revision code = 493.xx) on one or more outpatient or inpatient records, or 4 or 

more asthma medication (27) dispensing events (30-day supply) during a 365-day period.  

For a medication prescription with more than 30 days' supply, we divided days by 30 and 

rounded up to calculate the number of 30-day dispensing events.  For each case, the earliest 

of either date of service for the first asthma medical claim or prescribed date of the first 

asthma prescription dispensed was kept as the date of diagnosis. 

Analysis 

Records from the enrollment and case files were joined, and cases without an 

enrollment record (i.e., did not have a 13+ month span of continuous enrollment between 

2004 and 2007) were excluded.  We also excluded cases who were in the enrollment file, but 

not enrolled continuously in the 12 month period prior to diagnosis, as we could not 

determine whether these were incident or prevalent cases.  For the remaining study 

population, person-months were calculated beginning with the 13
th

 month of follow-up (the 

first month in which a subject could become an incident case).  Follow-up ended on the 

earliest of (1) the last month of the enrollment span, (2) the month of asthma diagnosis, or (3) 

12/31/2007.  Hence, person-months of follow-up ranged from 1 to 36.  PS and claims files 

from 2004 were not used in the analysis other than to provide a wash-out period for children 

in the 2005 files. 
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Asthma incidence rates (IRs) were calculated for Texas overall and by age group (1-

4, 5-9, 10-14 and 15-17), gender, race (white, black, Hispanic, Asian, American Indian) and 

county (n=254) between 2005 and 2007.  Rates (other than by age group) were age-adjusted 

based on the proportion in the age group in the 2000 U.S. Census (28), and reported as 

cases/100 person-years.  Age and county of residence reflected values at first enrollment.  

IRs were calculated by dividing the number of incident cases in 2005-2007 by person-months 

of follow-up for the study population during the same period.  County rates were statistically 

different from the Texas rate if the 95% confidence interval for the county rate did not 

include the statewide point estimate.  IRs for counties with fewer than 16 asthma cases 

(n=36) were not calculated, due to unstable rates. 

Analyses were performed using SAS version 9.2.  A map of county-specific IRs was 

generated with ArcGIS version 10.  The study was approved by the CMS Privacy Board and 

the University of Texas Health Science Center Committee for the Protection of Human 

Subjects. 

Results 

The 2004-2007 MAX enrollment files included 4,152,664 Texas children ages 0-17.  

After excluding children without a 13+ month continuous enrollment span between 2004 and 

2007, the remaining sample included 2,164,463 children free of asthma at baseline, and 

2,467,757 person-years of follow-up.  The study population was evenly distributed between 

males and females, and over half were under the age of 5 (Table 1).  Sixty-five percent were 

Hispanic, and approximately 16% each white and black. 

We identified 129,588 incident asthma cases between 2005 and 2007 (Table 1).  Most 

cases (75%) were identified from an outpatient record, and 91% of these also had at least one 
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subsequent asthma medication claim.  Fewer than 1% were identified through inpatient 

records.  The remaining 25% received their diagnosis on the date they filled the first of 4 

prescriptions, and of these, over 40% had a subsequent outpatient record.  Overall age-

adjusted asthma incidence in this population was 4.26 cases/100 person-years (95% 

confidence interval (CI): 4.23, 4.30).  Incidence was higher in males than females, and 

decreased with age.  White and black children had the highest incidence, while rates were 

lowest among Asians.  IRs for white and black males approached 5 cases per 100 person-

years.  

County-specific IRs were generally higher in southern border counties, and lower in 

larger metropolitan areas (Figure 2).  Counties including Houston, Dallas, Fort Worth, Austin 

and El Paso had IRs significantly below the statewide rate, from 3.08 (95% CI: 2.90, 3.27) to 

3.95/100 person-years (95% CI: 3.84, 4.06).  Of the state's largest population centers, only 

Bexar County, which includes San Antonio, surpassed the state average (IR = 5.19/100 

person-years, 95% CI: 5.06, 5.32).  The thirty-six counties with fewer than 16 cases had total 

population sizes from 67 to 8,854, with between 2 and 474 children enrolled in Medicaid (24, 

28). 

Discussion 

Forty percent of Texas children are enrolled in Medicaid, and the cost of asthma-

related treatment for these children exceeded $242 million in 2004 (29).  Based on our 

analysis, Medicaid-enrolled children in Texas were newly diagnosed with asthma at a rate of 

4.26/100 person-years between 2005 and 2007.  Our estimates are higher than previously 

reported in the U.S. (7) and Canada (8), but not unexpected among low-income children.  IRs 

were higher for males and decreased with age, consistent with other reports (8, 9).  As in the 
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Canadian study, we found that IRs were higher for males than females in the youngest age 

groups, but similar in children ages 15-17 (males = 2.8%, females = 3.0%).  The median age 

at diagnosis was 4.9 years, consistent with clinical experience that most children with asthma 

will develop symptoms by age 5 (30). 

  Higher incidence among whites than blacks was unexpected, as most prevalence 

studies report the reverse.  Some (31, 32) but not all (33, 34) have shown a lessened effect of 

race on childhood asthma prevalence after adjusting for socioeconomic status.  Our results 

may reflect lower healthcare utilization among blacks, who generally have fewer primary 

care visits, and more emergency room visits and inpatient hospital stays than whites (5, 19, 

35, 36).  Although we identified few cases through inpatient claims, lower primary care visit 

rates could result in underestimated incidence among blacks. 

The primary strengths of our study are the large sample size and 3-year timeframe 

which allowed estimation of stable rates by age group, gender, race/ethnicity and county.  

We applied methodology previously used in cancer research (37-45) to estimate rates of 

newly-occurring asthma, using a data source with both medical and pharmacy claims.  Date 

of onset was determined directly from claims data, and not subject to recall bias.  Requiring a 

13+ month continuous enrollment period without evidence of asthma decreased the 

likelihood of classifying prevalent cases as incident cases, particularly for a disease with 

seasonal morbidity patterns (46). 

Weaknesses of the study include the lack of a gold standard for measuring asthma 

incidence, making it difficult to validate this method.  Our results are not generalizable to the 

general population in Texas, as they represent low-income children with health insurance 

benefits.  IR estimates across states using this methodology and data source may not be 
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directly comparable due to differences in Medicaid eligibility, benefits and coverage.  The 

Medicaid population is fluid, resulting in variable lengths of follow-up and potential 

selection bias.  Nearly 11% of children were enrolled for only 13 months, while 15% were 

enrolled for the entire 3-year period.    

The inclusion of beneficiaries from capitated managed care (HMO) plans and fee-for-

service (FFS) plans may have introduced bias in our estimates.  Although claims reporting 

for HMO plans improved over time, data completeness and quality likely differed between 

the two types of plans (47).  Most children in Texas’ nine major metropolitan areas are 

required to enroll in a capitated program, whereas a FFS program covers the rest of the state.  

It is unclear whether underreporting of HMO claims may have contributed to lower IRs in 

urban areas, or to what extent statewide rates were underestimated.  Lower asthma 

prevalence in urban areas has been reported among other Medicaid populations, and may be 

partially attributable to higher smoking rates in rural areas (48).  We should note that 

pharmacy claims in Texas are paid on a FFS basis.  While using both medical and pharmacy 

records is CMS' preferred method for identifying asthma cases, relying on pharmacy records 

alone can also provide reliable estimates (16).  

 The Centers for Disease Control and Prevention has called for a greater emphasis on 

tracking incidence in U.S. asthma surveillance programs, while acknowledging the inherent 

challenges and limited data sources (49, 50).  In this unique study, we estimated population-

based asthma incidence using statewide Medicaid claims data, a rich source for studying 

diseases disproportionately impacting low-income children. Our results indicate that 

Medicaid-enrolled children are at greater risk of being given an asthma diagnosis than those 

in the general population.  Knowledge of asthma incidence patterns is critical to 
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understanding associated risk factors, and we hope that this novel approach will be applied to 

other Medicaid populations to increase understanding of this disabling and costly disease. 
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Table 1. Age-adjusted incidence rates
a
 of childhood asthma among Texas Medicaid-enrolled children ages 1-17, 2005-2007. 

 

Person-Years (%) Asthma Cases (%) 
Incidence Rate/100 Person-

Years 
95% CI 

Total 2,467,757 129,588 4.26 4.23, 4.30 

Age Group     

     1-4 years 1,304,611 (52.9%) 85,390 (65.9%) 6.55 6.50, 6.59 

     5-9 years 603,279 (24.4%) 26,131 (20.2%) 4.33 4.28, 4.38 

     10-14 years 487,355 (19.7%) 15,949 (12.3%) 3.27 3.22, 3.32 

     15-17 years 72,512 (2.9%) 2,118 (1.6%) 2.92 2.80, 3.05 

Gender     

     Female 1,235,010 (50%) 58,722 (45.3%) 3.95 3.90, 3.99 

     Male 1,232,706 (50%) 70,864 (54.7%) 4.57 4.52, 4.62 

     Unknown 40 (<0.1%) 2 (<0.1%)   

Race     

     White 406,837 (16.5%) 23,079 (17.8%) 4.78 4.69, 4.86 

     Black 390,526 (15.8%) 20,617 (15.9%) 4.45 4.37, 4.52 

     American Indian 7,465 (0.3%) 409 (0.3%) 3.84 3.33, 4.36 

     Asian 29,990 (1.2%) 1,407 (1.1%) 3.54 3.29, 3.79 

     Hispanic 1,608,753 (65.2%) 82,612 (63.7%) 4.18 4.14, 4.22 

     Unknown 24,187 (1.0%) 1,464 (1.1%)   

Race/Gender     

     White/Male 203,965 (8.3%) 12,489 (9.7%) 4.92 4.80, 5.03 

     Black/Male 193,951 (7.9%) 11,479 (9.0%) 4.89 4.78, 5.01 

     American Indian/Male 3,866 (0.2%) 251 (0.2%) 4.27 3.63, 4.91 
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     Asian/Male 14,741 (0.6%) 794 (0.6%) 3.82 3.47, 4.17 

     Hispanic/Male 807,900 (32.9%) 44,915 (35.1%) 4.52 4.46, 4.57 

     White/Female 202,865 (8.3%) 10,590 (8.3%) 4.62 4.50, 4.74 

     Black/Female 196,573 (8.0%) 9,137 (7.1%) 4.00 3.90, 4.10 

     American Indian/Female 3,598 (0.1%) 158 (0.1%) 3.42 2.58, 4.26 

     Asian/Female 14,882 (0.6%) 613 (0.5%) 3.25 2.90, 3.61 

     Hispanic/Female 814,428 (33.2%) 37,697 (29.4%) 3.84 3.79, 3.89 

Abbreviation: CI, confidence interval. 

a
Per 100 person-years.  Age-adjusted to the proportion of the 2000 U.S. Census population in each age category, with the 

exception of rates presented by age group.
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Figure 1. Description of process used to identify study population and cases from the original 

MAX files containing enrollment and claims records for Texas Medicaid-enrolled children 

aged 0-17, 2004-2007  

Combined Enrollment File, 

Texas children aged 0–17 

enrolled in Medicaid any 

length of time, 2004–2007 

n = 4,152,664 

 
 

Children with at least one ≥13 

month span of continuous 

enrollment, 2004–2007 

n = 2,296,037
1
 

 
 

Asthma cases identified from 

medical and pharmacy claims, 

2004–2007 

n = 551,788 

 

 

Remove 121,483 cases without 

an enrollment file record 

 
 

Combined enrollment and asthma case 

files, excluding cases without a record in 

the enrollment file 

n = 2,296,037
1
 

 

Remove 336,124
1
 cases without ≥12 

months continuous enrollment immediately 

prior to month of diagnosis 

 
 

Remaining study population 

n = 1,959,913
1
 

 

1
The numbers of children with at least 1 ≥13 month enrollment span, in the combined 

enrollment and case file and in the remaining study population represent the number of 

≥13 month enrollment spans; a child could have more than 1 enrollment span during the 

4–year study period. 
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Figure 2. County-specific asthma incidence
1
 per 100 person-years among Medicaid-enrolled 

children in Texas, ages 1-17, 2005-2007. 

 

1
Counties shaded in black are those with incidence above the statewide incidence rate 

while those shaded in white were below the state rate.  Counties with hash marks had 

fewer than 16 cases and therefore incidence rates were not calculated.  
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CHAPTER IV: ASSOCIATION OF AMBIENT AIR POLLUTION WITH NEWLY-

DIAGNOSED ASTHMA AMONG MEDICAID-ENROLLED CHILDREN IN A 

METROPOLITAN AREA 

Abstract 

In this study, we investigated possible associations between ambient ozone, PM2.5 and 

NO2 concentrations and incident asthma, using a large population at high risk for the disease, 

and living in an area with historically high ozone levels.  The study population included 

18,289 incident asthma cases identified among Medicaid-enrolled children in Harris County 

Texas between 2005-2007, through the use of Medicaid Analytic Extract (MAX) enrollment 

and claims files.  We used a time-stratified case-crossover design and conditional logistic 

regression to calculate odds ratios, adjusted for weather variables and aeroallergens, 

assessing the effect of increases in ozone, NO2 and PM2.5 concentrations on the risk of 

incident asthma.  Our results show that 10 ppb increases in ozone were significantly 

associated with asthma during the warm season (May-October), and that the strongest effect 

was seen when a 6-day cumulative lag period was used to compute the exposure metric 

(OR=1.05, 95% CI, 1.02–1.08).  Similar results were seen for NO2 and PM2.5 (OR=1.07, 

95% CI, 1.03–1.11 and OR=1.12, 95% CI, 1.03–1.22, respectively). PM2.5 also had 

significant effects in the cold season (November-April), 5-day cumulative lag: OR=1.11, 

95% CI, 1.00–1.22.  When compared with children in the lowest quartile of O3 exposure, the 

risk for children in the highest quartile was 20% higher.  This is the first study to evaluate the 

association of incident childhood asthma and ambient air pollution in the Houston 

metropolitan area, and our results indicate that increased levels of these pollutants are 
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associated with the onset of asthma in this low-income urban population, particularly during 

the summer months. 

Introduction 

Many studies have investigated factors leading to the exacerbation of symptoms 

among asthmatic children, but less is known about factors leading to its development.  

Genetic factors are known to play a role (Yeatts et al. 2006), and there is evidence that indoor 

and possibly outdoor pollutants may also be related to asthma incidence (Gilliland 2009; 

Gilmour et al. 2006).  Asthma prevalence is higher in male children than in females, and in 

black children compared to whites or Hispanics, although it is not clear if this is due to 

socioeconomic or other factors rather than race/ethnicity (Akinbami et al. 2005).  Poverty is 

consistently associated with higher childhood asthma prevalence (Akinbami et al. 2002), and 

even among insured children, low-income children covered by Medicaid are more likely to 

have asthma-related morbidity, complications and hospitalizations than children with private 

insurance (Bai et al. 2007; Lozano et al. 1999; Ortega et al. 2001).  A recent study among 

Medicaid-enrolled children in Texas provided evidence that asthma incidence rates are also 

higher in this low-income population compared to previous population estimates (Wendt et 

al. 2012). 

Elevated levels of ambient ozone (O3) have been associated in several studies with 

worsening lung function and asthma symptoms in children (Akinbami et al. 2010; Lewis et 

al. 2005; Lin et al. 2008; Mortimer et al. 2000), and similar results have been seen in studies 

of childhood asthma and fine particulate matter (PM2.5) or nitrogen dioxide (NO2) (Akinbami 

et al. 2010; Parker et al. 2009; Slaughter et al. 2003).  Fewer studies have evaluated an 
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association between ambient pollutants and the risk of developing asthma (Gilmour et al. 

2006).  Asthma incidence studies that have appeared in the literature have been based on a 

small number of cohorts, including the Children’s Health Study (CHS) in Southern 

California, the Prevention and Incidence of Asthma and Mite Allergy Study (PIAMA) in the 

Netherlands (Brauer et al. 2007), and other datasets in Europe (Morgenstern et al. 2007), 

Canada (Carlsten et al. 2011) and France (Zmirou et al. 2004).  These studies have shown 

positive effects of traffic-related pollutants (TRP) (Brauer et al. 2007; McConnell et al. 

2010), NO2  (Jerrett et al. 2008; McConnell et al. 2010), PM2.5 (Carlsten et al. 2011) and O3 

(McConnell et al. 2002).  The O3 findings are primarily from the CHS, and have provided 

evidence that an O3 association with new-onset asthma is mediated by the level of personal 

exposure and genetic susceptibility (Li et al. 2006; McConnell et al. 2002; Romieu et al. 

2006). 

 The Houston metropolitan area is the nation's sixth largest (U.S. Census Bureau 

2012), and in 2004, was designated a non-attainment area for the eight-hour O3 standard 

which went into effect in 1997 (Texas Commission on Environmental Quality 2010).  Since 

October 2008, the greater Houston area has been designated a severe non-attainment area, 

with an attainment date of June 2019 (Texas Commission on Environmental Quality 2010).  

More than 140,000,000 person-miles are driven on Houston roads on an average day  (Sexton 

et al. 2007) and the city is characterized by an extensive industrial area.  Automotive and 

industrial emissions (e.g., nitrogen oxides and volatile organic compounds), combined with a 

warm, sunny climate, produce ozone and present unique challenges in terms of air quality 

(Sexton et al. 2007; Texas Commission on Environmental Quality 2009). 
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   In this study, we used a time-stratified case-crossover design (Janes et al. 2005) to 

investigate possible associations of ambient O3, NO2 and PM2.5 levels with incident 

childhood asthma.  Our study population comprises Medicaid-enrolled children residing in 

Harris County, Texas between 2005 and 2007, a large population at high risk for asthma, and 

living in an area with historically high ozone levels.  

Methods 

Identification of Incident Asthma Cases 

Our description of the methods used to identify incident asthma cases from the 

Centers for Medicare and Medicaid Services (CMS) Medicaid Analytic Extract (MAX) files 

among Medicaid-enrolled children in Texas has been described elsewhere (Wendt et al. 

2012).  We restricted these analyses to children residing at the time of enrollment in Harris 

County, Texas between 2005 and 2007.  Briefly, MAX files are created by CMS specifically 

for research, and contain annual data on Medicaid eligibility and healthcare utilization as 

reported by the states.  The eligibility files contain person-level data including age, gender, 

race, zip code of residence, dates of enrollment and scope of Medicaid coverage.  Due to 

privacy concerns, street address is not provided in the MAX files.  The claims files contain 

final adjudicated claims by date of service and have undergone quality checks and 

corrections (Hennessy et al. 2007).  We obtained enrollment, inpatient and outpatient medical 

claims, and pharmacy claims files from CMS for Texas beneficiaries under the age of 18 who 

were enrolled in Medicaid between 2004 and 2007. 

Monthly enrollment and eligibility indictors in the PS files were used to identify 

children enrolled for at least 13 continuous months (with allowance for a single 1-month gap) 

during the 4-year period.  Children were considered ineligible during any year in which the 
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respective PS file indicated that they had private insurance coverage, or only premium (i.e., 

capitated) payment claims during the year.  The requirement of a 13+ continuous enrollment 

span was necessary in order to provide a ‘wash-out’ period to distinguish incident from 

prevalent asthma cases. 

 All medical and pharmacy claims for the 4-year period were combined, and asthma 

cases were defined as children with a primary diagnosis of asthma (International 

Classification of Diseases, 9th revision code = 493.xx) on at least one outpatient or inpatient 

record, or 4 or more asthma medication (National Committee for Quality Assurance 2011) 

dispensing events (30-day supply) during a 365-day period.  If a prescription was written 

with more than 30 days' supply, days were divided by 30 and rounded up to calculate the 

number of 30-day dispensing events.  For each case, the diagnosis or ‘event’ date was either 

the date of service associated with the child’s earliest asthma medical claim, or the date the 

first of 4+ asthma medication prescriptions was written.  

We then joined records from the enrollment and asthma case files, and excluded cases 

without an enrollment record (i.e., those who did not have a 13+ month span of continuous 

enrollment between 2004 and 2007).  Any cases who were in the enrollment file but not 

enrolled continuously during the 12 months prior to diagnosis were also excluded, as we 

could not determine whether these were incident or prevalent cases.  Enrollment and claims 

files from 2004 were only used in the analysis to provide a wash-out period for children in 

the 2005 files.  Using these methods, we identified 18,289 incident asthma cases among 

Medicaid-enrolled children aged 1-17 residing in Harris County during the period 2005-

2007, with an age-adjusted incidence rate of 3.12/100 person-years.  
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Ambient Air Pollutant Data 

Air monitoring data for O3 (daily maximum 8-hour moving average), NO2 (daily 1-

hour maximum) and PM2.5 (daily 24-hour mean) were obtained from the U.S. EPA Air 

Quality System (AQS) (U.S. Environmental Protection Agency 2010).  O3 data were 

available from 22 monitoring stations located in the Houston-Galveston-Brazoria (HGB) 

metropolitan area.  The monitors are concentrated in Harris County (n = 17), with two 

monitors in Galveston County, two in Brazoria County, and one in Montgomery County.  O3 

is monitored continuously 24-hours a day, 365 days per year.  The O3 data are available as 1-

hour averages.  NO2  is also monitored continuously 24-hours a day, 365 days per year at 17 

monitoring sites across the HGB metropolitan area: 12 in Harris County, two in Brazoria 

County, two in Galveston County and one in Montgomery County.  The NO2 data are 

available as 1-hour averages.  For PM2.5, there were seven monitoring sites in Harris County 

and two sites in neighboring counties which performed 24-hour measurements of PM2.5 

(local conditions) between 2005 and 2007.  Beginning in September 2005, measurements 

were discontinued at the two sites in adjacent counties, and the number of monitoring sites in 

Harris County measuring this parameter decreased from seven to four.  Also, two of the four 

monitors were co-located at a single site, of which one took daily samples, and a second took 

samples every six days, and for this site, we included only the 24-hour mean values in AQS 

for the monitor with daily sampling in our analysis.  Daily 24-hour mean PM2.5 

measurements were available for the other area monitors every sixth day. 

Meteorological and Aeroallergen Data 

Daily maximum outdoor temperature and daily average percent relative humidity 

were measured at 24 and 6 monitoring sites, respectively, across Harris County and these 
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data were also obtained from the AQS.  Mold spore and tree, grass and weed pollen counts 

were available for the Houston area from the City of Houston archives (City of Houston 

2010), and measured as counts per cubic meter of air.  These measurements were generally 

available for each weekday during the study period, except holidays or days that 

measurements could not be taken because of rain. 

Study Design and Statistical Analysis 

We used a time-stratified, case-crossover design (Janes et al. 2005) to evaluate the 

association of ambient pollutant levels and the development of childhood asthma.  Forty 28-

day strata were specified beginning with January 1, 2005, and each asthma case-day was 

matched with the three referent dates in the pre-defined strata which were the same day of the 

week as the case-day.  For example, a case occurring on Tuesday, January 11, 2005 was 

matched to control dates on the remaining Tuesdays in the stratum (i.e., January 4, 18 and 

25).  Since the last of the 40 strata ended on December 28, 2007, cases occurring on the final 

three days of the study period were excluded from the analysis (n = 25).  The case-crossover 

design has been frequently used to investigate short-term acute effects of air pollution as it 

allows for control of person-level (i.e., genetic and lifestyle) and time-dependent (i.e., air 

monitoring levels by day of the week, season of the year) factors (Carracedo-Martinez et al. 

2010). 

We first considered only temporal changes in O3 exposure, by averaging all 

maximum 8-hour samples from monitoring sites across Harris County for each calendar day.  

In this way, daily means of the maximum 8-hour O3 concentrations were estimated; therefore 

for each calendar day, these were the same regardless of where in Harris County the child 
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resided.  A similar method was used to calculate daily PM2.5 and NO2 values for Harris 

County, that is, 24-hour mean PM2.5 and daily 1-hour maximum NO2 measurements were 

averaged across all monitoring sites in Harris County for each calendar day.  

Secondly, we considered spatial, in addition to temporal variability in O3 and NO2 

exposure.  Daily pollutant levels were estimated using the average of measurements taken at 

the three closest O3 and NO2 monitoring sites, respectively, to the centroid of the zip code of 

residence for each case.  Monitored pollutant values were potentially drawn from all sites in 

the HGB area, as the nearest three monitors to a particular zip code may have been located 

outside of Harris County. PM2.5 values were averaged across Harris County in all analyses 

because of the small number of monitoring sites. 

Because cases who reside a greater distance away from a monitoring station may 

have less accurate exposure estimates than those residing in zip codes with nearby monitors, 

we performed a sensitivity analysis restricted to asthma cases living in zip codes where the 

centroid was within 6 miles of at least one O3 or NO2 monitoring station.  In this third 

analysis we estimated O3 exposure levels by averaging daily maximum 8-hour values across 

all O3 monitoring sites within the 6-mile radius of the child’s zip code.  Likewise, we 

estimated NO2 exposure by averaging daily 1-hour maximum values across all NO2 

monitoring sites within the 6-mile radius of the child’s zip code.  Analysis on this sub-set of 

cases allowed us to evaluate whether estimated odds ratios resulting from the temporal and 

spatial exposure estimation methods were robust, irrespective of whether the case lived near 

a monitoring station. 
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For all three analyses, a series of lagged and average cumulative pollutant exposure 

variables were constructed for each case and control date.  Since there is no consensus on the 

most pertinent exposure metric for these pollutants with respect to asthma, lag and averaging 

periods were explored with consideration of both their irritant nature, and the potential 

number of symptomatic days that might pass before a physician’s visit is scheduled.  For 

each case/control date, we determined same-day pollutant values, values lagged 1 through 5 

days, and cumulative values averaged over 2 day (i.e., same day and lag 1) through 6 day 

(i.e., same day through lag 5) periods.   

Conditional logistic regression was used to estimate odds ratios for each lag period 

and pollutant, per an increase in the pollutant level equal to the inter-quartile range (IQR), or 

an increase of 10 ppb for O3 and NO2, and 10 µg/m
3
 for PM2.5.  We also calculated odds 

ratios comparing the highest quartile of exposure with the lowest quartile for each pollutant, 

with quartiles defined based on the distribution of the pollutant on control days.  Single and 

co-pollutant models were evaluated, and in co-pollutant models, the same lag or cumulative 

lag metric was used for both pollutants.  All models included same-day maximum 

temperature and mean percent relative humidity, averaged across all Harris County 

monitoring sites.  Same-day mold spore, tree pollen, grass pollen and weed pollen counts 

were also included in all models, and although lagged aeroallergen values may have greater 

biological relevance, the lack of weekend data meant that case and control dates occurring on 

Mondays (21% of the total) would have been excluded from the analysis due to missing 

covariate values.  In contrast, fewer case/control dates occurred on Saturdays and Sundays, 

6% and <2%, respectively.  We also performed stratified analysis by age group (1-4, 5-9, 10-

14, 15-17 ), gender, race (white, black, Hispanic), pollutant quartiles and season.  Season was 
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dichotomized into either 'warm' (i.e., May-October) or 'cold' (i.e., November-April), and was 

intended to distinguish between periods of higher and lower seasonal O3 levels.  Non-

parametric Spearman rank-correlation coefficients were used to assess the degree of 

correlation between all pollutant, meteorological and aeroallergen variables included in the 

logistic regression models as this test does not require an assumption that the variables are 

normally distributed.  Results presented reflect pollutant exposures averaged across Harris 

County unless otherwise stated.  

We used SAS version 9.2 for all analyses.  Conditional logistic regression was 

performed using PROC LOGISTIC, matching on case number.  ArcGIS version 10 was used 

to identify the monitoring sites nearest each zip code, and the distance between each site and 

zip code centroid.  The study was approved by the CMS Privacy Board and the University of 

Texas Health Science Center at Houston Committee for the Protection of Human Subjects. 

 

Results 

 A description of the 18,264 incident asthma cases identified between 1/1/2005 and 

12/28/2007 is shown in Table 1.  Nearly three-fourths of this population was under the age of 

5 and 61% were Hispanic.  A greater proportion of cases (56.0%) were male. 

 Descriptive measures of pollutants and meteorological variables are presented in 

Table 2 and Table 3.  Mean O3, NO2 and PM2.5 levels for the 3-year period across all 

monitoring sites in Harris County were 37.87 ppb, 39.26 ppb and 14.97 µg/m
3
, respectively.  

O3 and PM2.5 levels were 31% and 22% higher in the warm season, respectively, while NO2 

levels were 12% higher in the cold season than in warmer months.  Aeroallergen levels 



55 

 

differed by season, with higher tree pollen counts in the cold season (peak in March) and 

higher weed pollen counts in the warm season (peak in October).  

O3 had a moderately strong correlation with NO2 (Spearman rank correlation 

coefficient, r=0.49) and a weaker correlation with PM2.5 (r=0.32), while NO2 and PM2.5 were 

more weakly correlated (r=0.21) (Table 4).  Daily maximum temperature was positively 

correlated with O3 (r=0.33) and PM2.5 (r=0.36) but negatively correlated with NO2 (r=-0.23).  

Daily percent relative humidity was negatively correlated with both O3 (r=-0.49) and NO2 

(r=-0.39).  There was a weak correlation between grass pollen and O3 (r=0.23), and a 

moderately strong correlation between mold spore and weed pollen counts (r=0.50). 

O3, NO2 and PM2.5 all showed significant associations with risk of asthma, although 

odds ratios and statistical significance differed by lag and cumulative lag period, and by 

season (Figure 1).  During the warm season, each 10 ppb increase in O3 raised the odds of an 

initial asthma diagnosis by between 3.3% and 5.2%, depending on the exposure metric.  

Likewise, a 10 ppb increase in NO2 was associated with significant increases ranging from 

2.7% to 7.0%.  No effect was seen during the cold season for either O3 or NO2.  In contrast, 

significant effects of PM2.5 were seen in both the warm and cold seasons.  For each 10 µg/m
3
 

increase, the risk of asthma increased between 5.8% and 12.5% during the warm season, and 

between 7.6% and 11.3% during the cold season.  For all pollutants, the most pertinent 

metrics were the longer cumulative lag periods (i.e., L04, L05 and L06). 

Odds ratios for each pollutant by quartile of exposure are shown in Table 5.  For 

children in the highest quartile of O3 exposure compared to the lowest, the risk of incident 

asthma was 20% higher (OR=1.20, 95% CI, 1.06–1.36).  Risk of asthma was also higher in 

the highest quartiles of exposure for PM2.5 and NO2 when compared to the lowest quartiles 
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(OR=1.10, 95% CI, 1.02–1.18 and OR=1.19, 95% CI=1.10–1.29, respectively).  Statistically 

significant increases were also seen when comparing children in the second quartiles to those 

in the lowest quartiles of O3 and NO2 exposure (OR=1.11, 95% CI, 1.03–1.19 and OR=1.11, 

95% CI, 1.03–1.21, respectively). 

Single and co-pollutant model results are presented in Table 6, with odds ratios 

reflecting increases in risk per IQR increase in 6-day cumulative mean pollutant levels by 

season.  In single pollutant models, significant odds ratios were seen for O3 and NO2 only 

during the warm season (OR=1.16, 95% CI, 1.07–1.25 and OR=1.14, 95% CI, 1.06–1.24) 

whereas significant increases were seen in both seasons for PM2.5 (warm:  OR=1.10, 95% CI, 

1.03–1.17 and cold:  OR=1.06, 95% CI, 1.00–1.14).  Odds ratios for O3 were unchanged by 

season in co-pollutant models with PM2.5, but in models with NO2, ORs for both pollutants 

decreased and although still above the null, were no longer statistically significant.  In co-

pollutant models with O3 and with NO2, the effect of PM2.5 during the warm season was 

diminished, and no longer statistically significant, but effect estimates during the cold season 

were unchanged. 

Odds ratios of asthma in association with ambient O3 were further stratified by season 

and demographics (Table 7).  The OR of asthma in association with ambient O3 was 

considerably higher in the oldest age group of children (15-17), with increases of 22% 

overall and 35% in the summer months for each 10 ppb increase in ambient levels of O3.  For 

the other age groups, risk generally lessened with decreasing age.  The association between 

ambient O3 and asthma was similar between males and females, but appeared to differ when 

stratified by race, with the highest ORs seen in blacks (OR=1.08, 95% CI, 1.03-1.13) and the 
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lowest in whites (OR=1.01, 95% CI, 0.93-1.10).  Black children had a significant 9% 

increase in odds of incident asthma with each 10 ppb increase in O3 during the summer 

months, and a significant 4% increase was seen in Hispanic children during the warm season. 

We also assessed the additional impact of spatial variability in ambient pollutant 

levels on risk of asthma, by estimating daily exposure based on O3 and NO2 samples taken at 

the three monitors which were nearest the centroid of each zip code.  On average, the 3 

closest O3 monitors were 12.8 miles from the zip code centroid (median=8.9 miles, range: 0.3 

to 56 miles) and the 3 closest NO2 monitors were 13.7 miles from the zip code centroid 

(median=10.3 miles, range=0.4 to 56.1 miles).  Odds ratios for the two pollutants were very 

similar between the two methods (Figure 2, comparison of methods [a] and [b]).  In further 

sensitivity analysis to assess the reliability of O3 and NO2 exposure estimates based on Harris 

County averages, we restricted our case group to children who lived within 6 miles of a 

monitor at the time of diagnosis.  We observed only slight differences in the ORs for O3 and 

NO2, using this method compared to those using the county averages (Figure 2, comparison 

of methods [a] and [c]).  Mean O3 concentrations from the three estimation methods (i.e., 

county average, average of three closest monitors, average of monitors within 6 miles) were 

very similar (37.87, 36.52, 37.82 ppb, respectively), while mean NO2 measurements were 

more variable (39.26, 36.40, 27.65 ppb, respectively, data not shown).   

Discussion 

 Although general research on air pollution and asthma prevalence and morbidity is 

substantial, studies investigating a possible role of ambient pollutant levels in the 

development of asthma have only recently begun to build.  One of the earliest analyses from 
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the CHS reported a significant increase (relative risk (RR)=3.3, 95% CI, 1.9-5.8) in new-

onset asthma among Southern California-area children living in higher O3 communities who 

participated in three or more team sports (McConnell et al. 2002).  No association was found 

among children without this level of sports participation, indicating that the inhaled dose of 

O3 is a factor in susceptibility.  There was also no overall association between ambient O3 or 

NO2 levels and new-onset asthma between low- and high- O3 communities (mean daytime O3 

concentration=40.0 and 59.6 ppb, respectively).  

 Later studies of this CHS cohort were done in the context of TRP exposure, and have 

included estimates of asthma risk associated with O3, NO2, and PM2.5 (Jerrett et al. 2008; 

McConnell et al. 2010).  Ambient NO2 levels were associated with new-onset asthma (hazard 

ratio (HR)=2.17, 95% CI, 1.18–4.00) across a 23.6 ppb range of exposure, in an area with 

average NO2 measurements equal to 20.4 ppb (McConnell et al. 2010).  No significant 

effects of O3 or PM2.5 were seen in univariate models.  The effect of NO2 was lessened in 

models adjusted for TRP, indicating that NO2 may have served as a marker for TRP levels.  

A similar conclusion was reached in an earlier study of this cohort in which risk of new-onset 

asthma increased with NO2 concentrations measured through the use of personal monitors 

(Jerrett et al. 2008).  Analyses of the CHS and other cohorts investigating a genetic effect on 

susceptibility to air pollutants have found differences in onset of asthma and wheeze, and 

asthma exacerbation with variability in genotype expression (Islam et al. 2008; Li et al. 2006; 

Romieu et al. 2006). 

Another study in Canada reported an increased risk of incident asthma by age 7 

among high risk children (defined based on family history of asthma or allergic disease) who 
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had experienced higher ambient NO2 and PM2.5 levels during year of birth (Carlsten et al. 

2011).  The risk of developing physician-diagnosed asthma increased three-fold for every 4.1 

µg/m
3
 increase in PM2.5 (OR=3.1, 95% CI, 1.3–7.4) in a community with a median PM2.5 

ambient concentration of 5.11 µg/m
3
.  A similar, though non-significant odds ratio of 1.5 

(95% CI, 0.9–2.5) was seen per every 7.2 µg/m
3
 increase in NO2, with median community-

level exposure of 32.2 µg/m
3
.  A Dutch study found positive associations of new-onset 

asthma with air pollutants including NO2 and PM2.5, although results were sensitive to model 

selection (Brauer et al. 2007). 

To our knowledge, this is the first study evaluating the association of incident 

childhood asthma and ambient air pollution in the Houston area.  The burden of asthma is 

higher among Medicaid-enrolled children, and while our results may not be generalizable to 

children with higher family incomes, they may represent risk for a susceptible sub-population 

in an area with historically poor air quality.  We found small but significant increases in 

incident asthma among Medicaid-enrolled children with increasing ambient pollutant levels.  

Low-income children consistently fare worse on asthma measures including prevalence, 

morbidity, hospitalizations and mortality, than children from higher income families  

(Akinbami et al. 2002; Burra et al. 2009).  In addition to a higher disease burden, low-income 

children also appear to be more vulnerable to the effects of air pollution, although it is not 

clear to what extent this is attributable to greater susceptibility, higher exposure levels or 

other factors.  Genetic variation, underlying health status and access to healthcare all impact 

personal susceptibility, and closer residential proximity to stationary and mobile pollution 

sources could lead to higher personal exposure (Cakmak et al. 2006; Gilliland 2009; Lipfert 

2004).  The degree of correlation between ambient pollutant levels and actual personal 
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exposure is clearly a function of many environmental and personal variables such as amount 

of time and time of day spent outdoors, activity patterns and outdoor air ventilation rates in 

the home (Lee et al. 2004). 

 The strength of association between incident asthma and ambient O3 levels differed 

by age group and race.  Older children (15 to 17 year-olds) seemed more sensitive to the 

effects of O3 than children in younger age groups, particularly during the warm season.  The 

higher effect estimates in teens could be due to comparatively higher personal exposure to 

pollutants from a combination of more time spent outdoors working or playing sports, and 

higher ventilation rates (Silverman and Ito 2010; Spier et al. 1992).  This finding seems to be 

supported by a recent study in New York City-area children that reported higher asthma 

hospitalization rates in children aged 6-18 compared to younger children, with relative risks 

peaking around ages 15-16  (Silverman and Ito 2010).  Similarly, effect estimates of O3 on 

incident asthma differed by race, with statistically significant ORs in blacks, and to a lesser 

extent among Hispanics, but not in whites.  Some have reported an independent effect of 

black race on asthma prevalence and morbidity when controlling for income (Miller 2000) 

while others have not (Gwynn and Thurston 2001).  Our finding may be due to chance, or 

could reflect differential susceptibility to the effects of air pollution by race, even within this 

population of low-income children (Islam et al. 2008). 

In our earlier estimation of asthma incidence rates by county, we found that in almost 

all cases, rates were lower in the major urban areas than in Texas as a whole (Wendt et al. 

2012).  This may argue against an effect of air pollutants on the development of asthma, 

which are typically higher in metropolitan areas and considered to be a factor in higher 
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asthma prevalence among inner-city children (American Lung Association 2001).  Others 

have demonstrated higher asthma prevalence in Medicaid-enrolled children residing in rural 

areas, and attributed this to higher smoking rates or levels of aeroallergens (Valet 2011).  

While the effect of smoking was controlled for in our study design, we were not able to 

assess the possible interaction of smoking and the effect of air pollutants. 

There was the potential for misclassification of asthma cases due to inaccurate 

diagnostic coding on the medical claims records. For example, a case may have been 

identified based on a claim from a physician’s visit which actually ruled out asthma.  And 

although most cases of asthma are diagnosed by the age of 5 (Kemp and Kemp 2001), 

distinguishing asthma from other respiratory illness such as bronchitis is particularly difficult 

in young children (Brauer et al. 2007).  Claims records also reflect healthcare utilization 

patterns, and to the extent that these differ by age, race or income level (Lozano et al. 1995; 

Shields et al. 2004), this may have introduced selection bias in our study. 

There was also potential for bias in our pollutant exposure estimates.  Most analyses 

used O3 and NO2 data averaged across Harris County.  This use of county-wide ambient 

pollutant concentrations as an estimate of personal exposure may have introduced ecological 

bias.  O3 and NO2 risk estimates were similar when using the county average or an average of 

the three closest monitors.  Exposure estimates which used results only from monitors within 

six miles led to slightly lower O3 ORs and slightly higher NO2 ORs at the longer cumulative 

lags periods which were the focus of this report.  O3 concentrations are typically more 

homogenous across a geographic area than NO2 levels (Darrow et al. 2011), and this pattern 

was seen in our study as well.  We relied on the zip code of residence to identify nearby 
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monitors, and given the lack of a complete street address, more refined spatial interpolation 

methods such as inverse distance weighting or a population-weighted average may have had 

limited benefit.  A variety of methods have been used to estimate pollutant concentrations in 

previous asthma studies including averaging across monitors (Mortimer et al. 2000; 

Slaughter et al. 2003), population-weighted averaging across monitors (Strickland et al. 

2010), maximum concentration across monitors (Babin et al. 2008; Luginaah et al. 2005; 

Schildcrout et al. 2006), measurements from a single centrally-located monitor (McConnell 

et al. 2010), and inverse distance weighting (Moore et al. 2008).  A recent study from Atlanta 

demonstrated high correlations between estimated O3, PM2.5 and NO2 concentrations when 

comparing unweighted averages across monitors and population-weighted estimates 

(r=0.988, 0.995 and 0.919, respectively) (Strickland et al. 2011).   

Other potential weaknesses should be noted.  The City of Houston included counts of 

additional mold spore and pollen types beginning in the fall of 2006, and while seasonal 

patterns for the aeroallergens were generally consistent from year to year, the absolute counts 

were much higher in 2007.  It is not clear to what extent this reflected a particularly high 

allergen period versus changes due to sampling methodology, and although this may have 

introduced error in our effect estimates, the bias in the estimates was likely non-differential.  

We also made a large number of comparisons by pollutant, exposure metric, and 

stratification variables, and therefore would expect some statistically significant associations 

by chance alone.  We did not attempt to correct for errors that may have arisen due to 

multiple comparisons.    
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Conclusion 

This is the first study evaluating the association of incident childhood asthma and 

ambient air pollution in the Houston metropolitan area.  We found small but significant 

increases in incident asthma with increasing ambient O3, NO2 and PM2.5 concentrations 

among Medicaid-enrolled children.  Children with the highest levels of O3, NO2 and PM2.5 

exposure had significantly higher risk of incident asthma than those with the lowest exposure 

levels.  When stratified by season, effects of O3 and NO2 were limited to warm months, but 

associations with PM2.5 were seen in both warm and cold seasons.  For all pollutants, 

exposure metrics based on longer cumulative lag periods (i.e., 4-, 5- and 6-day averages) had 

the strongest effect.  This study provides evidence of an association between urban ambient 

air pollutant levels and incident asthma among low-income children.  
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Table 1.  Description of incident asthma cases identified among Harris County, Texas 

children enrolled in Medicaid between 2005 and 2007. 

 

 Number Percent 

Total 18,264 100% 

Age Group   

   1-4 13,232 72.5% 

   5-9 3,192 17.5% 

   10-14 1,644 9.0% 

   15-17 196 1.1% 

Gender   

   Female 8,046 44.1% 

   Male 10,218 56.0% 

Race   

   White 1,450 7.9% 

   Black 4,760 26.1% 

   Am. Indian 84 0.5% 

   Asian 522 2.9% 

   Hispanic 11,191 61.3% 

   Unknown 257 1.4% 
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Table 2.  Description of pollutants, meteorological conditions and aeroallergens averaged 

across monitoring sites in Harris County, Texas, 2005-2007. 
 

 

Pollutant N Mean SD Min 25% 50% 75% Max IQR 

O3 (8-hr max, 

ppb) 
1,094 37.87 15.99 3.75 25.88 34.25 47.53 96.88 21.65 

NO2 (1-hr 

max, ppb) 
1,091 39.26 14.07 12.00 29.00 38.00 48.00 108.00 19.00 

PM2.5 (24-hr 

mean, µg/m
3
) 

1,035 14.97 6.02 2.70 10.70 14.00 18.30 44.20 7.60 

Temperature 

(daily max, 

°F) 

1,095 78.55 12.18 36.96 71.42 80.68 88.95 99.63 17.53 

Relative 

humidity 

(daily mean, 

%) 

1,093 69.63 11.63 27.26 62.94 71.28 77.65 93.21 14.71 

Mold 

(spores/m
3
) 

675 2,680.13 3,153.22 36.00 707.00 1,301.00 3,665.00 22,596.00 2,958.00 

Tree pollen 

(grains/m
3
) 

657 285.15 776.55 0.00 0.00 12.00 150.00 6,776.00 150.00 

Grass pollen 

(grains/m
3
) 

657 13.44 37.12 0.00 2.00 4.00 10.00 441.00 8.00 

Weed pollen 

(grains/m
3
) 

650 51.91 208.38 0.00 0.00 0.00 8.00 1,782.00 8.00 
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Table 3.  Description of pollutants, meteorological conditions and aeroallergens by season, 

averaged across monitoring sites in Harris County, Texas, 2005-2007. 
 

 

Pollutant N Mean SD Min 25% 50% 75% Max IQR 

Warm Season (May-Oct) 

O3 (8-hr max, 

ppb) 
551 42.93 17.83 10.82 27.75 40.75 56.25 96.88 28.50 

NO2 (1-hr max, 

ppb) 
548 36.98 13.93 12.00 26.00 36.00 46.00 108.00 20.00 

PM2.5 (24-hr 

mean, µg/m
3
) 

525 16.42 6.41 2.70 11.80 15.20 19.90 44.20 8.10 

Temperature 

(daily max, °F) 
552 87.47 5.65 65.57 84.13 88.79 91.41 99.63 7.28 

Relative 

humidity (daily 

mean, %) 

550 70.06 8.74 41.28 64.65 70.66 75.74 90.30 11.09 

Mold 

(spores/m
3
) 

348 3,192.96 3,764.49 36.00 798.50 1,342.50 4,490.00 22,596.00 3,691.50 

Tree pollen 

(grains/m
3
) 

334 41.00 138.43 0.00 0.00 0.00 19.00 1,310.00 19.00 

Grass pollen 

(grains/m
3
) 

334 13.10 40.56 0.00 2.00 6.00 10.00 441.00 8.00 

Weed pollen 

(grains/m
3
) 

334 98.25 282.94 0.00 0.00 3.00 32.00 1,782.00 32.00 

Cold Season (Nov-Apr) 

O3 (8-hr max, 

ppb) 
543 32.73 11.86 3.75 25.13 30.88 39.59 80.06 14.46 

NO2 (1-hr max, 

ppb) 
543 41.56 13.86 12.00 32.00 41.00 50.00 105.00 18.00 

PM2.5 (24-hr 

mean, µg/m
3
) 

510 13.48 5.15 2.75 9.80 12.80 16.20 33.85 6.40 

Temperature 

(daily max, °F) 
543 69.49 10.19 36.96 63.00 71.88 77.17 88.83 14.17 
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Relative 

humidity (daily 

mean, %) 

543 69.21 13.95 27.26 60.03 72.22 79.47 93.21 19.44 

Mold 

(spores/m
3
) 

327 2,134.36 2,211.96 40.00 629.00 1,215.00 2,888.00 11,507.00 2,259.00 

Tree pollen 

(grains/m
3
) 

323 537.61 1,040.64 0.00 10.00 82.00 443.00 6,776.00 433.00 

Grass pollen 

(grains/m
3
) 

323 13.79 33.25 0.00 0.00 4.00 10.00 255.00 10.00 

Weed pollen 

(grains/m
3
) 

316 2.93 12.35 0.00 0.00 0.00 0.00 137.00 0.00 
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Table 4.  Spearman rank-correlation matrix for pollutants, meteorological variables and aeroallergens, averaged across monitoring 

sites in Harris County, Texas, 2005-2007. 
 

Pollutant 
O3 (8-hour 

mean) 

NO2  (1-hr 

max) 

PM2.5 (24-hr 

mean) 

Temperature 

(daily max, 

°F) 

Relative 

humidity 

(daily mean, 

%) 

Mold 

(spores/m
3
) 

Tree pollen 

(grains/m
3
) 

Grass pollen 

(grains/m
3
) 

Weed pollen 

(grains/m
3
) 

O3 (8-hour max) 1.00         

NO2  (1-hr max) 0.49* 1.00        

PM2.5 (24-hr mean) 0.32* 0.21* 1.00       

Temperature (daily 

max, °F) 
0.33* -0.23* 0.36* 1.00      

Relative humidity 

(daily mean, %) 
-0.49* -0.39* -0.04 0.02 1.00     

Mold (spores/m
3
) -0.05 -0.01 -0.04 -0.01 0.13* 1.00    

Tree pollen 

(grains/m
3
) 

0.04 0.15* -0.18* -0.49* 0.04 0.14* 1.00   

Grass pollen 

(grains/m
3
) 

0.23* 0.02 -0.02 0.09* -0.03 0.25* 0.31* 1.00  

Weed pollen 

(grains/m
3
) 

0.09* 0.06 0.06 0.24* -0.02 0.50* -0.14* 0.17* 1.00 

*p<0.05
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Table 5.  Adjusted
1
 odds ratios (OR) and 95% confidence intervals (95% CI) of the association between 6-day cumulative means 

(lag 0 to lag 5) and asthma, by quartile, among Harris County, Texas children enrolled in Medicaid between 2005 and 2007. 
 

Pollutant Range No. of Cases (%) No. of Controls (%) 
Odds 

Ratio 
95% CI 

Ozone (ppb)      

   Q1 < 28.13 4,469 (24.5%) 13,701 (25.0%) 1.00  

   Q2 28.13 – < 35.04 4,587 (25.1%) 13,723 (25.1%) 1.11 1.03, 1.19 

   Q3 35.04 – < 44.76 4,513 (24.7%) 13,637 (24.9%) 1.06 0.95, 1.19 

   Q4 ≥ 44.76 4,695 (25.7%) 13,731 (25.1%) 1.20 1.06, 1.36 

PM2.5 (µg/m
3
)      

   Q1 < 11.91 4,508 (24.8%) 13,794 (25.3%) 1.00  

   Q2 11.91 – < 13.52 4,494 (24.7%) 13,378 (24.6%) 0.98 0.91, 1.05 

   Q3 13.52 – < 16.34 4,472 (24.6%) 13,660 (25.1%) 1.04 0.97, 1.23 

   Q4 ≥ 16.34 4,734 (26.0%) 13,656 (25.1%) 1.10 1.02, 1.18 

NO2 (ppb)      

   Q1 < 34.5 4,483 (24.6%) 13,668 (25.0%) 1.00  

   Q2 34.5 – < 40.83 4,607 (25.2%) 13,648 (24.9%) 1.11 1.03, 1.21 

   Q3 40.83 – < 46.17 4,570 (25.0%) 13,847 (25.3%) 1.06 0.97, 1.15 

   Q4 ≥ 46.17 4,604 (25.2%) 13,629 (24.9%) 1.19 1.10, 1.29 

 
1
 Adjusted for same-day maximum temperature, mean relative humidity and mold spore, tree pollen, grass pollen and weed pollen 

counts.  
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Table 6.  Adjusted
1
 odds ratios and 95% confidence intervals for single pollutant and co-pollutant models per IQR change in 

pollutants.  Study population includes Harris County, Texas children enrolled in Medicaid between 2005 and 2007.  All pollutant 

metrics are 6-day cumulative means (i.e., L05: lag 0 to lag 5). 
 

Pollutant 
May - Oct Nov - Apr 

IQR Odds Ratio 95% CI IQR Odds Ratio 95% CI 

Single Pollutant Models       

   O3 (8-hr max, ppb) 28.50 1.16 1.07, 1.25 14.46 1.02 0.96, 1.09 

   PM2.5 (24-hr mean, µg/m
3
) 8.10 1.10 1.03, 1.17 6.40 1.06 1.00, 1.14 

   NO2 (1-hr max, ppb) 20.00 1.14 1.06, 1.24 18.00 1.02 0.96, 1.08 

O3 and PM2.5       

   O3 (8-hr max, ppb) 28.50 1.14 1.03, 1.26 14.46 1.02 0.95, 1.09 

   PM2.5 (24-hr mean, µg/m
3
) 8.10 1.03 0.94, 1.12 6.40 1.06 0.99, 1.13 

O3 and NO2       

   O3 (8-hr max, ppb) 28.50 1.09 0.94, 1.26 14.46 1.02 0.94, 1.11 

   NO2 (1-hr max, ppb) 20.00 1.07 0.93, 1.23 18.00 1.00 0.93, 1.09 

PM2.5 and NO2       

   PM2.5 (24-hr mean, µg/m
3
) 8.10 1.04 0.97, 1.12 6.40 1.06 0.99, 1.14 

   NO2 (1-hr max, ppb) 20.00 1.13 1.04, 1.24 18.00 1.00 0.93, 1.07 

 
1
 Adjusted for same-day maximum temperature, mean relative humidity and mold spore, tree pollen, grass pollen and weed pollen 

counts.  
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Table 7. Stratified analysis of associations between 10 ppb increases in 6-day cumulative mean O3, and incident asthma among 

Harris County, Texas children enrolled in Medicaid between 2005 and 2007, by season. 
 

 All Months May - Oct Nov - Apr 

Variable No. of Cases 
Odds 

Ratio
1
 

95% 

Confidence 

Interval 

No. of Cases 
Odds 

Ratio
1
 

95% 

Confidence 

Interval 

No. of Cases 
Odds 

Ratio
1
 

95% 

Confidence 

Interval 

Age Group          

   1 – 4 10,165 1.03 1.00, 1.06 4,445 1.03 1.00, 1.07 5,720 0.99 0.93, 1.04 

   5 - 9 2,420 1.09 1.03, 1.15 993 1.07 1.00, 1.15 1,427 1.14 1.02, 1.27 

   10 – 14 1,227 1.10 1.02, 1.19 563 1.15 1.05, 1.26 664 1.02 0.88, 1.20 

   15 - 17 143 1.22 0.99, 1.51 60 1.35 1.04, 1.75 83 1.02 0.65, 1.61 

Gender          

   Male 7,779 1.05 1.01, 1.08 3,401 1.06 1.02,1.10 4,378 1.00 0.94, 1.06 

   Female 6,176 1.05 1.01, 1.09 2,660 1.05 1.00, 1.09 3,516 1.04 0.97, 1.11 

Race          

   White 1,115 1.01 0.93, 1.10 507 0.98 0.88, 1.08 608 1.07 0.91, 1.26 

   Black 3,688 1.08 1.03, 1.13 1,706 1.09 1.04, 1.15 1,982 1.05 0.96, 1.15 

   Hispanic 8,502 1.03 1.00, 1.07 3,559 1.04 1.01, 1.08 4,943 0.99 0.93, 1.05 

1
 Adjusted for same-day maximum temperature, mean relative humidity and mold spore, tree pollen, grass pollen and weed pollen 

counts.  
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Figure 1. Adjusted odds ratios and 95% confidence intervals for each pollutant at various lags and cumulative lags, by season.  

Odds ratios indicate risk associated with 10 ppb increases in O3 and NO2, and 10 µg/m
3
 increase in PM2.5.  Study population 

includes Harris County, Texas children enrolled in Medicaid between 2005 and 2007.  All models are adjusted for same-day 

maximum temperature, mean relative humidity and mold spore, tree pollen, grass pollen and weed pollen counts.  L0 through L5 

indicate single same-day through lag 5 day pollutant values, and L01 through L05 indicate 2-day through 6-day cumulative mean 

pollutant values.  
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Figure 2. Adjusted odds ratios and 95% confidence intervals for O3 and NO2 exposure metrics determined by (a) Harris County 

averages, (b) the three closest monitors to centroid of zip code of residence, and (c) monitors within 6 miles of the zip code of 

residence.  ORs presented are per 10 ppb increase in exposure.  Study population includes Harris County, Texas children enrolled 

in Medicaid between 2005 and 2007.  All models are adjusted for same-day maximum temperature, mean relative humidity and 

mold spore, tree pollen, grass pollen and weed pollen counts.  L0 through L5 indicate single same-day through lag 5 day pollutant 

values, and L01 through L05 indicate 2-day through 6-day cumulative mean pollutant values.  

 

  



83 

 

CHAPTER V: CONCLUSION 

  The Centers for Disease Control and Prevention has called for a greater emphasis on 

tracking incidence in U.S. asthma surveillance programs, while acknowledging the inherent 

challenges and limited data sources.  In this unique study, we estimated population-based 

asthma incidence using statewide Medicaid claims data, a rich source for studying diseases 

disproportionately impacting low-income children.  This new methodology allows for 

estimation of asthma incidence for specific geographic areas, and by age, gender and race 

using a data source produced specifically for research.  Our results indicate that Medicaid-

enrolled children are at greater risk of being given an asthma diagnosis than those in the 

general population.   

Low income children consistently fare worse on asthma measures including 

prevalence, morbidity, hospitalizations and mortality than children from higher income 

families.  In addition to a higher disease burden, these children also appear to be more 

vulnerable to the effects of air pollution, although it is not clear to what extent this is 

attributable to greater susceptibility, higher exposure levels or other factors.  While many 

studies have demonstrated an effect of ambient air pollutants on asthma morbidity, it is much 

less clear whether air pollutants also play a role in the development of the disease in children.  

Our study addressed this question, evaluating the association of incident childhood asthma 

and ambient air pollution, primarily ozone, in the Houston metropolitan area. 

Ozone has generally not been associated with new-onset asthma, except in cases of 

presumably higher personal exposure or among children with greater genetic susceptibility.  
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In our study of Medicaid-enrolled children in Harris County, Texas, we found small but 

significant increases in incident asthma with increasing ambient O3, NO2 and PM2.5 

concentrations. Children in the highest quartiles of O3, NO2 and PM2.5 exposure had 

significantly higher risk of incident asthma than children in the lowest quartiles.  While 

effects of O3 and NO2 were limited to warm months (May-October), associations with PM2.5 

were seen in both warm and cold seasons (November-April).  For all pollutants, exposure 

metrics based on longer cumulative lag periods (i.e., 4-, 5- and 6-day averages) had the 

strongest effect. 

To our knowledge, this was the first study to estimate asthma incidence using 

Medicaid claims data.  While this methodology has been applied to cancer incidence studies 

(17-25), it was the first to explore the use of claims data to study the development of asthma.  

Texas has the second highest number of Medicaid-enrolled children in the U.S. (89), and this 

large sample size of children at increased risk of asthma allowed for stable statewide 

estimates, as well as the ability to estimate rates by county, age group, gender and 

race/ethnicity. 

The study used a case-crossover design, which enabled us to evaluate associations 

between these pollutants and incident asthma, while controlling for individual-level risk 

factors.  This is particularly useful for a disease such as asthma for which personal, genetic 

and household factors are known to contribute to an individual’s risk of disease (8-10).  This 

study design is typically used to study diseases with a well-defined date of onset.  While it 

can be argued that using the initial diagnosis date seen in claims data for the child does not 

accurately capture date of onset for asthma, it would be an indication that the disease became 
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severe enough that the child required medical attention.  In this sense, it is similar to the 

determination of onset date for other diseases which develop over time. 

Medicaid managed care enrollment increased between 2004 and 2007 and is 

delivered throughout Texas either through the State of Texas Access Reform (STAR) 

program (a capitated, HMO model) or through a  primary care case management (PCCM) 

program (a non-capitated, fee-for-service model).  For the nine major metropolitan areas in 

Texas, Medicaid beneficiaries are required to enroll in the STAR program (with few 

exceptions), while the PCCM program covers the rest of the state.  The percent of Texas 

enrollees in the STAR HMO Plan ranged from 26.6% in 2004 to 37.8% in 2007, while the 

percent in PCCM ranged from 12.6% 2004 to 34.2% in 2006 to 26.0% in 2007.  Enrollees in 

a traditional fee-for-service program ranged from 58.6% in 2004 to 32.2% in 2007. 

Approximately 85% of children enrolled in Medicaid in Harris County are in 

managed care (i.e., STAR).  One concern was that medical claims submitted by providers 

under a capitated payment plan may not contain the level of detail on diagnosis that a fee-for-

service claim would contain, and that this might have resulted in an underestimation of 

asthma cases in this analysis.  A recent validation study by the Texas Health and Human 

Services Commission (93) compared electronic claims records and medical chart data for a 

sample of 2006 Medicaid HMO encounters (n=1,000), with comparisons going back to 2002.  

The authors reported that for the three managed care organizations studied, 63.3% to 85.6% 

of encounters had the same diagnosis in the medical chart and claims record (average of 78% 

across the three plans for the three years).  An average of 16% of encounters studied reported 

a diagnosis in the medical chart that was not in the claims record, and an average of 6% 
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reported a diagnosis in the claims record that did not appear in the medical chart.  These are 

general percentages, including all ages, diagnoses, and metropolitan areas, but offer evidence 

that encounter (i.e., HMO) data available in the MAX files were fairly reliable. 

In this study, asthma cases were identified using both medical and pharmacy claims, 

and pharmacy claims are paid based on fee-for-service, not a capitated (per person) basis.  A 

recent study which used claims data to estimate childhood asthma prevalence among North 

Carolina Medicaid enrollees reported that among all cases identified, >90% had at least one 

asthma medication prescribed (31).  Others have shown that using both medical and 

pharmacy claims to identify asthma cases is preferable to using medical claims alone (76, 

94).  Dombkowski et al. concluded that identifying asthma cases in Medicaid claims files 

using the criteria of 4+ pharmacy claims in a 12-month period provided the greatest year-to-

year consistency and least bias of the algorithms considered, but also resulted in lower 

prevalence estimates than if cases were identified from a combination of medical and 

pharmacy claims (32).  While the use of both medical and pharmacy records is considered by 

CMS to be the preferred method for identifying asthma cases, relying on pharmacy records 

has also been shown to provide reliable estimates.  Although we acknowledge the potential 

issue associated with a capitated payment system, the percent of agreement reported by in the 

HHSC validation study and our ability to use pharmacy as well as medical claims lessened 

the potential for bias in our estimates. 

We did not have personal pollutant exposure estimates, but rather relied on values 

either averaged across monitoring results for Harris County, or estimated based on 

monitoring results near the child’s zip code of residence which may have introduced 
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exposure misclassification.  We also did not have data on time activity patterns or indoor 

exposure levels for the identified cases, although we expect that restricting the study 

population to a single county (and presumably to a group with less heterogeneity in 

socioeconomic status) reduced variability in factors such as air conditioning use in the home 

and time spent outdoors at particular times of the year. 

  Knowledge of asthma incidence patterns is critical to understanding associated risk 

factors.  To our knowledge, this is the first study evaluating the association of incident 

childhood asthma and ambient air pollution in the Houston area.  While our results may not 

be generalizable to children with higher family incomes, they may represent risk for a 

susceptible sub-population in an area with historically poor air quality.  This novel approach 

can be used to identify new-onset asthma cases for incidence rate estimations and analysis of 

possible risk factors in other Medicaid populations, thus increasing understanding of this 

disabling and costly disease.   
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APPENDICES 

Appendix A. Summary of studies evaluating an association between ambient ozone on asthma, 2000-2010  

Table 1. Summary of study design 

 

Source Setting Study Design Sample Size Definition of Exposure Definition of Outcome 

Akinbami et al. 

(2010)(41) 

U.S. 

Metropolitan 

Statistical Areas 

(MSAs) sampled 

in the National 

Health 

Interview 

Survey (NHIS) 

Cross-sectional 

34,073 children 

ages 3-17 

sampled in the 

2001-2004 

NHIS 

From EPA Aerometric Information 

Retrieval System (AIRS) by county; 

rolling 12-month average values 

based on quarterly measures of O3 

(8-h max); PM10, PM2.5, SO2, NO2 

(24-h avg.).  Exposure level for each 

child was avg. for 4-quarters prior to 

their NHIS interview. 

Current asthma: yes responses to 

“Has a doctor…ever told you that 

you child has asthma?” and “Does 

your child still have asthma?”  

Asthma attack: yes response to 

“During the past 12 months, has your 

child had an episode or asthma or an 

asthma attack?” 

Babin et al. 

(2008)(78) 

Washington 

D.C. area 

Medicaid 

beneficiaries, 

1994-2005 

Ecologic/Time 

series analysis 

61,218 patient 

encounters 

during the 11-

year period 

(n=9,970 for 

children ages 0-

4, and n=7,841 

for children ages 

5-12) 

Daily maximum 8-hour average 

Daily general acute care (GAC) 

visits for asthma: based on ICD-9 

code of 493.xx in one of the first 

three diagnosis code fields in the 

claims records; excluded records due 

to routine asthma care and follow-up 

(focused on asthma exacerbations).  

Included GAC’s in spring and 

summer months only. 

Burra et al. 

(2009)(49) 

Toronto Ontario; 

claims records 

from Ontario 

Health Insurance 

Plan, 1992-2001 

Time series 

1,051,315 

children ages 1-

17 

Daily maximum 1-hour O3 

 

Lag periods:  L0, L01, L02, L03, 

L04 

Ambulatory (physician) visits for 

asthma: based on ICD-9 code of 

493.xx in claims records 
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Fauroux et al. 

(2000)(79) 

Paris, Jan 1-Dec 

31, 1988 
Time series 

715 children 

ages 1-15 

From existing monitoring network 

throughout Paris; mean daily 8-h O3 

(10 am – 6 pm) 

Daily incidence of asthma: number 

of daily ER visits for acute asthma 

(defined per intl. consensus 

statement: recurrent wheezing and/or 

coughing, especially at night and 

triggered by allergens, exercise, or 

viral infections, provided other 

conditions have been excluded). 

Gent et al. 

(2003)(95) 

Connecticut and 

Springfield, MA 

area, Apr 1-Sept 

30, 2001 

Time series 

271 asthmatic 

children, <12 

years of age; had 

respiratory 

symptoms or 

used asthma 

meds in previous 

12 months 

Monitoring results from 14 sites in 

the region were averaged; maximum 

daily 1-h and 8-h averages; 

categorized as quintiles but also 

modeled as continuous. 

Respiratory symptoms: wheeze, 

persistent cough, chest tightness, 

shortness of breath 

 

Rescue medication 

(bronchodilator) use 

Jaffe et al. 

(2003)(96) 

Cincinnati, 

Cleveland, 

Columbus OH 

Time series 

(ecologic) 

4,416 Medicaid 

enrollees ages 5-

34 with a 

primary asthma 

diagnosis in any 

patient 

encounter record 

during summer 

months (Jun-

Aug):    7/1/91-

6/30/96 

From EPA Aerometric Information 

Retrieval System (AIRS) by city; 

measures included O3 (max 8-h daily 

avg.), PM10 (24-h daily mean), SO2 

(24-h daily mean), NO2 (1-h daily 

max); highest daily mean from all 

monitoring sites in each city was 

used. Restricted analysis to June-Aug 

each year. 

Number of daily Emergency 

Department episodes for asthma: 

ICD9 code of 493.xx listed as first 

diagnosis for any ED visit. 

Jalaludin et al. 

(2000)(80) 

Children from 6 

elementary 

schools in 

Sydney 

Australia 

Prospective 

cohort 

125 children 

 Group 1 

(n=45): Hx of 

wheeze in past 

12 months and 

positive 

histamine 

From air monitoring stations located 

within 2 km of each school; 

measures included max 1-h and mean 

daytime O3 values. Used either 

values averaged across all sites (for 

population regression model) or 

values from the site nearest the 

Highest of three evening peak 

expiratory flow rate (PEFR) 

measurements 
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challenge and 

doctor-

diagnosed 

asthma. 

 Group 2 

(n=60): Hx of 

wheeze in past 

12 months and 

doctor-

diagnosed 

asthma. 

 Group 3 

(n=20): Hx of 

wheeze in past 

12 months 

child’s school (for generalized 

estimating equation models). 

 

Lag periods: 0, 1, 2, 3, 4 

Jalaludin et al. 

(2004)(81) 

Children from 6 

elementary 

schools in 

Sydney 

Australia 

Prospective 

cohort study 

125 children 

 Group 1 

(n=45): Hx of 

wheeze in past 

12 months and 

positive 

histamine 

challenge and 

doctor-

diagnosed 

asthma. 

 Group 2 

(n=60): Hx of 

wheeze in past 

12 months and 

doctor-

diagnosed 

asthma. 

 Group 3 

(n=20): Hx of 

From air monitoring stations located 

within 2 km of each school; 

measures included max 1-h and mean 

daytime O3 values. Used either 

values averaged across all sites (for 

population regression model) or 

values from the site nearest the 

child’s school (for generalized 

estimating equation models). 

 

Lag periods: 0, 1, 2, 3, 4 

Respiratory symptoms (daily 

occurrence): wheeze, wet cough, dry 

cough 

 

Asthma medication use (daily) 
 

Visit to a Dr for asthma (past 24 

hours) 
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wheeze in past 

12 months 

Ko et al. 

(2007)(42) 

Hong Kong: 

hospitalization 

records for 15 

major hospitals 

in Taiwan 

between Jan 

2000 and Dec 

2005 

Retrospective 

ecological study 

(time series) 

69,716 

hospitalization 

episodes, 

including 23,596 

children ages 0-

14 

Daily mean O3 concentration 

between 9 am and 5 pm. 

 

Lag days: 0-5, cumulative lags (0-

1,0-2,0-3,0-4,0-5) 

Hospitalizations: with ICD=493.xx 

as primary diagnosis 

Lewis et al. 

(2005)(97) 

Two 

communities 

within Detroit 

MI (eastside and 

southwest) with 

high proportion 

of low-income 

residents from 

black and Latino 

ethnic groups 

Prospective 

cohort study 

298 children 

with current 

persistent 

asthma, per 

screening 

questionnaire 

(included parent 

report of 

respiratory 

symptom 

frequency, 

physician 

diagnosis of 

asthma, 

prescribed 

asthma 

medication use).  

Final study 

population 

include n=86 

children with 

observed lung 

function tests. 

Daily mean O3 concentration, and 

daily maximum 8-hr average (i.e., 8-

hr peak) for each of the two 

communities 

 

Conducted during 11 2-week 

seasonal measurement campaigns 

between Oct 1999 and May 2002 

Lung Function tests: Peak flow (PF) 

and forced expiratory volume in 1 

second (FEV1) 

 Lowest daily value (lower of the 

morning and evening values for 

the day) 

 Diurnal variability (difference 

between morning and evening 

value divided by the larger of the 2 

values for the day) 



92 

 

Lin et al. 

(2008)(98) 

New York State 

birth cohort, 

births between 

Jan 1995 and 

Dec 1999 

(excluding 

Staten Island) 

Retrospective 

cohort study 

1,204,396 

eligible births, 

with 10,429 

(0.87%) children 

hospitalized for 

asthma through 

12/31/2000 

Daily maximum hourly O3 value 

between 10 am and 6 pm, averaged 

for each of 11 regions in the state. 

 

Constructed 3 exposure indicators  

per region: 

 mean concentration during 

follow-up period 

 mean concentration during ozone 

season (Apr-Oct) 

 exceedance proportion [% of 

follow-up days with O3 levels >70 

ppb {90
th

 percentile}] 

 

Also categorized exposure into 

tertiles for NYC and all other regions 

to analyze dose-response. 

Asthma hospital admissions: 
between 1/1/1996 and 12/31/2000, 

with principal ICD9 diagnosis code 

of 493 

McConnell et al. 

(2002)(51) 

Children’s 

Health Study: 

Twelve 

communities in 

Southern CA 

with low 

residential 

mobility 

Prospective 

cohort 

3,535 children 

ages 9-16 with 

no prior asthma 

diagnosis, 

recruited in 1993 

and 1996, 

followed 

through 1998, 

annual follow-

up survey 

4-year mean O3 levels per 

community: (’94-’97) 

 Daily mean 24-h 

 Daily mean 8-h 

 Daily maximum 1-h 

 

Communities were ranked based on 

4-yr averages and dichotomized into 

the 6 with highest 4-yr means, and 6 

with lowest 4-yr means. 

Incident asthma: ‘yes’ response to 

‘Has a Doctor ever said you had 

asthma?’ since prior year’s survey 

McConnell et al. 

(2003)(99) 

Children’s 

Health Study: 

Twelve 

communities in 

Southern CA 

with low 

residential 

mobility 

Prospective 

cohort 

475 children 

with asthma at 

study entry who 

completed 2+ 

follow-up 

questionnaires 

from 1996-1999 

Annual average of 10am-6pm 

average O3 levels and four-year mean 

levels (1996-1999) were calculated 

for each community. 

Bronchitic symptoms:  during 

previous year, child’s report of daily 

cough for 3 months in a row, 

congestion or phlegm for at least 3 

months in a row, or bronchitis. 
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McConnell et al. 

(2010)(47) 

Children’s 

Health Study: 

Twelve 

communities in 

Southern CA 

with low 

residential 

mobility 

Prospective 

cohort 

2,497 children 

with no history 

of wheeze or 

asthma 

Daily average 8-h O3, 10 am – 6 pm 

per community 

 

Local traffic related pollutant 

exposure incorporating monitoring 

data, as well as modeled values based 

on address of residence and school, 

distance to freeway/roadways, traffic 

density, modeled values of vehicle 

emissions. 

Incident asthma: physician-

diagnosed asthma reported on a 

yearly questionnaire during the 3 

years of follow-up. Date of onset 

assigned as midpoint between the 

two questionnaire dates before and 

after the report of asthma. 

Millstein et al. 

(2004)(100) 

Children’s 

Health Study: 

Twelve 

communities in 

Southern CA 

with low 

residential 

mobility, 2003-

2005 

Retrospective 

cohort/time 

series analysis 

2,081 4
th

 grade 

children 

Monthly average levels of O3 for 

each community, based on 8-h avg. 

between 10am-6pm 

Monthly prevalence of wheeze: 

parent answered yes to ‘Has your 

child’s chest ever sounded wheezy or 

whistling, including times when he or 

she had a cold?’ 

Monthly asthma medication use 
(children with physician-diagnosed 

asthma) 

Moore et al. 

(2008)(101) 

Southern 

California (Los 

Angeles and 

surrounding 

area) 

Ecologic study 13,209,192 

Quarterly average concentrations of 

1-h daily maximum O3; spatial 

interpolation (inverse distance 

weighting) used to estimate O3 levels 

for each of 200 10 km x 10 km grids. 

Quarterly hospital discharges for 

asthma: ICD9=493.xx, 

ICD10=J45/46 as first discharge code 

or as second if acute sinusitis or 

pneumonia was listed first; compiled 

per zip code -> grid 

Mortimer et al. 

(2000)(102) 

National 

Cooperative 

Inner-City 

Asthma Study 

(NCICAS): 

Children 

recruited from 

eight urban areas 

incl. Bronx and 

E Harlem NY, 

Cross-sectional 
846 children, 

ages 4-10 

Daily average 8-h O3, 10 am – 6 pm, 

per urban area 

 

June 1 1993 –August 31 1993 levels 

%PEFR:  daily % change from 

diary-specific median of peak flow 

readings 

 

Incidence of symptoms:  occurrence 

of wheezing, cough or chest tightness 

among children who were symptom-

free the previous day. 
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Baltimore, 

Washington DC, 

Detroit, 

Cleveland, 

Chicago & St. 

Louis 

O’Connor et al. 

(2008)(103) 

Inner-City 

Asthma Study; 

low income 

census tracts in 

Boston, the 

Bronx, Chicago, 

Dallas, New 

York, Seattle 

and Tucson, 

8/1998 – 7/2001 

Panel study 
861 children, 

ages 5-12 

Mean 1-h O3 concentration for the 19 

days prior to interview, averaged for 

each community 

Symptoms reported by caretaker 

interview, per 2 week period: 

Days with wheeze, tightness in 

chest, cough 

Nights child woke up because of 

asthma 

Days child slowed down or stopped 

play 

Number of school days missed 

Penard-Morand 

et al. 

(2005)(104) 

Six French 

communities; 

children 

recruited from 

108 randomly 

chosen schools 

Cross-sectional 
6,672 children, 

ages 9-11 

Three-year averaged O3 

concentration for each school 

(1/1/1998 – 12/31/2000) address. 

 

Exposure classified two ways: 

 Low vs. high (i.e., above vs. 

below median at each school) 

 Continuous variable, per 10 µg/m
3
 

increase 

Exercise-induced bronchial 

reactivity (EIB):peak expiratory 

flow (PEF) decrease >10% after 

exercise (during clinical evaluation) 

Flexural dermatitis: itchy rash on 

elbow, knee, ankle, neck or eyes 

(during clinical evaluation) 

Past year symptoms of wheeze, 

asthma, rhinoconjunctivitis, atopic 

dermatitis: assessed on International 

Study of Asthma & Allergies in 

Childhood (ISAAC) questionnaire; 

asthma defined as combination of 

‘yes’ to wheeze in past year and ‘yes’ 

to ‘Has you child ever had asthma?’ 

Lifetime asthma, allergic rhinitis, 

atopic dermatitis: from ISAAC 

questionnaire…’Has child ever had 

asthma/hay fever/eczema.’ 
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Lifetime atopy: 1+ positive skin 

prick test (SPT) to one of the 7 tested 

aeroallergens (i.e., pollen, indoor 

allergens, molds)  

Petroeschevsky 

et al. 

(2001)(105) 

Brisbane City, 

Australia 

(population ~ 

763,000); daily 

hospital 

admissions 

between 

1/1/1987 and 

12/31/1994 

Time-series 

study 

13,246 

admissions for 

asthma (all ages) 

Daily average 8-h O3, 10 am – 6 pm, 

and daily maximum 1-h 

concentration 

 

Lag periods used: 0, 1, 2, 3, 0-2, 0-4 

Daily (emergency) hospital 

admissions for asthma: ICD9=493; 

daily counts of admissions to public 

hospitals by Brisbane residents 

Rabinovitch et 

al. (2004)(106) 

Denver CO; 

study conducted 

over 3 

consecutive 

winters (Nov-

Mar) with 

asthmatic 

children 

recruited from a 

single school. 

Panel study 

year 1: n=41, 

year 2: n=63, 

year 3: n=43; 

ages 6-12 

Daily 1-h maximum O3 

 

‘3-day moving average’: Lag period 

0-2 (presumed) 

Asthma symptom exacerbation: 

based on daily reported need for 

inhaled steroids or prednisone; also, 

based on weekly reports of 

hospitalization, emergency or urgent 

care for asthma. Treated as a 

dichotomous variable. 

Ramadour et al. 

(2000)(107) 

L’Etang-de-

Berre area of 

France, 30 km 

west of 

Marseille 

(highest O3 

levels in France 

due to 

petrochemical 

industry, heavy 

traffic, sun 

exposure).  

Cross-sectional 

study 

2,445 children, 

ages 13-14 
Daily average 8-h O3 for each town 

Prevalence of asthma and 

asthmatic symptoms:  based on 

children’s questionnaire responses  

(history of asthma attack, wheeze 

ever, wheeze last 12 months, severe 

wheeze last 12 months) 
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‘Control’ 

population 

sampled from 

Arles and Salon-

de-Provence, 

nearby but 

further from 

industrial sites. 

Schildcrout et al. 

(2006)(48) 

Eight North 

American cities 

(Albuquerque 

NM, Baltimore 

MD, Boston 

MA, Denver 

CO, San Diego 

CA, Seattle WA, 

St Louis MO, 

Toronto ON) 

Meta-analysis of 

8 large within-

city panel 

studies 

990 children, 

ages 5-12 years  

Daily 1-h maximum O3 for each city 

(May-Sept only) 

 

Lag periods used: 0, 1, 2, 0-2 

Daily record of asthma symptoms: 

0 = no asthma symptoms 

1 = 1-3 mild asthma episodes, each 

lasting <=2h 

2 = 4+ mild asthma episodes or 1+ 

that temporarily interfered with 

activity, play, school or sleep 

3 = 1+ asthma episodes lasting >2h 

or resulting in shortening of normal 

activity, seeing a Dr for acute care or 

going to a hospital for acute care 

 Eventually dichotomized into 0 

vs. 1-3 

 

Daily number of rescue inhaler 

puffs 

Szyszkowicz 

(2008)(108) 

Edmonton 

Canada; daily 

asthma ER visits 

between 

1/1/1992 and 

3/31/2002 

Time series 

62,563 asthma 

ER visits over 

3,652 days; ages 

0-19 (n=30,396), 

ages 0-9 

(n=18,891 

Daily average 24-h O3 

 

Lag periods: L0, L1, L2 

Daily ER asthma visits: discharge 

diagnosis of asthma (ICD9=493.xx) 

Tolbert et al. 

(2000)(46) 

Atlanta, GA; 

summers of 

1993-1995 

Ecologic, case-

control, time 

series 

128,969 

pediatric ER 

visits and of 

these 5,934 (5%) 

were for asthma, 

Daily average 8-h O3, 1-day lag  

Daily maximum 8-h O3 

 

Used universal kriging to model O3 

concentration 

Asthma ER admissions: from 7 of 8 

major Atlanta-area ERs (handle 80% 

of pediatric emergency care in the 

city).  
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among children 

ages 0-16 

Any diagnosis of asthma 

(ICD9=493.xx), wheezing 

(ICD9=786.09) or reactive airway 

disease (ICD9=519.1) in diagnostic 

codes for the visit. 

Wilhelm et al. 

(2008)(109) 

Los Angeles and 

San Diego 

Counties, CA 

 

Sampled from 

California 

Health 

Interview 

Survey 
(assessing 

feasibility of 

linking CHIS 

and other data 

sources) 

Cross-sectional 

612 children 

ages 0-17, 

previously 

diagnosed with 

asthma by a 

physician 

Annual average O3 concentration, 

based on 1-h measurements; 

estimated for each subject based on 

nearest monitor within 5 miles of 

reported residential cross-street 

intersection, for the 1-year period 

prior to interview date. 

During past 12 months: 

Frequency of asthma symptoms 

(coughing, wheezing, shortness of 

breath, chest tightness, phlegm) : 

dichotomized to children reporting 

daily/weekly symptoms in past year 

vs. those reporting less than weekly 

symptoms 

 

Asthma hospitalization or ER visit: 

dichotomized to children reporting 1 

or more ER visit or hospitalization 

vs. those reporting none 
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Table 2. Confounders and effect modifiers assessed/included in studies 

 

Source Confounders Effect Measure Modifiers 

Akinbami et al. 

(2010)(41) 

Age (at time of interview) 

Sex 

Parental education (<HS, HS or greater, unknown) 

Race (white, black, Am Indian, Asian, other, Puerto Rican, Mexican, other 

Hispanic) 

Adult smoker in household (yes, unknown) 

Single parent household 

Poverty status (based on reported income and US Census poverty 

thresholds) 

Region of residence (US Census regions: Northeast, South, Midwest, West) 

 

Babin et al. 

(2008)(78) 

Tree pollen, grass pollen, weed pollen, mold spores, PM2.5, PM10, max/min 

daily temperature, daily average dew point temperature, day of the week 

Age group (all, 5-12, 21-49) and ward (specific 

outcome estimates not provided) 

Burra et al. 

(2009)(49) 

Sex, maximum temperature, relative humidity, barometric pressure, day of 

the week 

Income quintile (based on average census tract 

family income), age group (1-17, 18-64) 

Fauroux et al. 

(2000)(79) 

Daily average temperature and relative humidity 

Home visits by Paris ER doctor organization for flu-like symptoms 

Pollen counts (Betulae and Graminae) 

Month, day of the week 

Holidays 

 

Gent et al. 

(2003)(95) 

Maximum daily temperature 

Co-pollutant models which included PM2.5 

Any maintenance medication use during the 183-

day period (proxy for asthma severity) 

Jaffe et al. 

(2003)(96) 

Day of the week 

Minimum daily temperature 

Year 

Dispersion parameter 

An overall trend (presence of a linear time trend for the entire study period) 

City 

Jalaludin et al. 

(2000)(80) 

Co-pollutants (PM10, NO2) 

Meteorological variables (temperature and humidity) 

Time trends (number of days since the start of the study) 

Among children with history of wheeze, 

presence/absence of airway hyper-responsiveness to 

histamine challenge and presence/absence of a 
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Season (Feb-Apr, May-Sep, Oct-Dec) 

Number of hours spent outdoors 

Total pollen and Alternaria counts 

doctor diagnosis of asthma. 

Jalaludin et al. 

(2004)(81) 

Co-pollutants (PM10, NO2) 

Meteorological variables (temperature and humidity) 

Time trends (number of days since the start of the study) 

Season (Feb-Apr, May-Sep, Oct-Dec) 

Number of hours spent outdoors 

Total pollen and Alternaria counts 

Among children with history of wheeze, 

presence/absence of airway hyper-responsiveness to 

histamine challenge and presence/absence of a 

doctor diagnosis of asthma. 

Ko et al. (2007)(42) 
Co-pollutants (NO2, SO2,PM10, PM2.5), mean daily temperature, mean daily 

relative humidity, day of the week, holiday indicator, season 
Age group  (0-14, 15-65) 

Lewis et al. 

(2005)(97) 

Child’s sex, home location (eastside, southwest), annual family income 

(<$10,000, $10,000-$19,900, $20,000-$39,999, $40,000+) , presence of 1 

or more smokers in the home, race (black, other), season, intervention 

group (vs. control group). Also included multi-pollutant models with PM2.5 

and PM10 

From daily medication & symptom diary completed 

by parent: 

Maintenance corticosteroid use (=[a] at least 7 of 14 

diary days were completed, and [b] parent reported 

use of an inhaled or oral steroid for >=50% of the 

days that were completed. 

Presence of upper respiratory infection (=’yes’ to 

‘Does your child have a cold, the flu, or other 

respiratory infection today?’) 

Lin et al. (2008)(98) 

Child’s sex, birth weight (<=2500 g, >2500 g), gestational age (<260 days, 

>=260 days), age at admission or end of study (range, 1-6 yrs), maternal 

age at delivery (<20 or>35 yrs, 20-35 yrs), smoking status during 

pregnancy (yes, no), maternal race (black, other), ethnicity (Hispanic, non-

Hispanic), education level (<12 yrs, >=12 yrs), insurance type during 

pregnancy (Medicaid, self-paid, other), geographic area (NYC, other). 

Also, census block-group information including median household income, 

% population below poverty level (highest quartile vs. others), hospital 

density (# hospitals per 100 km
2 
in each ozone region.  Proportion of days 

during entire follow-up period with extreme temperatures (90
th

 percentile of 

the daily average temperature [72.3° F] – compared highest quartile with all 

others); effects of co-pollutants using Air Quality Index (AQI) for PM10, 

PM2.5, NO2, CO, SO2 – cumulative AQI for each region was the average 

level of daily AQI during the follow-up period.  Dropped hospital density, 

Geographic region (NYC vs. other), child’s age (1-2 

vs. >2), % below poverty level (highest quartile vs. 

other), maternal education (<12 yrs v. >=12 yrs), 

Medicaid/self-paid birth vs. other insurance, 

ethnicity (Hispanic vs. non-Hispanic) 
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median household income and AQI values in the final model. 

McConnell et al. 

(2002)(51) 

Child’s sex, age (<9.7 yrs, 9.7-11.49 yrs, 11.49+ yrs), race/ethnicity, history 

of allergies, reported time spent outdoors, current maternal smoking, 

history of asthma in either parent, membership of a health insurance plan, 

SES (low: <$15,000 income or if income not reported, <12
th

 grade 

education; high: >=$100,000 family income or if not reported, postgraduate 

training; medium: all other; body mass index at baseline 

Sports team participation (i.e., number of sports 

played) 

McConnell et al. 

(2003)(99) 

Child’s sex, age, race, history of allergies, whether child smoked, in utero 

tobacco smoke exposure, family history of asthma in either parent, 

membership in a health insurance plan, low SES (<$15,000 income or <12
th

 

grade education), team sport participation, amount of time spent outdoor 

from 2-6 pm 

 

McConnell et al. 

(2010)(47) 

Race/ethnicity, sex, age at study entry, exposure to cigarette and wildfire 

smoke, health insurance, housing characteristics, history of allergy, parental 

asthma 

Source of exposure (home vs. school) 

Millstein et al. 

(2004)(100) 

Age, sex, race, allergies, pet cats, carpet in home, environmental tobacco 

smoke, heating fuel, heating system, water damage in home, education 

level of parent, physician-diagnosed asthma 

Season, time typically spent outdoors 

Moore et al. 

(2008)(101) 

Race, income, quarterly average temperature, relative humidity, foreign 

born 
 

Mortimer et al. 

(2000)(102) 

Occurrence of rain past 24-hrs (yes/no), wet-bulb temperature past 12-hrs, 

urban area, time of data collection (baseline, 3-, 6-, 9-mo assessment), day 

of study (since 6/1/1993); analyses stratified by time of day (morning vs. 

evening) 

Sex, race, birth characteristics (normal vs. low BW, 

full-term vs. premature), atopy (0, 1-3, 4+), 

medications at baseline, household crowding, air 

conditioner, type of stove, allergen exposure 

(carpeting in bedroom [dust mite levels], cat in 

home, cockroaches in home, any antigen). Of these, 

results presented only for normal birth weight/full-

term vs. LBW/premature 

O’Connor et al. 

(2008)(103) 

Site, month, temperature, call number, household environmental 

intervention group, monthly pollutant values by city 
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Penard-Morand et al. 

(2005)(104) 

Age, sex, family history of allergy (i.e., father or mother ever had asthma, 

allergic rhinitis or eczema), passive smoking (any current exposure to 

cigarettes/pipes/cigars in the home), parental education (highest parental 

school education) 

 

Petroeschevsky et al. 

(2001)(105) 

Year, influenza admission, holiday indicator, day of the week, maximum 

and minimum temperature, humidity 
Season 

Rabinovitch et al. 

(2004)(106) 

Temperature, humidity, barometric pressure, year, time trend, weekend, 

holiday, upper respiratory infection. 
 

Ramadour et al. 

(2000)(107) 

Family history of asthma (at least one case among 1
st
-degree relatives), SES 

(assessed by occupation and presence of sibling in child’s bedroom – 

low/med/high), smoking status (=smoker if smoked at least 1 cigarette daily 

for at least 6 months), passive smoking (# cigarettes smoked at home by 

family members), co-pollutants (SO2, NO2) 

 

Schildcrout et al. 

(2006)(48) 

Day of the week, ethnicity (white, black, Hispanic/Latin, other), annual 

family income (<$15,000, $15,000-$29,999, $30,000-$49,999, $50,000+, 

no answer), age- and log-transformed sensitivity to the methacholine 

challenge, seasonal factors (temperature, humidity), calendar date, monthly 

pollutant values by city 

 

Szyszkowicz 

(2008)(108) 
Temperature, relative humidity 

Gender, age group (<10 , >=10 yrs), season (all, 

warm, cold) 

Tolbert et al. 

(2000)(46) 

Age (0-1.9, 2-5, 6-10, 11-16), race (black, white, other, unknown), sex, day 

of summer*year, Medicaid payment status 
 

Wilhelm et al. 

(2008)(109) 

Race/ethnicity, poverty level, co-pollutants (PM2.5, PM10); age, sex, 

insurance status, delays in receiving asthma care, asthma medication use, 

county were dropped from final models 
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Table 3. Summary of results 

 

Source Subgroup analysis Measure of Association 95% Confidence Interval 

Akinbami et al. 

(2010)(41) 

Current asthma: 

5 ppb increase 

Quartiles (2
nd

, 3
rd

, 4
th

 compared to 1
st
) 

 

Asthma attack: 

5 ppb increase 

Quartiles (2
nd

, 3
rd

, 4
th

 compared to 1
st
) 

 

O3 levels: median=39.8 ppb, IQR=35.9-43.7 ppb 

Quartiles: 2.3-11.7, 11.8-21.2, 21.3-30.7, 30.8-40.2 ppb 

 

OR = 1.08 [adjusted] 

OR = 0.99, 1.09, 1.56 [adjusted] 

 

 

OR = 1.07 [adjusted] 

OR = 0.89, 0.98, 1.38 [adjusted] 

 

 

 

 

(1.02, 1.14) 

(0.78, 1.26), (0.85, 1.41), (1.15, 

2.10) 

 

 

(1.00, 1.13) 

(0.67, 1.17), (0.73, 1.32), (0.99, 

1.91) 

 

 

 

Babin et al. 

(2008)(78) 

% Average change in general acute care visits for 

asthma: (per 0.01 ppm increase in max 8-h average O3) 

Ages 5-12 

 

 

Percent change: 2.4% 

 

 

(0.2%, 4.6%) 

Burra et al. 

(2009)(49) 

Asthma ambulatory visits, ages 1-17: (per 20 ppb) 

Males 

 Q1 (lowest SES) 

 Q5 (highest SES) 

 Q1/Q5 

Females 

 Q1 (lowest SES) 

 Q5 (highest SES) 

 Q1/Q5 

 

(Lag 0 listed above but results for other lag periods were 

similar) 

O3 levels: mean 1-h max=33.3 ppb, max 1-h max=121 ppb, 

IQR=20 ppb 

0.961 

0.966 

0.995 

 

0.955 

0.962 

0.993 

 

 

 

(0.956, 0.966) 

(0.961, 0.972) 

(0.994, 0.995) 

 

(0.949, 0.961) 

(0.955, 0.969) 

(0.983,1.003) 
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Fauroux et al. 

(2000)(79) 

Asthma ER visits: 

(per 100 µg/m
3
 increase) 

Lag 0 

Lag 1 

Lag 2 

 

O3 levels: mean=31.0 µg/m
3
, min/max=1.5-133 µg/m

3
 

 

 

RR = 1.15 

RR = 1.52 

RR = 1.01 

 

 

 

 

(0.80, 1.66) 

(1.06, 2.19) 

(0.70, 1.47) 

 

 

Gent et al. 

(2003)(95) 

Respiratory Symptoms: (per 50 ppb same day increase in 

1-h avg.) 

Wheeze 

Chest tightness 

 

Respiratory Symptoms: (8-h avg. >= 63.3 ppb, same day) 

Chest tightness 

Shortness of breath 

Bronchodilator use 

 

O3 levels: mean 1-h avg.=59 ppb, mean 8-h avg.=51 ppb 

Quintiles (1-h): <43.2, 43.2-51.5, 51.6-58.8, 58.9-72.6, 

>=72.7 ppb 

Quintiles (8-h): <39.1, 39.1-45.8, 45.9-52.0, 52.1-63.2, 

>=63.3 ppb 

 

OR = 1.35 

OR = 1.47 

 

 

OR = 1.64 

OR = 1.45 

OR = 1.09 

 

 

[all results are for maintenance 

medication users; no significant 

associations with non-users] 

 

(1.11, 1.65) 

(1.18, 1.84) 

 

 

(1.23, 2.17) 

(1.10, 1.91) 

(1.02, 1.17) 

 

 

 

 

 

Jaffe et al. 

(2003)(96) 

Percent change in ED visits for asthma (per 0.01 ppm 

increase in O3) 

 

Attributable risk for an asthma ED visit (per 0.01 ppm 

increase in O3) 

 

Percent Change: 3% 

 

Cincinnati: 0.60; Cleveland: 0.11; 

Columbus: 0.57 

(0, 6%) 

 

 

 

Jalaludin et al. 

(2000)(80) 

Daily mean deviation in PEFR and same-day O3 

concentration 

All children 

Group 1 

Group 2 

Group 3 

 

Β-coefficient = -0.88 

Β-coefficient = -2.61 

Β-coefficient = -0.36 

Β-coefficient =  1.91 

 

p = 0.04 

p = 0.001 

p = 0.46 

p = 0.04 
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Jalaludin et al. 

(2004)(81) 

All children 

Wheeze 

Dry cough 

Wet cough 

Inhaled β2-agonist use 

Inhaled corticosteroid use 

Doctor visit for asthma                                                                                                    

 

[no significant associations by group or lag time for O3] 

 

O3 levels: mean 24-h avg.=1.2 pphm, max=4.3 pphm, 

IQR=0.83 

Quartile (24-h avg) means: 0.58, 1.03, 1.49, 2.34 pphm 

 

OR = 0.98 

OR = 0.97 

OR = 1.00 

OR = 0.97 

OR = 0.98 

OR = 0.89 

 

 

 

 

 

(0.89, 1.09) 

(0.88, 1.07) 

(0.93, 1.07) 

(0.91, 1.03) 

(0.95, 1.02) 

(0.64, 1.24) 

 

 

 

 

Ko et al. (2007)(42) 

Asthma Hospitalizations:  (per 10 µg/m
3
 increase in O3) 

Single pollutant model, ages 0-14 (‘best’ lag: cumulative 0-

5) 

 

RR = 1.039 

 

(1.030, 1.048) 

Lewis et al. 

(2005)(97) 

Greater association with O3 daily 8-hr peak levels than 

daily mean. No significant associations seen for children 

not on CSs, and little effect seen for children not reporting 

URIs. Strongest effects seen for lag 1 and lag 2, not for lag 

3-5. 

 

Single Pollutant Model: O3 daily 8-hr peak 

Diurnal variability FEV1, per 1 IQR (children on 

maintenance CSs) 

 Lag 1  

 Lag 2 

Lowest daily value FEV1, per 1 IQR (children on 

maintenance CSs) 

 Lag 1 

 Lag 2 

Diurnal variability FEV1, per 1 IQR (children reporting 

URI on that day) 

 Lag 1 

 Lag 2 

 

 

 

 

 

 

 

Coefficient = 1.75 

Coefficient = 3.19 

 

Coefficient = -1.00 

Coefficient = -3.95 

 

Coefficient = 5.79 

Coefficient = 4.74 

 

Coefficient = -3.00 

Coefficient = -2.64 

 

 

 

 

 

 

 

(-0.20, 3.70) 

(0.29, 6.08) 

 

(-5.68, 3.68) 

(-6.78, -1.12) 

 

(1.74, 9.85) 

(0.46, 9.02) 

 

(-5.16, -0.84) 

(-5.45, 0.18) 
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Lowest daily value FEV1, per 1 IQR (children reporting 

URI on that day) 

 Lag 1 

 Lag 2 

 

O3 levels:  

Daily mean: 27.6 ppb (Eastside), 26.5 ppb (Southwest), 

IQR=14.5 

Daily peak 8-hr mean: 40.4 ppb (Eastside), 41.4 ppb 

(Southwest), IQR=16.0 

Lin et al. (2008)(98) 

Asthma Hospitalizations (per 1-ppb increase/day) 

Mean concentration during follow-up period 

Mean concentration during ozone season 

Exceedance proportion (%)>70 ppb with IQR increase 

Child’s age (month) / 1-2 vs. >2 

Race (black vs. other) 

Sex (female vs. male) 

Ethnicity (Hispanic vs. non-Hispanic) 

Birth weight (low vs. normal) 

Poverty level (highest quartile vs. other) 

Maternal insurance (Medicaid vs. other) / Medicaid & self-

paid vs. other 

 

O3 levels:  

Mean during entire follow-up period=41.06 ppb 

Mean during O3 season=50.62 ppb 

Exceedance proportion IQR=2.51% increase, avg=9.72%, 

range 1.66-26.27% 

Tertiles (NYC): 31.46-37.29, 37.30-38.11, 38.12-50.13 ppb 

Tertiles (NY State): 33.50-42.57, 42.58-45.06, 45.07-55.19 

ppb 

Overall / Stratified 

OR = 1.16 

OR = 1.22 

OR = 1.68 

OR = 0.93 / 1.29 vs. 1.03 

OR = 1.97 

OR = 0.58 

OR = 1.99 / 1.27 vs. 1.13  

OR = 1.55 

OR = 1.21 / 1.25 vs. 1.14 

OR = 1.26 / 1.22 vs. 1.11 

 

 

 

 

 

 

 

 

 

 

Overall only 

(1.15, 1.17) 

(1.21, 1.23) 

(1.64, 1.73) 

(0.93, 0.94) 

(1.88, 2.07) 

(0.56, 0.61) 

(1.89, 2.09) 

(1.44, 1.67) 

(1.15, 1.27) 

(1.19, 1.33) 

 

 

 

 

 

 

 

 

 

 

McConnell et al. 

(2002)(51) 

Asthma Incidence (IR) and relative risks (RR) 

Low ozone communities 

0 sports played 

1 

 

IR = 0.027, RR = 1.0 

IR = 0.033, RR = 1.3 

IR = 0.023, RR = 0.8 

 

(0.9, 1.9) 

(0.5, 1.4) 

(0.4, 1.6) 
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2 

>=3 

High ozone communities 

0 sports played 

1 

2 

>=3 

 

O3 levels – Low ozone communities (4-yr median / 

range):  

Maximum 1-h O3: 47.6 ppb / 37.7-67.9 ppb 

Mean 8-h O3: 40.7 ppb / 30.6-50.9 ppb 

Mean 24-h O3: 25.1 ppb / 20.6-28.7 ppb 

O3 levels – High ozone communities (4-yr median / 

range):  

Maximum 1-h O3: 73.5 ppb / 69.3-87.2 ppb 

Mean 8-h O3: 56.9 ppb / 55.8-69.0 ppb 

Mean 24-h O3: 33.1 ppb / 30.7-59.8 ppb 

IR = 0.019, RR = 0.8 

 

IR = 0.018, RR = 1.0 

IR = 0.021, RR = 1.3 

IR = 0.020, RR = 1.3 

IR = 0.050, RR = 3.3 

 

 

 

 

 

 

 

 

 

(0.8, 2.0) 

(0.7, 2.3) 

(1.9, 5.8) 

 

 

 

 

 

 

McConnell et al. 

(2003)(99) 

Bronchitic symptoms: (per 1 ppb increase in O3) 

Between communities 

Within communities 

 

O3 levels (4-yr avg.): mean=47.2 ppb, min-max=28.3-65.8 

ppb 

OR = 0.99 

OR = 1.06 

 

 

(0.98, 1.01) 

(1.00, 1.12) 

 

 

McConnell et al. 

(2010)(47) 

New onset asthma: (per 30.3 ppb increase in O3) 

Adjusted for age, race, sex, random effects for 

community/school 

Adjusted also for traffic-related pollution at home and 

school 

 

O3 levels (4-yr avg.): mean=44.6 ppb, min-max=29.5-59.8 

ppb, IQR=11.1 ppb 

HR = 0.76 

 

HR = 1.01 

 

 

(0.38, 1.54) 

 

(0.49, 2.11) 

 

 

Millstein et al. 

(2004)(100) 

Monthly prevalence of asthma medication use: (per 

IQR=27.83 ppb increase in O3) 

Annual 

 

 

1.80 

 

 

(1.19, 2.70) 
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Mar-Aug 

Sep-Feb 

 

Monthly prevalence of wheeze: (per IQR=27.83 ppb 

increase in O3) 

Annual 

Mar-Aug 

Sep-Feb 

 

Monthly prevalence of wheeze: (per IQR=27.83 ppb 

increase in O3) 

Time spent outdoors above the median 

Time spent outdoors below the median 

2.35 

1.31 

 

 

0.84 

2.87 

0.55 

 

 

 

3.07 

1.13 

(0.92, 6.05) 

(0.57, 3.01) 

 

 

(0.62, 1.14) 

(0.65, 12.63) 

(0.34, 0.90) 

 

 

 

(1.61, 5.86) 

(0.47, 2.71) 

Moore et al. 

(2008)(101) 

Number of asthma discharges: (for each 10 ppb increase 

in quarterly average 1-h maximum O3) 

 

Proportion of asthma discharges at median O3 

concentration (87.7 ppb): (for each 10 ppb increase above 

the median) 

1.4 discharges/105 age-eligible 

population 

 

 

4.6% increase in discharges 

 

(0.71, 2.09 per 105 popn) 

 

 

 

 

Mortimer et al. 

(2000)(102) 

%PEFR (morning): (for each 15 ppb increase in O3 

concentration) 

Normal BW and full-term 

LBW or premature 

 

Incidence of morning symptoms: (for each 15 ppb 

increase in O3) 

Normal BW and full-term 

LBW or premature 

 

O3 levels: mean across cities: 48 ppb; <5% of days 

exceeded 80 ppb (8-h mean)  

Strongest effect seen in 3-5 day averaged lag 

 

 

-0.30% 

-1.83% 

 

 

 

OR = 1.09 

OR = 1.42 

 

 

 

 

 

 

(-0.79 - 0.19) 

(-2.65 - 1.01) 

 

 

 

(0.95, 1.24) 

(1.10, 1.82) 

 

 

 

 

O’Connor et al. 

(2008)(103) 

 

Comparison of 90
th

 to 10
th

 percentile change (26.7 ppb): 

 

(‘pollution impact’ measures % 

change in symptom frequency – 

based on coefficient of negative 
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Wheeze-cough days/2 wk 

Nighttime asthma, nights/2 wk 

Slow play-days/2 wk 

Missed school, >= 1 vs. 0 days/d wk 

binomial model) 

Pollution Impact = 1.03 

Pollution Impact = 0.85 

Pollution Impact = 0.87 

OR = 1.31 

(0.82, 1.28) 

(0.64, 1.14) 

(0.67, 1.14) 

(0.83, 2.06) 

Penard-Morand et 

al. (2005)(104) 

Past year asthma (per 10 µg/m
3
 increase in O3) 

Past year wheeze (per 10 µg/m
3
 increase in O3) 

Lifetime asthma (per 10 µg/m
3
 increase in O3) 

 

O3 levels (3-yr avg.): ‘Low’: mean=34.1 µg/m
3
, 

range=30.0-39.3 µg/m
3
 

                                     ‘High’: mean=50.9 µg/m
3
, 

range=43.7-63.7 µg/m
3
 

57.6% of children were in schools with high exposure 

OR = 1.11 

OR = 1.12 

OR = 1.09 

 

 

 

 

 

(0.94, 1.30) 

(0.98, 1.28) 

(0.97, 1.22) 

 

 

 

 

 

Petroeschevsky et 

al. (2001)(105) 

Asthma Hospital Admissions (per 1 pphm increase in 8-

hr mean O3) 

 

O3 levels: 

8-hr:  mean=1.90 pphm, min-max=0.17-6.47 pphm 

1-hr max:  mean=2.53 pphm, min-max=0.25-10.73 pphm 

RR = 1.064 

 

 

 

 

(1.015, 1.115) 

 

 

 

 

Rabinovitch et al. 

(2004)(106) 

Asthma symptom exacerbation (per 1 SD increase in O3 

= 11.4 ppb) 

Mean days with symptoms (per 1 SD increase in O3) 

(no associations with pulmonary function or medication 

use)  

 

O3 levels: 1-hr max:  mean=28.2 ppb, min-max=0-70 ppb 

OR = 0.910 

 

OR = 1.083 

 

 

 

(0.785, 1.056) 

 

(1.002, 1.170) 

 

 

 

Ramadour et al. 

(2000)(107) 

Regression analysis: average O3 level vs. prevalence ‘ever 

asthma’ 

Regression analysis: average O3 level vs. prevalence 

‘wheezing past 12 mos’ 

 

Logistic Regression (per 1 µg/m
3
 increase in O3) 

‘Ever asthma’ by family history of asthma 

‘Ever asthma’ by history of respiratory disease in infancy 

R = 0.959 

R = 0.714 

 

 

OR = 3.01 

OR = 4.3 

OR = 2.5 

OR = 4.3 

p < 0.001 

p < 0.05 

 

 

(2.05, 4.43) 

(2.7, 6.9) 

(1.7, 3.6) 

(2.7, 7.0)  



109 

 

12-mth history of wheezing by family history of asthma 

12-mth history of wheezing by history of respiratory 

disease in infancy 

Schildcrout et al. 

(2006)(48) 

GEE analysis (single pollutant model, per 30 ppb increase 

in max 1-h O3) 

Asthma symptoms 

Lag 0 

Lag 1 

Lag 2 

Lag 0-2 

 

Inhaler Use 

Lag 0 

Lag 1 

Lag 2 

Lag 0-2 

 

O3 levels: medians (ppb) 

Albuquerque 55.0, Baltimore 65.8, Boston 52.2, Denver 

60.5, San Diego 59.3, Seattle 43.0, St. Louis 59.3, Toronto 

43.5 

OR = 1.06 

OR = 1.00 

OR = 1.02 

OR = 1.01 

 

 

OR = 1.01 

OR = 0.99 

OR = 1.00 

OR = 1.00  

 

 

(0.92, 1.23) 

(0.88, 1.14) 

(0.92, 1.13) 

(0.94, 1.09) 

 

 

(0.92, 1.10) 

(0.92, 1.06) 

(0.95, 1.06) 

(0.95, 1.04) 

 

 

Szyszkowicz 

(2008)(108) 

% Change in relative risk for ED visits (per IQR 

increase in 24-h mean O3) 

Lag 0 

 Full year 

 Warm season 

 Cold season 

Lag 1 

 Full year 

 Warm season 

 Cold season 

O3 levels: 24-hr mean=18.6 ppb, IQR=14.0 ppb 

 

 

 

 

%RR = 8.4% 

%RR = 10.8% 

%RR = 10.1% 

 

%RR = 5.2% 

%RR = 7.3% 

%RR = 6.4% 

 

 

 

 

 

(4.0, 12.9) 

(4.1, 18.0) 

(4.1, 16.3) 

 

(1.0, 9.6) 

(0.7, 14.3) 

(0.7, 12.5) 
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Tolbert et al. 

(2000)(46) 

GEE analysis – rate ratio per 20 ppb increase in max 8-h 

O3 

 

Logistic regression analysis - per 20 ppb (?) increase in 

max 8-h O3 

Overall (kriged, 8-hr avg., 1-day lag) 

Black vs. white 

Male vs. female 

Medicaid vs. non-Medicaid 

 

>=100 ppb vs. <50 ppb 

 

O3 levels: 

Mean 8-h avg.=59.3 ppb, range=18.2-113 

Mean 1-h avg.=68.8 ppb, range=22.8-132 

 

RR = 1.040 

 

 

 

OR = 1.04 

OR = 2.17 

OR = 1.40 

OR = 1.25 

 

OR = 1.23 

 

 

 

 

 

(1.008, 1.074) 

 

 

 

(1.02, 1.07) 

(2.03, 2.31) 

(1.33, 1.48) 

(1.18, 1.33) 

 

(1.07, 1.40) 

 

 

 

 

Wilhelm et al. 

(2008)(109) 

Daily/weekly asthma symptoms (per 1 pphm increase in 

O3) 

 Single pollutant model, crude 

 Single pollutant model, adjusted for race/ethnicity, 

poverty level 

 Two pollutant model, adjusted for PM10, race/ethnicity, 

poverty level 

 Two pollutant model, adjusted for PM2.5, race/ethnicity, 

poverty level 

 

ED visit or hospitalization (per 1 pphm increase in O3) 

 Single pollutant model, crude 

 Single pollutant model, adjusted for race/ethnicity, 

poverty level 

 Two pollutant model, adjusted for PM10, race/ethnicity, 

poverty level 

 Two pollutant model, adjusted for PM2.5, race/ethnicity, 

poverty level 

 

O3 levels: annual mean=2.1 pphm, range: 1.1 - 4.2 pphm 

OR = 1.96 

OR = 2.09 

 

OR = 2.29 

 

OR = 3.51 

 

 

 

OR = 1.16 

OR = 1.35 

 

OR = 2.89 

 

OR = 2.48 

 

(1.23, 3.13) 

(1.28, 3.41) 

 

(1.01, 5.23) 

 

(1.45, 8.46) 

 

 

 

(0.74, 1.81) 

(0.85, 2.14) 

 

(1.32, 6.34) 

 

(1.14, 5.38) 
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Table 4. Strengths and limitations of studies reviewed 

 

Source Strengths Limitations 

Akinbami et al. 

(2010)(41) 

 Large sample, representative of US metropolitan areas 

 Availability of numerous potential person-level confounders 

(age/race/sex, smoker in household, poverty status, etc.) 

 Analysis of multi-pollutant models 

 Estimation of effects at relatively low ambient O3 levels 

 Possible exposure misclassification from the use of 

aggregate (county-level) air pollution measures for 

estimating personal exposure 

 Potential misclassification bias related to the assumption 

that subjects resided at the same address for the entire 

12-month study period 

 Possible confounding from unavailability of co-pollutant 

estimates for a large number of subjects, unmeasured 

person-level factors (asthma medication use, genetic 

factors, smoking status, family history of smoking, 

respiratory allergies), lack of meteorological data, and 

no ability to account for season-varying exposure levels 

Babin et al. 

(2008)(78) 

 Large sample size with 11-year follow-up 

 Analysis of children at high-risk of asthma (Medicaid 

beneficiaries) 

 Investigation of differing effects by SES indicators/area of 

residence and age group 

 Inclusion of aeroallergens 

 Ecologic design – potential for unmeasured confounders 

 Possible exposure misclassification due to averaging of 

ozone measurements over study area 

Burra et al. 

(2009)(49) 

 Large claims database covering ~95% of ambulatory physician 

visits in Toronto 

 Wide gradient of estimated family incomes in groups compared 

 Possible exposure misclassification re: socioeconomic 

position (SEP) due to census-tract level assignments, the 

limited network of monitoring sites (n=6) used to 

estimate exposure across the entire city 

 Possible selection bias due to unavailability of 

emergency department claims records – may be related 

to SEP 

 Potential for confounding as models unadjusted for 

person-level factors, multiple pollutants, seasonal 

allergies , respiratory infections, weather patterns, 

transportation patterns 
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Fauroux et al. 

(2000)(79) 

 Adjusted for potential confounders influenza patterns and outdoor 

allergens 

 Several lag periods evaluated 

 

 Possible exposure misclassification due to averaging of 

ozone measurements over study area 

 Short one-year follow-up period & small sample size 

(mean 3 ER visits per day) 

 No adjustment for person-level confounders or co-

pollutants 

Gent et al. 

(2003)(95) 

 Minimized information bias through frequent phone follow-up to 

collect outcome data 

 Co-pollutant models including PM2.5 

 Included both 1-h peak and 8-h average O3 measurements 

 Used maintenance medication use to determine asthma severity 

 Possible exposure misclassification due to averaging of 

ozone measurements over study area 

 Possible uncontrolled confounding due to lack of 

person-level information (i.e., race), although handled 

somewhat through study design 

Jaffe et al. 

(2003)(96) 
 Effects analyzed between major cities 

 Ecologic design – potential for unmeasured confounders 

 Potential for exposure misclassification by use of 

maximum O3 measure for each city each day 

Jalaludin et al. 

(2000)(80) 

 Evaluated several single-day and cumulative lag periods 

 Multi-pollutant models were considered 

 Longitudinal design 

 Adjusted for potential confounders including time spent outdoors 

and outdoor allergens 

 Evaluated effect modification in different susceptibility groups 

 O3 level based on monitor nearest child’s school 

 Several lag periods evaluated 

 Low variability in ambient ozone levels 

 Relatively small sample size and short follow-up period 

 Possible selection bias: over ¼ of subjects withdrew 

early in the study and ~15% were excluded because they 

had fewer than 30 diary days for the 11-month period 

 Potential outcome misclassification due to use of 

evening measures in the analysis rather than morning 

measures 

Jalaludin et al. 

(2004)(81) 

 Evaluated several single-day and cumulative lag periods 

 Multi-pollutant models were considered 

 Separate analyses by season 

 Longitudinal design 

 Evaluated effect modification in different susceptibility groups 

 O3 level based on monitor nearest child’s school 

 Several lag periods evaluated 

 

 Low ambient ozone levels (mean 12 ppb, max 26 ppb) 

 Relatively small sample size and short follow-up period 

 Possible selection bias: over ¼ of subjects withdrew 

early in the study and ~15% were excluded because they 

had fewer than 30 diary days for the 11-month period 

 Potential outcome misclassification due to use of 

evening measures in the analysis rather than morning 

measures 

 Uncontrolled confounding…data were available on 

person-level confounders but the authors don’t state that 

these variables were included in the logistic regression 

models. 
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Ko et al. (2007)(42) 

 Long (6-yr) follow-up using claims database with large study 

population (captured >90% of the Hong Kong patient population) 

 Assessment of several single-day and cumulative lag periods, and 

multi-pollutant models 

 Wider variability of O3 monitoring results than seen in other 

studies 

 Unmeasured person-level confounding resulting from 

ecologic design 

 Potential for exposure misclassification by averaging O3 

monitoring results across the entire study area for the 

daily measures 

Lewis et al. 

(2005)(97) 

 Assessment of lung function across seasons (not clear whether O3 

was evaluated across seasons or only in a single winter) 

 FEV1 assessment of lung function, observed to ensure validity of 

measures 

 Identification of children with greater susceptibility (on 

maintenance meds and reporting URIs) 

 Assessment of co-pollutants, particularly PM10 and PM2.5 

 Small sample size (n=86); possible selection bias related 

to this subset of original cohort of 510 – 36% of those 

eligible chose not to participate, 16% of remaining 

children were lost to follow-up, and final 86 were 

chosen based on other whether children enrolled in the 

study attended their school 

 Ozone measurements only available for 1 winter for 

lung function assessment 

 Potential for exposure misclassification by excluding 

outlying FEV1 measurements, and relying on parent 

report for use of maintenance medications 

 Potential for unmeasured confounding due to lack of 

data on person-level factors 

Lin et al. (2008)(98) 

 Large study population, from integrated dataset including health 

outcomes, child and maternal information and air pollution 

assessment data 

 Evaluation of numerous person- and community- level 

confounders, and effect modification by maternal/infant factors 

 Assessment of several exposure metrics reflecting both chronic and 

acute exposures 

 Retrospective cohort design 

 Some remaining uncontrolled confounding such as 

genetic susceptibility,  

 Potential exposure misclassification due to limited 

availability on residential address changes, and no 

personal exposure estimates based on time activity 

patterns 

 Possible selection bias as only most severe cases would 

likely be captured when looking at hospital admissions 

McConnell et al. 

(2002)(51) 

 Prospective cohort design 

 One of the few studies on asthma incidence in children 

 Availability of data on potential person- and household level 

confounders including children’s outdoor activity patterns 

 Study conducted in high ozone area of the U.S. (southern CA) 

 Potential exposure misclassification due to inclusion of 

only sports team participation, not individual physical 

activity including running and cycling; also, 

communities dichotomized into high and low exposure 

based on median levels of annual 24-hr mean O3 values 

 Possible disease misclassification due to self-reported 

(not clinically-confirmed) asthma diagnosis; in some 

cases, asthma questions answered by children (?), not 
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the parent 

McConnell et al. 

(2003)(99) 

 Prospective cohort design 

 Availability of data on potential person- and household level 

confounders including in-utero tobacco exposure, family history of 

asthma, health insurance coverage 

 Study conducted in high ozone area of the U.S. (southern CA) 

 Possible disease misclassification due to self-reported 

(not clinically-confirmed) asthma diagnosis 

 Recall bias likely as number of continuous days with 

asthma symptoms was assessed only annually  

 Possible unmeasured confounding by indoor/outdoor 

allergens 

 Potential for exposure misclassification based on 

community-level O3 exposure assessments, and low 

annual variability within the 12 communities 

McConnell et al. 

(2010)(47) 

 Prospective cohort design 

 Availability of data on potential person- and household level 

confounders, including parental asthma, housing characteristics, 

exposure to cigarette and wildfire smoke 

 Study conducted in high ozone area of the U.S. (southern CA) 

 Estimate of main effects from traffic related pollution, in addition 

to ambient pollutant levels, and effects from exposures at school 

and at home 

 Relatively short follow-up period 

 Possible unmeasured confounding as early life risk 

factors were assessed retrospectively 

 Possible selection bias due to loss to follow-up; 

Hispanic children and those with lower parental 

education and no insurance were more likely lost to 

follow-up 

Millstein et al. 

(2004)(100) 

 Retrospective cohort design 

 Availability of data on potential person- and household level 

confounders, including time spent outdoors 

 Study conducted in high ozone area of the U.S. (southern CA) 

 Possible disease misclassification due to parent-reported 

monthly asthma medication use and wheezing, and 

possible lack of precision in estimating month of 

wheeze occurrence 

 Recall bias likely as symptoms and medication use 

assessed up to 12 months prior  

 Potential for exposure misclassification based on single 

monitoring site used to estimate community-level O3 

exposure, averaged monthly 

Moore et al. 

(2008)(101) 

 Long follow-up period and large population size 

 More sophisticated statistical analysis and O3 modeling methods 

than in other studies 

 O3 estimates at residence zip code level 

  Study conducted in high ozone area of the U.S. (southern CA) 

 Potential for confounding as analysis used community 

level variables from census data rather than person-level 

data 

 Possible exposure misclassification as O3 levels were 

modeled as quarterly averages 



115 

 

 Multi-pollutant models considered 

Mortimer et al. 

(2000)(102) 

 Availability of data on potential person- and household level 

confounders, including parental smoking, housing characteristics, 

children’s allergies 

 Inner-city population at increased risk of asthma 

 Analysis of susceptible sub-groups 

 Potential for exposure misclassification:  i.e., LBW was 

based on maternal self-report, not medical records; also, 

medication use reported at baseline interview (up to 6 

months prior to symptoms recorded in daily diaries) and 

may have changed in the interim; no daily medication 

use collected 

 Potential for unmeasured confounding: single-pollutant 

models only, no data collected on aeroallergens 

 Short follow-up period (1 summer) 

O’Connor et al. 

(2008)(103) 

 Inner-city population at increased risk of asthma 

 Analysis of single and multi-pollutant models 

 Various lag periods analyzed 

 Estimation of effects at elatively low ambient O3 levels 

 Potential for exposure misclassification based on 

community-level O3 exposure assessments 

 Possible recall bias; symptoms reported by caretakers at 

end of each 2-wk period, no daily diary mentioned 

 Possible selection bias as ½ of the sample were enrolled 

in a household environmental intervention group 

Penard-Morand et al. 

(2005)(104) 
 Availability of data on potential person-level confounders, 

including parental smoking and education, history of allergy 

 Potential for exposure misclassification based on 3-yr 

averaged values at each school, and dichotomized 

exposure categories 

 Outcomes defined broadly (‘problem with sneezing, or a 

running or blocked nose ..in past 12 months’), not 

clinically confirmed (i.e., diagnosis of asthma) and 

required recall of up to 12 months at a time.  

Petroeschevsky et al. 

(2001)(105) 

 Long follow-up period and large population size 

 Multi-pollutant models considered 

 Various lag periods analyzed 

 Potential for exposure misclassification based on city-

wide O3 exposure assessments 

Rabinovitch et al. 

(2004)(106) 

 Daily diaries assessing symptoms/medication use 

 Supervised pulmonary function testing 

 Various lag periods analyzed 

 Small panel study  

 Study period did not include summer months 

 No measurement of individual susceptibility or exposure 

Ramadour et al. 

(2000)(107) 

 High participation rate 

 Availability of data on potential person-level confounders 

 Cross-sectional survey 

 Potential for exposure misclassification based on O3 

exposure assessments by town 
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 Possible outcome misclassification since surveys were 

filled out by 13 and 14 year old children, with no 

clinical confirmation 

 Possible recall bias since symptoms were assessed up to 

12 months prior 

Schildcrout et al. 

(2006)(48) 

 Relatively large study in 8 cities spread across the U.S. 

 22-month follow-up, assessment across seasons 

 Supervised (family) daily recording of symptoms by the children 

 Various lag periods analyzed 

 Single and two-pollutant models analyzed 

 Inclusion of some person-level potential confounders 

 Potential for exposure misclassification based on O3 

exposure assessments by city 

 Sample size may have been too small for season-

specific analyses, pertinent for O3 

Szyszkowicz 

(2008)(108) 
 Large sample size with 10 years of follow-up 

 Potential for exposure misclassification based on O3 

exposure assessments across the city 

Tolbert et al. 

(2000)(46) 

 Large sample of pediatric asthma ER visits, with data collected 

over 3 summer seasons 

 Used kriging to model O3 exposure 

 Adjustment for some potential confounders (age, race, Medicaid 

enrollment) 

 Relatively high ambient O3 levels, with significant variability 

across zip codes and during study period 

 Single and two-pollutant models analyzed 

 Used 3 types of analysis:  GEE, logistic regression, Bayesian and 

found consistent results 

 Potential for exposure misclassification based on O3 

exposure assessments across the city 

 Limited data available on potential confounders (i.e., 

time spent indoors, A/C usage, exposure to cigarette 

smoke) 

 Possible selection bias – study excluded 1 ER which did 

not agree to participate (20% of Atlanta-area ER visits); 

also did not include those presenting to facilities other 

than ERs – may be differential by SES, etc. 

Wilhelm et al. 

(2008)(109) 

 Data collected on a number of potential confounders including 

tobacco smoke exposure, indoor allergens, parental history of 

asthma, breast feeding history 

 Data sampled from large, population based survey 

 Ozone estimates based on nearest monitoring site (within 5 miles) 

 Study included estimates of traffic related pollution 

 Cross-sectional survey 

 Potential for exposure misclassification resulting from 

address assessment (and corresponding O3 exposure 

estimate) at one point in time; also, O3 exposure 

assigned as annual average of nearest monitor, not 

taking into account time spent outdoors, time activity 

patterns, etc. 

 Possible outcome misclassification resulting from self-

reported physician-diagnosed asthma 

 Possible recall bias from reporting symptoms up to a 
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year prior 

 Potential selection bias – survey data the sample was 

drawn from had a 40% non-response rate 
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Appendix B. Summary of case-crossover studies which have evaluated air pollution and childhood asthma  

Table 1. Summary of study design 

 

Source Setting Study Design Sample Size Definition of Exposure Definition of Outcome 

Barnett et al. 

(2005)(71) 

Five large cities in 

Australia (Brisbane, 

Canberra, Melbourne, 

Perth, Sydney) and two 

in New Zealand 

(Auckland, 

Christchurch), 1998-

2001 

Time-stratified 
~2.5 million children 

ages  0-14 

24-h PM2.5, IQR=3.8 

µg/m
3
 

24-h PM10, IQR=7.5 µg/m
3
 

1-h NO2, IQR=9.0 ppb 

24-h NO2, IQR=5.1 ppb 

8-h CO, IQR=?  

1-h SO2, IQR=5.4 ppb 

1-h O3, IQR=9.8 ppb 

24-h BSP, IQR=0.18*10
-

4
/m 

 

 Pollutant data averaged 

across all monitors in 

each city 

 Measures reflect average 

of current and previous 

day 

 Effect measured per IQR 

(mean across all cities)  

of each pollutant 

Daily respiratory 

hospital admissions; 

based on ICD diagnosis 

codes for Total 

Respiratory Disease, 

Asthma, Pneumonia and 

Acute Bronchitis 

Hinwood et al. 

(2006)(72) 

Perth, Australia, 1992-

1998 
Time-stratified 

~500,000 

hospitalizations/yr 

(sample size not 

reported by age or 

diagnosis, i.e. asthma; 

mean asthma 

hospitalizations per day 

for children <15 was 

1-h max O3 

4-h max O3 

8-h max O3 

1-h max NO2 

24-h avg NO2 

1-h max BSP 

24-h avg BSP 

8-h max CO 

Daily hospital 

admissions, asthma 

results reported 

separately, based on 

primary discharge in the 

patient’s chart 

(ICD9=493) 
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5.6) 24-h avg PM10 

24-h avg PM2.5 (modeled) 

 

Data from three monitoring 

sites used to estimate daily 

pollutant levels city-wide 

 

Lag periods: L0, L1, L2, 

L3, L01, L02, L03 

Jalaludin et al. 

(2008)(68) 

Sydney, Australia, 1997-

2001 
Time-stratified 

1,826 emergency 

department visits for 

pediatric asthma, ages 

1-14 

24-h PM2.5, IQR=4.8 

µg/m
3
 

24-h PM10, IQR=7.6 µg/m
3
 

1-h NO2, IQR=9.5 ppb 

8-h CO, IQR=0.7 ppm  

24-h SO2, IQR=0.8 ppb 

1-h O3, IQR=13.6 ppb 

 

Daily pollutant values 

averaged across all 

monitors in the city 

 

Lag periods: L0, L1, L2, 

L3, L01 

Emergency 

Department visits for 

asthma; based on ICD9 

diagnosis code of 493.xx 

Laurent et al. 

(2008)(82) 

Strasbourg, France, 

2000-2005 
Time-stratified 

446,905 residents 

 

No. of asthma ER calls: 

n=4,677 (all ages), 

n=954 (ages 0-19) 

24-h avg PM10 (Jan-Dec) 

24-h avg NO2 (Jan-Dec) 

24-h avg SO2 (Jan-Dec) 

8-h max O3 (Apr-Sep) 

 

Daily concentrations 

modeled for each census 

block 

 

Lag periods: L0, L01, L02, 

L03, L04, L05 

Telephone calls to a 

pre-hospital emergency 

center for an ‘asthma 

attack’; (not defined) 

Lin et al. Toronto, Ontario, 1981- Bi-directional and uni- 7,319 asthma 24-h avg PM2.5, IQR=9.3 Asthma 
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(2002)(110) 1993 directional; also used 

time-series analysis 

hospitalizations for 

children ages 6-12 

µg/m
3 

24-h avg PM10-2.5, IQR=8.4 

µg/m
3
 

24-h avg PM10, IQR=14.8 

µg/m
3
 

 

Daily pollutant values 

averaged across all 

monitors in the city 

 

Lag periods: L0, L01, L02, 

L03, L04, L05, L06 

hospitalizations, 

defined as an admission 

for which asthma 

(ICD9=493.xx)  was the 

primary diagnosis 

responsible for the 

highest number of 

hospital days of stay; 

restricted to children 

living in and 

hospitalized in Toronto 

Lin et al. 

(2003)(111) 

Toronto, Ontario, 1981-

1993 
Bi-directional 

7,319 asthma 

hospitalizations for 

children ages 6-12 

24-h avg CO, IQR=0.5 

ppm 

24-h avg SO2, IQR=7 ppb 

24-h avg NO2, IQR=11 

ppb
 

1-h max O3, IQR=20 ppb 

 

Daily pollutant values 

averaged across all 

monitors in the city 

 

Lag periods: L0, L01, L02, 

L03, L04, L05, L06 

Asthma 

hospitalizations, 

defined as an admission 

for which asthma 

(ICD9=493.xx)  was the 

primary diagnosis ; 

restricted to children 

living in and 

hospitalized in Toronto 

Paulu and Smith 

(2008)(112) 

State of Maine, 2000-

2003 
Time-stratified 

8,020 asthma ER visits, 

n=1,430 for children 

ages 2-14 

8-h max O3 (primary 

exposure) 

24-h avg PM2.5 

 

Values interpolated (using 

kriging) to estimate daily 

ambient levels at each zip 

code centroid, mid-May 

through mid-Sept 

 

Asthma ER visits, 

based on principal 

diagnosis code for 

asthma (ICD9=493.xx), 

restricted to Maine 

residents 
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Lag periods: L0, L1, L2, 

L3, L4, L03 

Smargiassi et al. 

(2009)(73) 

Montreal, Canada (four 

zip codes surrounding 

oil refineries), 1996-

2004 

Time-stratified 

263 asthma 

hospitalizations and 

1,579 ED visits, 

children 2-4 

24-h avg SO2 

1-h peak SO2 

 

Measured levels at 2 

monitors (East and SW of 

refineries), and also used 

AERMOD to model daily  

SO2 levels in the same two 

areas 

 

Lag period: L0, L1, L04 

Asthma hospital 

admissions and ER 

visits, based on primary 

ICD9 diagnosis code 

493.xx 

Tecer et al. 

(2008)(113) 

Zonguldak, Turkey (area 

of significant coal 

mining), Dec 2004 – Oct 

2005 

Bi-directional 

2,779 hospitalizations 

for children ages 0-14 

(count includes asthma 

and other respiratory 

disease admissions) 

24-h max PM2.5, IQR=14.0 

µg/m
3
 

24-h max PM10-2.5, 

IQR=13.7 µg/m
3
 

24-h max PM10, IQR=26.7 

µg/m
3
 

 

Daily pollutant values 

measured at a single 

monitor in the city center 

 

Lag periods: L0, L1, L2, 

L3, L4 

Asthma hospital 

admissions, based on 

ICD9 diagnosis code 

493.xx 

Villeneuve et al. 

(2007)(70) 

Edmonton, Alberta, Apr 

1992-Mar 2002 
Time-stratified 

57,912 asthma ER 

visits, n=7,247 for ages 

2-4 and n=13,145 for 

ages 5-14 

24-h avg SO2, IQR= 3.0 

ppb 

24-h avg NO2, IQR=13.5 

ppb 

24-h avg CO, IQR=0.5 

ppm 

8-h max O3, IQR=18.0 ppb 

24-h avg PM2.5, IQR=6.3 

g/m
3
 

Asthma ER visits, 

based on principal 

diagnosis code for 

asthma (ICD9=493.xx) 
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24-h avg PM10,IQR=16.0 

g/m
3
 

 

Daily pollutant values 

averaged across all 

monitors in the city 

 

Lag periods: L0, L1, L2, 

L3, L02, L04 
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Table 2. Confounders and effect modifiers assessed/included in studies 

 

Source Confounders Effect Measure Modifiers 

Barnett et al. 

(2005)(71) 

Temperature, current minus previous day’s temperature, relative humidity, 

pressure, extremes of hot and cold (coldest/warmest 1% of days), day of the 

week, public holiday (y/n), day after a public holiday (y/n) 

For each city:  average pollutant level, number of 

monitors, temperature, % of population <15 years 

of age, hotter/colder than other cities. Also 

separated cool (May-Oct) and warm (Nov-Apr) 

seasons 

 

Higher average temperature was the only significant 

EMM 

Hinwood et al. 

(2006)(72) 

Average temperature on previous day, change of temperature on the day 

before (min-max), maximum humidity on current day, public holidays, day 

of the week  

Age group (all, 0-14, 65+), season (Nov-Apr and 

May-Oct) 

Jalaludin et al. 

(2008)(68) 

Same-day average temperature, same-day relative humidity, daily 

temperature range (max-min temp), school holidays, public holidays 

Age group (1-4, 5-9, 10-14, 1-14), warm (Nov–Apr) 

vs. (May–Oct) months 

Laurent et al. 

(2008)(82) 

Daily temperature, atmospheric pressure, relative humidity, daily pollen 

counts, weekly influenza case counts 

Age group, socioeconomic deprivation stratum 

(based on income, education, job, housing 

characteristics, family structure, etc.) – analyzed as 

quintiles and as continuous 

Lin et al. 

(2002)(110) 

Daily max and min temperatures, average relative humidity (also modeled 

squared terms for each), day of the week, levels of CO, SO2, NO2, O3 
Gender 

Lin et al. 

(2003)(111) 

Daily max and min temperatures, average relative humidity (also modeled 

squared terms for each), levels of PM2.5, PM10-2.5 
Gender 

Paulu and Smith 

(2008)(112) 

Daily max and min temperatures, average relative humidity, max relative 

humidity, barometric pressure, major holiday, day after major holiday, 

levels of PM2.5 (dropped from final model due to collinearity) 

Age group, gender 

Smargiassi et al. 

(2009)(73) 

Daily mean concentrations of regional SO2, O3, NO2, PM2.5 (using same 

lags as the local SO2 measurements), relative humidity and temperature 

(same lag period as local SO2)  

Source of SO2 data (monitored vs. modeled) and 

location relative to refineries 

Tecer et al. 

(2008)(113) 

Average and maximum wind speed, temperature, vapor pressure, humidity, 

cloudiness parameter 
 

Villeneuve et al. 

(2007)(70) 

Temperature, relative humidity, seasonal epidemics of viral related 

respiratory disease, aeroallergens (grass, tree, weed pollens; mold spores) 
Age group, season (Apr-Sep, Oct-Mar) 
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Table 3. Summary of results 

 

Source Subgroup analysis Measure of Association 95% Confidence Interval 

Barnett et al. 

(2005)(71) 

Asthma admissions, % increase (per IQR increase) 

 24-h NO2, ages 5-14 

 24-h NO2, ages 5-14 – Australian cities 

 24-h NO2, ages 5-14 – New Zealand cities 

 24-h NO2, ages 5-14 – Cool season 

 24-h NO2, ages 5-14 – Warm season 

 

 8-h O3, ages 1-4 

 8-h O3, ages 5-14 

 

No significant associations for children ages 1-4 

 

Mean pollutant levels (range across cities) 

24-h PM2.5, 8.1–11.0 µg/m
3
 

24-h PM10, 16.5-20.6 µg/m
3
 

1-h NO2, 15.7-23.2 ppb 

24-h NO2, 7.0-11.7 ppb 

8-h CO, 0.5-2.1 ppb 

1-h SO2, 3.7-10.1 ppb 

24-h SO2, 0.9-4.3 ppb 

1-h O3, 23.7-33.6 ppb 

4-h O3, 21.8-31.3 ppb 

8-h O3, 19.0-28.5 ppb 

24-h BSP, 0.2-0.3*10
-4

/m 

 

6.0% 

3.8% 

18.4% 

7.0% 

10.2% 

 

-2.1% 

-4.1% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0.2, 12.1) 

(-1.3, 9.3) 

(6.7, 31.4) 

(-2.4, 17.3) 

(2.6, 18.4) 

 

(-9.8, 6.4) 

(-12.6, 5.2) 
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Hinwood et al. 

(2006)(72) 

Asthma hospitalizations, ages 1-14 (per 1 unit increase) 

(specific OR’s and 95% CI for these not reported, but rather 

graphed): 

24-h bsp - OR’s varied near 1.00, no statistically significant 

results 

24-h NO2 - OR’s varied near 1.00, no statistically significant 

results 

1-h and 8-h O3 - OR’s generally <1.00, no statistically significant 

results 

8-h CO - OR’s generally <1.00, no statistically significant results 

 

Specific OR reported in text; lag period listed was statistically 

significant 

24-h PM2.5 (lag 2) 

 

Mean concentrations (all year): 

1-h max O3=31.6 ppb, 4-h max O3=28.8 ppb, 8-h max O3=25.9 

ppb 

1-h max NO2=24.8 ppb, 24-h avg NO2=10.3 ppb 

1-h max BSP=1.2 bscat/10
4
, 24-h avg BSP= 0.25 bscat/10

4
 

8-h max CO=2.3 ppm 

24-h avg PM10=19.6 ppb, 24-h avg PM2.5=9.2 ppb 

 

 

 

 

 

 

 

 

 

 

 

OR = 1.005 

 

 

 

 

 

 

 

 

 

 

p< 0.05 

Jalaludin et al. 

(2008)(68) 

Asthma ER admissions, % increase, ages 1-14 (per IQR 

increase),: 

 

Warm Season 

 24-h PM10 

 24-h PM2.5 

 1-h O3 

 1-h NO2 

 8-h CO 

 24-h SO2 

 

Cool Season 

 24-h PM10 

 

 

 

 

1.2 

0.9 

1.5 

2.6 

0.2 

0.5 

 

 

-0.3 

 

 

 

 

(0.5, 1.9) 

(0.4, 1.5) 

(0.7, 2.4) 

(1.3, 3.8) 

(-1.7, 2.2) 

(-0.7, 1.8) 

 

 

(-1.3, 0.7) 
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 24-h PM2.5 

 1-h O3 

 1-h NO2 

 8-h CO 

 24-h SO2 

0.8 

-0.9 

1.0 

1.5 

1.3 

(-0.1, 1.8) 

(-2.4, 0.5) 

(-0.4, 2.3) 

(0.6, 2.3) 

(0.1, 2.5) 

Laurent et al. 

(2008)(82) 

Odds of emergency asthma call, ages 0-19 (per 10 µg/m
3
 

increase) 

 PM10 

 NO2 

 SO2 

 O3 

Influence of social deprivation (β from fixed-effects model) 

 NO2 

 SO2 

 PM10 

 

 

Mean concentrations: 

PM10: 22.6 µg/m
3
 

SO2: 8.9 µg/m
3
 

NO2: 36 µg/m
3
 

O3: 57.7 µg/m
3 

 

 

1.047 

1.003 

1.122 

0.966 

 

-0.0027 

-0.0103 

-0.0024 

 

 

 

 

 

 

 

 

 

 

 

 

(0.961, 1.141) 

(0.926, 1.086) 

(0.945, 1.334) 

(0.891, 1.048) 

 

 

p-value = 0.49 

p-value = 0.18 

p-value = 0.48 

 

 

 

 

 

 

 

 

Lin et al. 

(2002)(110) 

Relative risk of asthma hospitalization (per IQR increase in 

pollutant, L05) 

Boys: 

 PM2.5 

 PM10-2.5 

 PM10 

Girls: 

 PM2.5 

 PM10-2.5
1
 

 PM10 

 

0.92 

1.17 

1.01 

 

0.93 

1.16 

0.99 

 

 

 

 

 

 

(0.83, 1.02) 

(1.03, 1.33) 

(0.90, 1.12) 

 

(0.82, 1.06) 

(0.98, 1.38) 

(0.85, 1.15) 
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(results presented from bi-directional case-crossover analysis, 

adjusted for gaseous pollutants) 

 
1
RR (95% CI) estimate unadjusted for gaseous pollutants: 1.18 

(1.02, 1.36) 

 

Mean concentrations (µg/m
3
): PM2.5=17.99, PM10-2.5=12.17, 

PM10=30.16 

Max concentrations (µg/m
3
): PM2.5=89.59, PM10-2.5=68.00, 

PM10=116.20 

 

 

 

 

 

 

 

 

 

 

 

 

Lin et al. 

(2003)(111) 

Relative risk of asthma hospitalization (per IQR increase in 

pollutant) 

Boys (L03): 

 CO 

 SO2 

 NO2 

 O3 

Girls (L06): 

 CO 

 SO2 

 NO2 

 O3 

 

(results presented for lag period with strongest effects per gender, 

adjusted for PM10-2.5 and PM2.5) 

 

Mean levels: CO5=1.18 ppm, SO2=5.36 ppb, NO2=25.24 ppb, 

O3=30.39 ppb 

Max levels: CO5=6.10 ppm, SO2=57.00 ppb, NO2=82.00 ppb, 

O3=141.00 ppb 

 

 

 

 

1.10 

0.95 

1.15 

0.88 

 

1.05 

1.28 

1.21 

0.89 

 

 

 

 

 

 

 

 

(1.02, 1.20) 

(0.85, 1.05) 

(1.04, 1.27) 

(0.77, 1.00) 

 

(0.93, 1.20) 

(1.08, 1.51) 

(1.03, 1.42) 

(0.72, 1.12) 

 

 

 

 

Paulu and Smith 

(2008)(112) 

Asthma ER admissions, % increase (per 10-ppb O3 increase), 

ages 2-14: 

Females 

Males 

 

 

4% 

17% 

 

 

(-12%, 21%) 

(3%, 32%) 
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Smargiassi et al. 

(2009)(73) 

Odds of asthma hospitalization (per IQR increase, adjusted, L0) 

Daily mean 

Daily peak 

 

Odds of asthma ED visits (per IQR increase, adjusted, L0) 

Daily mean 

Daily peak 

 

 

SO2 concentrations (ppb): 

 East Southwest 

 Monitored Modeled Monitored Modeled 

24-h mean 6.9 3.7 4.4 2.4 

24-h mean 

IQR 
6.3 5.5 4.3 3.0 

1-h peak 23.8 19.2 12.8 16.0 

1-h peak 

IQR 
23.1 31.6 11.9 30.4 

 

 

 

1.14 

1.42 

 

 

 

1.04 

1.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.00, 1.30) 

(1.10, 1.82) 

 

 

 

(0.98, 1.10) 

(1.00, 1.22) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tecer et al. 

(2008)(113) 

Odds of asthma hospitalization (per 10 µg/m
3
 increase in 

pollutant) 

 PM2.5 – Lag 0 / Lag 4 

 PM10-2.5 – Lag 0 / Lag 4 

 PM10 – Lag 0 / Lag 4 

 

Odds of asthma hospitalization (per IQR increase in pollutant) 

 PM2.5 – Lag 0 / Lag 4 

 PM10-2.5 – Lag 0 / Lag 4 

 PM10 – Lag 0 / Lag 4 

 

Mean concentrations (µg/m
3
): PM2.5=29.1, PM10-2.5=24.3, 

PM10=53.3 

Max concentrations (µg/m
3
): PM2.5=95.65, PM10-2.5=195.8, 

 

 

1.15 / 1.25 

1.18 / 1.17 

1.14 / 1.16 

 

 

1.22 / 1.37 

1.26 / 1.24 

1.42 / 1.47 

 

 

 

 

(0.99, 1.34) / (1.05, 1.50) 

(1.01, 1.39) / (1.05, 1.31) 

(1.03, 1.26) / (1.06, 1.26) 

 

 

(0.99, 1.51) / (1.06, 1.76) 

(1.01, 1.57) / (1.07, 1.44) 

(1.09, 1.84) / (1.17, 1.86) 
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PM10=237.5 

Villeneuve et al. 

(2007)(70) 

Odds of asthma ER visit (per IQR increase in pollutant) 

Ages 2-4 (5-day average – strongest associations seen) 

Winter: O3 

Summer: 

NO2 

CO 

O3 

PM2.5 

PM10 

Ages 5-14 (5-day average – strongest associations seen) 

Winter:  

NO2 

CO 

Summer: 

NO2 

CO 

O3 

PM2.5 

PM10 

 

Median concentrations (summer): SO2=2.0 ppb, NO2=17.5 ppb, 

CO=0.6 ppm, O3=38.0 ppb,  PM2.5=7.0 g/m
3
, PM10=22.0 g/m

3
 

Median concentrations (winter): SO2=3.0 ppb, NO2=28.5 ppb, 

CO=0.9 ppm, O3=24.3 ppb,  PM2.5=7.3 g/m
3
, PM10=19.0 g/m

3
 

 

 

 

1.16 

 

1.50 

1.48 

1.06 

1.16 

1.16 

 

 

1.07 

1.04 

 

 

1.13 

1.09 

1.14 

1.10 

1.14 

 

 

 

 

 

 

 

 

(1.01, 1.34) 

 

(1.31, 1.71) 

(1.27, 1.72) 

(0.94, 1.19) 

(1.04, 1.28) 

(1.05, 1.28) 

 

 

(1.00, 1.15) 

(1.00, 1.09) 

 

 

(1.02, 1.24) 

(0.98, 1.22) 

(1.05, 1.24) 

(1.02, 1.17) 

(1.06, 1.22) 
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Table 4. Strengths and limitations of studies reviewed 

 

Source Strengths Limitations 

Barnett et al. 

(2005)(71) 

 Multi-pollutant models considered 

 Large, geographically diverse population 

 Separate analysis for season, between-city variations in 

temperature 

 Potential exposure misclassification since pollutant 

estimates were averaged over an entire city 

 Possibility of outcome misclassification resulting from 

diagnostic errors in claims data 

Hinwood et al. 

(2006)(72) 

 6-year follow-up which included all hospitals in the Perth 

metropolitan area 

 Many different pollutant metrics and lag periods analyzed 

 Potential exposure misclassification since pollutant 

levels  were generally based on three monitors (O3 and 

CO only monitored at two sites) and averaged over an 

entire city 

 Data presentation lacking – specific risk estimates 

generally not presented in favor of graphing all lag 

periods evaluated 

 Little detail provided on how outcome data was gathered 

 Possibility of confounding as estimates unadjusted for 

community-level factors, including co-pollutant effects 

Jalaludin et al. 

(2008)(68) 

 Multi-pollutant models considered 

 4-year follow-up capturing 95% of ED visits in Sydney 

 Separate analysis for season 

 Potential exposure misclassification since pollutant 

estimates were averaged over an entire city 

 Possibility of outcome misclassification resulting from 

diagnostic errors in claims data 

Laurent et al. 

(2008)(82) 

 Exposure modeled at census block level rather than averaged 

across city 

 Separate analysis by socioeconomic strata 

 Potential for outcome misclassification as ‘asthma 

attack’ not defined clearly or confirmed clinically 

 Socioeconomic deprivation defined at census block 

level; potential for exposure misclassification 

 Potential exposure misclassification since pollutant 

estimates were averaged over census block, rather than 

specific to individuals 

 Poor correlation between modeled and measured 

ambient SO2 concentrations (r=0.06) 

 Relatively small sample size 

Lin et al. 

(2002)(110) 

 Large population with 12 years of follow-up 

 Uni-directional case-crossover and time series analysis also done 

 Potential exposure misclassification since pollutant 

estimates were averaged across the city, rather than 
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 Relatively low pollutant levels so could estimate effects at levels 

below current standards 

specific to individuals 

 Possibility of outcome misclassification resulting from 

diagnostic errors in claims data 

 Possibility of confounding as estimates unadjusted for 

community-level factors 

Lin et al. 

(2003)(111) 

 Large population with 12 years of follow-up 

 Relatively low pollutant levels so could estimate effects at levels 

below current standards 

 Potential exposure misclassification since pollutant 

estimates were averaged across the city, rather than 

specific to individuals 

 Possibility of outcome misclassification resulting from 

diagnostic errors in claims data 

 Possibility of confounding as estimates unadjusted for 

community-level factors 

Paulu and Smith 

(2008)(112) 
 Ambient O3 levels estimated at the zip code level, using spatial 

interpolation 

 Unexplained inconsistency of results between 2000-

2002 and 2003 

 Possibility of outcome misclassification resulting from 

diagnostic errors in claims data 

 Possibility of confounding as estimates unadjusted for 

community-level factors 

Smargiassi et al. 

(2009)(73) 

 Data source captured almost all hospitalizations and ER visits in 

the study area 

 Geographically restricted study population (near SO2 point source)  

 10 years of follow-up 

 Able to compare monitored and modeled SO2 values, and adjust for 

regional pollutants 

 Variable results depending on which SO2 estimates 

used; demonstrates the likelihood of exposure 

misclassification – effect estimates using modeled data 

generally higher than those using monitor results 

 Unable to estimate effects of the other regional effects 

 Possible selection bias: children living within a few 

miles of a refinery likely differ from the general 

Montreal population in terms of personal or housing 

characteristics related to both exposure and outcome 

 Possibility of outcome misclassification resulting from 

diagnostic errors in claims data 

Tecer et al. 

(2008)(113) 
 High PM levels, and measures of PM2.5, PM10-2.5 and PM10 

 Potential exposure misclassification since PM levels 

were measured at a single site; no individual-specific 

estimates 

 Number of asthma admissions not specified, but likely 

small 
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 Potential selection bias?  Not clear if the hospital in the 

study was the only one in the area, and no discussion of 

patient characteristics there vs. other hospitals in the city 

 Possible outcome misclassification; not clear how 

asthma diagnosis was determined 

 Short 10-month follow-up period 

Villeneuve et al. 

(2007)(70) 

 Large population with 10 years of follow-up 

 Adjustment for covariates such as influenza patterns and 

aeroallergen levels 

 

 Potential exposure misclassification since pollutant 

levels were averaged for the city; no individual-specific 

estimates.  Estimates are probably better reflections of 

personal exposure in the summer months. 

 Residual confounding of aeroallergens since data 

collected at only a single site for the entire city 

 Possibility of outcome misclassification resulting from 

diagnostic errors in claims data (although children<2 

excluded to help eliminate bronchiolitis cases coded as 

asthma) 

 Possibility of confounding as estimates unadjusted for 

community-level factors 
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Appendix C. Age-adjusted
a
 prevalence of asthma among Texas Medicaid-enrolled children ages 0-17, 2005-2007 

 
2005 2006 2007 

 

Prevalence 

Proportion (%) 
95% CI 

Prevalence 

Proportion (%) 
95% CI 

Prevalence 

Proportion (%) 
95% CI 

Total 10.56 10.50, 10.61 10.48 10.42, 10.53 11.41 11.36, 11.47 

       
Age Group 

      
0-4 years 13.03 12.95, 13.11 13.84 13.76, 13.92 15.44 15.36, 15.52 

5-9 years 11.57 11.46, 11.69 11.59 11.47, 11.71 12.86 12.74, 12.99 

10-14 years 9.10 8.98, 9.21 8.70 8.58, 8.82 9.37 9.24, 9.50 

15-17 years 7.38 7.14, 7.62 6.24 5.84, 6.63 6.00 5.53, 6.47 

       Gender 
      

Female 9.32 9.29, 9.36 9.21 9.17, 9.25 10.10 10.07, 10.14 

Male 11.74 11.70, 11.78 11.67 11.63, 11.71 12.65 12.61, 12.69 

       
Race 

      
White 11.79 11.72, 11.86 11.71 11.64, 11.78 12.63 12.56, 12.71 

Black 11.15 11.08, 11.22 11.19 11.12, 11.26 12.69 12.61, 12.76 

Am. Indian 9.86 9.38, 10.34 9.27 8.79, 9.75 13.26 12.70, 13.81 

Asian 7.95 7.72, 8.17 8.56 8.32, 8.79 10.24 9.99, 10.50 

Hispanic 10.15 10.12, 10.18 10.05 10.01, 10.08 10.82 10.78, 10.85 

       
Race/Gender 

      
White/Male 12.65 12.55, 12.75 12.47 12.37, 12.57 13.65 13.55, 13.76 
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Black/Male 12.75 12.65, 12.86 12.81 12.71, 12.92 14.33 14.22, 14.44 

American Indian/Male 10.82 10.13, 11.51 9.89 9.19, 10.57 15.49 14.68, 16.31 

Asian/Male 9.26 8.93, 9.60 9.93 9.58, 10.28 11.67 11.30, 12.04 

Hispanic/Male 11.32 11.27, 11.37 11.27 11.22, 11.32 12.01 11.96, 12.06 

White/Female 10.86 10.76, 10.95 10.85 10.75, 10.95 11.54 11.43, 11.64 

Black/Female 9.48 9.39, 9.58 9.51 9.41, 9.60 10.93 10.84, 11.03 

American Indian/Female 8.74 8.07, 9.40 8.50 7.82, 9.17 10.58 9.86, 11.30 

Asian/Female 6.50 6.21, 6.80 7.11 6.80, 7.42 8.72 8.38, 9.06 

Hispanic/Female 8.93 8.89, 8.98 8.77 8.72, 8.81 9.57 9.53, 9.62 

Abbreviation: CI, confidence interval. 

a
Age-adjusted to the proportion of the 2000 U.S. Census population in each age category, with the exception of prevalence 

presented by age group. 
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Appendix D. Notice of approval to begin research, October 6, 2010 
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