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Summary
Background Infl uenza vaccine eff ectiveness (VE) can vary by type and subtype. Over the past decade, the test-negative 
design has emerged as a valid method for estimation of VE. In this design, VE is calculated as 100% × (1 – odds ratio) for 
vaccine receipt in infl uenza cases versus test-negative controls. We did a systematic review and meta-analysis to estimate 
VE by type and subtype.

Methods In this systematic review and meta-analysis, we searched PubMed and Embase from Jan 1, 2004, to 
March 31, 2015. Test-negative design studies of infl uenza VE were eligible if they enrolled outpatients on the basis of 
predefi ned illness criteria, reported subtype-level VE by season, used PCR to confi rm infl uenza, and adjusted for age. We 
excluded studies restricted to hospitalised patients or special populations, duplicate reports, interim reports superseded 
by a fi nal report, studies of live-attenuated vaccine, and studies of prepandemic seasonal vaccine against H1N1pdm09. 
Two reviewers independently assessed titles and abstracts to identify articles for full review. Discrepancies in inclusion 
and exclusion criteria and VE estimates were adjudicated by consensus. Outcomes were VE against H3N2, H1N1pdm09, 
H1N1 (pre-2009), and type B. We calculated pooled VE using a random-eff ects model.

Findings We identifi ed 3368 unduplicated publications, selected 142 for full review, and included 56 in the meta-analysis. 
Pooled VE was 33% (95% CI 26–39; I²=44·4) for H3N2, 54% (46–61; I²=61·3) for type B, 61% (57–65; I²=0·0) for 
H1N1pdm09, and 67% (29–85; I²=57·6) for H1N1; VE was 73% (61–81; I²=31·4) for monovalent vaccine against 
H1N1pdm09. VE against H3N2 for antigenically matched viruses was 33% (22–43; I²=56·1) and for variant viruses was 
23% (2–40; I²=55·6). Among older adults (aged >60 years), pooled VE was 24% (–6 to 45; I²=17·6) for H3N2, 63% (33–79; 
I²=0·0) for type B, and 62% (36–78; I²=0·0) for H1N1pdm09.

Interpretation Infl uenza vaccines provided substantial protection against H1N1pdm09, H1N1 (pre-2009), and type B, and 
reduced protection against H3N2. Vaccine improvements are needed to generate greater protection against H3N2 than 
with current vaccines.

Funding None.

Introduction
Infl uenza vaccines are licensed on the basis of fi ndings 
from immunogenicity studies or randomised clinical trials 
(RCTs) showing effi  cacy and safety. In a previous meta-
analysis1 of RCTs in healthy adults, we found that pooled 
vaccine effi  cacy was 59% against all strains. Although the 
RCT is the optimal design to minimise bias and 
confounding, it has important limitations. RCTs are often 
limited to one or two seasons, enrol healthy individuals, 
have low power to measure effi  cacy by subtype, and are not 
feasible to do annually. Placebo-controlled trials are not 
ethical in populations for whom vaccination is routinely 
recommended, and results from a single season might not 
predict effi  cacy in subsequent seasons.

Over the past decade, the test-negative design (TND) has 
emerged as a valid approach for estimation of infl uenza 
vaccine eff ectiveness (VE). In this design, VE is calculated 
as 100% × (1 – odds ratio [OR]) for vaccine receipt in 
infl uenza cases versus test-negative controls. The fi rst 
TND study2 was published in 2005 by Canadian 
investigators who reported VE in British Columbia during 

the 2004–05 season. Since then, multiple TND studies 
have been done to estimate VE in both the northern and 
southern hemisphere. The TND is similar to a case-control 
study, but cases and controls are not identifi ed at the time 
of enrolment. Instead, patients seeking medical care for an 
acute respiratory illness are enrolled and respiratory tract 
samples tested for infl uenza with RT-PCR. Findings from 
TND simulation studies3,4 suggest that this method yields a 
valid estimate of VE in the source population under most 
scenarios.

Investigators of an increasing number of TND studies 
are reporting VE estimates separately by type and subtype. 
We did a systematic review and meta-analysis of published 
TND studies to estimate seasonal VE against illness caused 
by H3N2, H1N1pdm09, H1N1 (pre-2009), and type B.

Methods
Search strategy and selection criteria
In this systematic review and meta-analysis, published 
studies were eligible for inclusion if they met all of the 
following criteria: original analysis of infl uenza VE with the 
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test-negative design; used RT-PCR to confi rm infl uenza; 
reported VE (or corresponding OR) for one or more 
individual seasons against H3N2, H1N1, H1N1pdm09, or 
type B; recruited patients on the basis of predefi ned illness 
criteria; and reported results from age-adjusted logistic 
regression models or age-stratifi ed VE estimates. We 
excluded the following types of studies: studies restricted to 
hospitalised patients or special populations (eg, chronic 
care or military), duplicate reports, interim reports 
superseded by a fi nal report, studies of live-attenuated 
vaccine, and studies of prepandemic seasonal vaccine 
against H1N1pdm09. We accepted studies that enrolled 
both outpatients and inpatients because hospitalised 
patients represent a small proportion of medically attended 
infl uenza and VE estimates from these studies should 
largely refl ect outpatient illness. To substantiate this 
assumption, we did a secondary analysis that excluded 
studies with combined outpatient and inpatient enrolment.

A preliminary review of the literature showed that the 
fi rst study2 of infl uenza VE using the TND was published 
by Canadian investigators in 2005. We contacted the 
authors of this study and they confi rmed that they did 
originally develop the TND for infl uenza VE evaluation 
(Skowronski D, British Columbia Centre for Disease 
Control, personal communication). We searched 
MEDLINE (PubMed) and Embase from Jan 1, 2004, to 
March 31, 2015, for articles on infl uenza vaccine 
effi  cacy and eff ectiveness, published in English, Spanish, 
French, or German. The search was implemented on three 
dates: Oct 7, 2014, Jan 22, 2015, and April 17, 2015. For 
PubMed, the following terms were searched in various 
combinations within titles, abstracts, and medical subject 

headings: “infl uenza”, “vaccines”, “eff ectiveness”, 
“treatment outcome”, and “case-control studies”. The 
specifi c PubMed search syntax is shown in the appendix. 
We used the same search terms for Embase. Additionally, 
we searched for publications by selected investigator 
groups who have published infl uenza VE studies. The 
search did not include conference abstracts or unpublished 
studies because detailed methods were needed to assess 
study eligibility. The search strategy was reviewed by 
experienced librarians at the Marshfi eld Clinic Research 
Foundation (Marshfi eld, WI, USA) and University of 
Minnesota (Minneapolis, MN, USA). Titles and abstracts 
were independently reviewed by two authors to identify 
publications that potentially met the eligibility criteria and 
required full review. Discrepancies in article eligibility 
were adjudicated by consensus. Selected articles were 
independently reviewed by two abstractors. 

Data analysis
We abstracted data for eligibility criteria, study charac-
teristics, and VE estimates using a structured electronic 
data collection form. Discrepancies in VE estimates and 
inclusion and exclusion criteria were adjudicated by 
consensus. Discrepancies in non-essential data were 
reviewed and corrected by one author (EAB). Abstracted 
study characteristics were study season, hemisphere, 
country, report type (fi nal or interim), patient recruitment 
method, enrolment setting (outpatient only or combined 
outpatient and inpatient), respiratory sample type, 
maximum interval from illness onset to sample collection, 
source of vaccination data, exclusion of individuals 
vaccinated less than 14 days before illness onset, and 

Research in context

Evidence before this study
In March, 2014, we did an informal review of the literature by 
searching PubMed for original reports of infl uenza vaccine 
eff ectiveness (VE) published in English from 1990 to 2013. 
We restricted our review to studies that reported single-season 
VE against H3N2, H1N1, H1N1pdm09, or type B. To minimise 
potential bias, we further restricted our preliminary review to 
studies using the test-negative design with outpatient 
recruitment based on predefi ned criteria, those that had 
confi rmation of infl uenza with RT-PCR or culture, and those that 
had age adjustment. We identifi ed 43 publications that met 
these criteria, leading to a decision to do a formal meta-analysis. 
Our preliminary review indicated that the earliest test-negative 
design study of infl uenza VE was conducted in 2004–05, and the 
formal meta-analysis was therefore restricted to the period from 
Jan 1, 2004, to March 31, 2015.

Added value of this study
Findings from this study show substantial variation in VE across 
infl uenza types and subtypes. Infl uenza vaccine provided 
moderate to high protection against H1N1pdm09, H1N1 

(pre-2009), and type B, and substantially lower protection 
against H3N2. Diff erences across age groups were minimal for 
H1N1pdm09 and type B. VE against H3N2 was highest in 
paediatric age groups and lowest in older adults. VE against H3N2 
was low regardless of reported antigenic match, but this 
comparison was limited by the absence of standardised antigenic 
characterisation and information about antigenic distance. In this 
systematic review and meta-analysis, we found that relevant 
information about patient recruitment, symptom eligibility, and 
vaccine ascertainment was inconsistently reported, and we have 
made recommendations to optimise VE methods in the 
outpatient setting. These recommendations are consistent with 
draft recommendations being developed by WHO.

Implications of all the available evidence
H3N2 is associated with higher morbidity and mortality than 
are other subtypes, and vaccine improvements are needed to 
generate greater protection against H3N2 than against other 
subtypes. Alternatives to egg-based manufacturing should be 
pursued since egg-induced mutations in H3N2 vaccine strains 
contribute to antigenic mismatch.

See Online for appendix
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antigenic characterisation for H3N2. We abstracted 
analytic methods, including adjustment for calendar time, 
restriction of the analysis to periods of local infl uenza 
circulation, and assessment or inclusion of potential 
confounders. We abstracted VE estimates and 95% CIs for 
H3N2, H1N1pdm09, H1N1, and type B; we assessed 

monovalent VE against H1N1pdm09 for the 2009–10 
pandemic. We abstracted the number of cases, vaccinated 
cases, controls, and vaccinated controls. If missing, this 
information was often provided by study authors. We 
preferentially abstracted VE estimates on the basis of the 
entire population rather than of a target population for 
maximum comparability across studies because VE on the 
basis of the entire population was reported in nearly all 
studies and the defi nition of target population was variable.

We abstracted information about antigenic match for 
studies reporting VE against H3N2. A virus is considered 
vaccine like if the haemagglutination inhibition titre is 
within fourfold of the homologous titre against 
the reference vaccine strain.5 However, considerable 
test-to-test variability exists, and haemagglutination 
inhibition assay methods are not standardised. For most 
studies, antigenic characterisation methods were not 
reported and antigenic similarity was simply categorised 
as a binary variable (antigenic match or antigenic variant). 
We therefore classifi ed H3N2 viruses as predominately 
matched, predominately variant, or mixed on the basis of 
the authors’ interpretation. We also included analyses 
based on genetic sequencing of viruses if viral clades 
were used as surrogates for antigenic groups. We 
restricted this analysis to antigenic data from viruses 
obtained from study participants rather than from 
national surveillance samples.

We defi ned infl uenza VE as the relative reduction in the 
odds of laboratory-confi rmed, medically attended infl uenza 
after vaccination: 100 × (1 – adjusted OR) for vaccine receipt 
in cases (infl uenza positive) versus controls (infl uenza 
negative). We did a separate meta-analysis for each 
outcome: H3N2, H1N1pdm09 (seasonal vaccine and 
monovalent vaccine), H1N1 (pre-2009), and type B. We 
assessed heterogeneity among studies using the χ²-based 
Q test and I² statistic.6 We used a simple random-eff ects 

n (%)

Hemisphere

Northern 45 (80%)

Southern 11 (20%)

Continent

Europe 23 (41%)

North America 19 (34%)

Australia 10 (18%)

Asia 3 (5%)

Africa 1 (2%)

Publication year

2007 1 (2%)

2009 2 (4%)

2010 1 (2%)

2011 14 (25%)

2012 5 (9%)

2013 10 (18%)

2014 16 (29%)

2015* 7 (13%)

Report type

Interim 8 (14%)

Final 48 (86%)

Recruitment method

Research staff 8 (14%)

Physicians 47 (84%)

Not specifi ed 1 (2%)

Enrolment setting

Outpatient only 45 (80%)

Outpatient and inpatient 11 (20%)

Respiratory sample type

Nasal or nasopharyngeal swab 13 (23%)

Oral swab 1 (2%)

Combined nasal and oral 17 (30%)

Other 12 (21%)

Not specifi ed 13 (23%)

Maximum swab interval†

<5 days 7 (13%)

5 days 3 (5%)

7 days 30 (54%)

>7 days 5 (9%)

Not specifi ed 11 (20%)

Source of vaccination data

Self-report 9 (16%)

Medical records 19 (34%)

Both 10 (18%)

Not specifi ed 18 (32%)

(Table 1 continues in next column)

n (%)

(Continued from previous column)

Exclusion of patients vaccinated <14 days before onset

Yes 48 (86%)

No 5 (9%)

Not specifi ed 3 (5%)

Calendar time adjustment 48 (86%)

Other covariates included or assessed‡

Comorbidity 38 (68%)

Sex 26 (46%)

Geographical location 25 (45%)

Previous season vaccination 6 (11%)

Swab interval 16 (29%)

*Studies published up to March 31, 2015. †Maximum interval from illness onset 
to sample collection. ‡Among 55 publications that reported model covariates.

Table 1: Characteristics of 56 published studies that reported 
type-specifi c or subtype-specifi c infl uenza vaccine eff ectiveness using 
the test-negative design 
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model to calculate the weighted pooled log OR, 95% CI, 
and corresponding VE.7 We used inverse variances that 
incorporated an estimate of the between-study variance to 
calculate the weights for the model.6,7 We used funnel plot 
regression to assess publication bias. We did all analyses 
with SAS version 9.4.

Our primary analysis included studies that enrolled 
patients with no age restriction beyond infancy. We also 
did analyses stratifi ed by age group: paediatric (any age 
group <20 years old), older adults (any age group 
>60 years), and working-age adults (any age group 
20–64 years old). We did secondary analyses of pooled VE 
by season and antigenic match for H3N2 viruses. For the 
season analysis, we grouped each southern hemisphere 
season with the preceding northern hemisphere season.

We did a sensitivity analysis by calculating pooled VE 
for the highest-quality studies with the least potential for 
bias and confounding. These studies met all of the 
following criteria: restricted to outpatient setting, illness 
onset to swab interval 7 days or less, medical record 
confi rmation of all vaccinations, exclusion of patients 
vaccinated within 14 days before illness onset, and 
calendar time included as a covariate in the logistic 
regression model. We repeated the analysis of high-quality 

studies using less restrictive criteria than these ones for 
confi rmation of vaccination status (ie, a combination of 
medical records and self-report). 

Role of the funding source
There was no funding source for this study. The 
corresponding author had full access to all the data in the 
study and had fi nal responsibility for the decision to 
submit for publication. 

Results
We identifi ed 3368 unduplicated publications, selected 
142 for full review, and included 56 that met eligibility 
criteria in the meta-analysis (appendix).8–63 Most studies 
originated in the northern hemisphere, with a similar 
number of studies originating from Europe and North 
America (table 1). The earliest eligible study was published 
in 2007,16 and 52 (93%) were published after 2010. 11 (20%) 
studies enrolled both outpatients and inpatients, eight 
(73%) of which adjusted for enrolment location (outpatient 
vs inpatient). Of the 45 (80%) studies that specifi ed a 
maximum interval from illness onset to sample collection, 
40 (89%) restricted the analysis to patients who were 
swabbed within 7 days of illness onset.

Figure 1: VE for H3N2 in studies without age restriction
The numbers of cases and controls for each VE estimate are provided in the appendix. VE=vaccine eff ectiveness. 
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The 56 publications reported 114 VE estimates based on 
unrestricted age enrolment, consisting of 34 (30%) for 
seasonal vaccine against H3N2, 36 (32%) against type B, 
29 (25%) against H1N1pdm09, fi ve (4%) against H1N1 
(pre-2009), and ten (9%) for monovalent vaccine against 
H1N1pdm09 (fi gures 1–4). Additionally, we found 33 VE 
estimates for paediatric age groups, 28 for working-age 
adults, and 13 for older adults. A list of all included VE 
estimates is provided in the appendix.

In the age-unrestricted analysis, we found high 
heterogeneity for VE against H3N2 (p=0·005; I²=44·4) 
and type B (p<0·0001; I²=61·3) and low heterogeneity for 
VE against H1N1pdm09 (p=0·783; I²=0·0). The high 
heterogeneity against type B was driven by a single 
outlier study,31 and heterogeneity was not signifi cant 
(p=0·598) when this study was excluded. Funnel plot 
regression analysis showed no evidence of publication 
bias for VE estimates stratifi ed by type or subtype. Egger’s 
p values were 0·5 for H3N2, 0·08 for type B, 0·2 for 
H1N1pdm09 (seasonal vaccine), and 0·7 for H1N1pdm09 
(monovalent vaccine).

Pooled VE estimates were signifi cant with lower 
confi dence limits of more than 0 for each type or subtype 
in the age-unrestricted analyses. Pooled VE was highest 
(73% [95% CI 61–81]) for monovalent vaccine against 
H1N1pdm09 and lowest (33% [26–39]) against H3N2 
(table 2). Seven (70%) of ten monovalent vaccine studies 
were based on adjuvanted H1N1pdm09 vaccine,13,21,32,37,40,45,48 
and pooled VE was higher for the adjuvanted vaccine 
studies (79% [68–86]) than for the three non-adjuvanted 
pandemic vaccine studies (55% [28–72]). In the 
age-stratifi ed analyses, pooled VE against H1N1pdm09 and 
type B exceeded 50% and was similar across age groups 
(table 3). Pooled VE against H3N2 was highest in paediatric 
age groups and lowest in older adults. The VE CI included 
0 for monovalent H1N1pdm09 vaccine in paediatric age 
groups and seasonal H3N2 in older adults.

Figure 2: VE for H1N1pdm09 (seasonal vaccine) in studies without age restriction
The numbers of cases and controls for each VE estimate are provided in the appendix. VE=vaccine eff ectiveness. 
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Figure 3: VE for H1N1pdm09 (monovalent vaccine) in studies without age restriction
The numbers of cases and controls for each VE estimate are provided in the appendix. VE=vaccine eff ectiveness. 
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Pooled VE against H1N1pdm09 and type B was relatively 
stable across four to fi ve seasons, but VE against H3N2 was 
32–46% before 2013–14, and 10% or less in the subsequent 
two seasons (table 4). In a secondary analysis restricted to 
studies that enrolled patients exclusively in the outpatient 
setting, pooled VE estimates were nearly identical to overall 
pooled VE for each type or subtype (data not shown).

The sensitivity analysis was restricted to the small 
number of high-quality studies that met stringent quality 
criteria.34,53,55,56 This analysis included three VE estimates 
for H3N2 and three for seasonal vaccine against 
H1N1pdm09. Pooled VE for high-quality studies was 41% 
(95% CI 31–50) against H3N2 and 67% (53–77) against 
H1N1pdm09. We further analysed a larger pool of high-
quality studies than the previous pool of studies by using 
less restrictive criteria for documentation of vaccination 
status.15,34,52,53,55,56 These studies included six VE estimates for 
H3N2, seven for H1N1pdm09, and fi ve for type B. Pooled 
VE was 41% (32–49) against H3N2, 57% (44–67) against 
type B, and 69% (58–78) against H1N1pdm09.

Antigenic or genetic characterisation results were 
reported for 19 (56%) of 34 VE estimates for H3N2 in the 

primary analysis. 12 estimates for H3N2 viruses were 
predominately similar to the vaccine reference 
strain.35,41,42,46,47,49,52–54,61 We found six VE estimates for variant 
H3N2 viruses.11,22,58–60,62 For one of the studies with variant 
viruses,59 antigenic results were abstracted from a previous 
publication64 by the same authors. Investigators of one 
additional study43 reported mixed antigenic similarity and 
we excluded it from this analysis. Pooled VE was low 
against both antigenically similar and variant H3N2 
viruses (table 4). Investigators of one antigenically similar 

Vaccine 
type

Pooled VE 
(%)

Pooled 
standard error

VE estimates 
(n)

p value for 
heterogeneity

I²

Type B Seasonal 54% (46–61) 0·083 36 <0·0001 61·3

H3N2 Seasonal 33% (26–39) 0·050 34 0·005 44·4

H1N1pdm09 Seasonal 61% (57–65) 0·048 29 0·783 0·0

H1N1pdm09 Monovalent 73% (61–81) 0·188 10 0·217 31·4

H1N1 (pre-2009) Seasonal 67% (29–85) 0·397 5 0·093 57·6

Data in parentheses are 95% CIs. VE=vaccine eff ectiveness.

Table 2: Pooled VE by type and subtype in studies w ithout age restriction

Figure 4: VE for type B in studies without age restriction
The numbers of cases and controls for each VE estimate are provided in the appendix. VE=vaccine eff ectiveness. 
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study61 reported discrepant results between antigenic 
characterisation and genetic clade for the 2014–15 season. 
Exclusion of this study yielded a pooled VE of 36% (95% CI 
27–45) for antigenically similar viruses.

Discussion
In this systematic review and meta-analysis, we found 
substantial variation in VE across types and subtypes. In 
the primary analysis that was not restricted by age, 
infl uenza vaccine provided moderate to high protection 
against H1N1pdm09, H1N1 (pre-2009), and type B, and 
substantially lower protection against H3N2. Monovalent 
pandemic vaccine yielded the highest pooled VE estimate. 
Pooled VE was higher for adjuvanted monovalent vaccines 
than for non-adjuvanted pandemic vaccines, but the small 
number of studies limits this comparison. VE against 
type B and H1N1pdm09 exceeded 50% in every age 
category. Pooled VE against H3N2 was highest in paediatric 
age groups and lowest in older adults.

H3N2 seasons are associated with increased infl uenza 
morbidity and mortality, and antigenic drift of H3N2 
viruses contributes to reduced VE.65–67 Antigenic drift might 
also contribute to the high heterogeneity that we observed 
for VE against H3N2. Pooled VE against H3N2 was only 
33% for studies reporting antigenically matched viruses 
and 23% for those reporting mismatched viruses. This 
modest diff erence in VE could refl ect the limitations of 
measurement and reporting of antigenic similarity. Most 
studies reported a crude measure of antigenic similarity 
without quantifying the antigenic distance, and methods 
for establishment of antigenic similarity were not 
standardised. Antigenic drift can cause a substantial 
reduction in VE, as shown in the 2014–15 season when 
there was widespread circulation of H3N2 viruses that 
were antigenically distinct from the A/Texas/50/2012 
vaccine virus. Authors of a study by the US Flu VE Network 
found that VE against H3N2 was nearly zero for the 3C.2a 
genetic group viruses that were antigenically drifted and 
44% against 3C.3b viruses that were antigenically similar 
to the vaccine strain.68 A previous meta-analysis of VE 
studies using the TND reported pooled VE of 52% for 
matched viruses and 36% for mismatched viruses during 
epidemic seasons.69 However, these results are diffi  cult to 
interpret because VE was not analysed by type or subtype.

The vaccine manufacturing process can also contribute 
to low VE against H3N2 by generating egg-induced 
mutations in the haemagglutinin that aff ect antigenicity. 
Before vaccine production, the mammalian cell-passaged 
reference virus is reassorted and propagated in eggs to 
generate a high-growth reassortant virus.70 Mutations that 
occur during replication in eggs can aff ect antigenic 
characteristics,71 and Canadian investigators reported 
suboptimal VE that they attributed to egg-induced 
mutations in the H3N2 vaccine strain during the 2012–13 
season.41 During 2014–15, the same group identifi ed 
aminoacid mutations in egg-adapted viruses that might 
have amplifi ed the eff ect of antigenic drift in circulating 
viruses.62 The antigenic similarity between circulating 
viruses and egg-adapted vaccine viruses has not been 
routinely reported during most infl uenza seasons, and this 
absence of reporting complicates interpretation of 
antigenic match results.

Vaccine 
type

Pooled VE (%) Pooled 
standard error

VE estimates 
(n)

p value for 
heterogeneity

I²

Paediatric age groups*

Type B Seasonal 56% (38 to 69) 0·179 11 0·279 24·4

H3N2 Seasonal 43% (28 to 55) 0·119 10 0·251 28·2

H1N1pdm09 Seasonal 69% (49 to 81) 0·253 7 0·054 56·7

H1N1pdm09 Monovalent 62% (–5 to 87) 0·525 3 0·207 56·2

Working-age adults

Type B Seasonal 54% (16 to 75) 0·308 7 0·005 70·7

H3N2 Seasonal 35% (14 to 51) 0·146 9 0·078 48·4

H1N1pdm09 Seasonal 73% (52 to 84) 0·290 5 0·159 49·6

H1N1pdm09 Monovalent 74% (44 to 88) 0·391 3 0·852 0·0

H1N1 
(pre-2009)

Seasonal 64% (29 to 82) 0·343 4 0·541 3·2

Older adults†

Type B Seasonal 63% (33 to 79) 0·295 3 0·989 0·0

H3N2 Seasonal 24% (–6 to 45) 0·166 6 0·416 17·6

H1N1pdm09 Seasonal 62% (36 to 78) 0·267 3 0·906 0·0

VE=vaccine eff ectiveness. *Pooled VE was not calculated for two studies reporting VE against H1N1 (pre-2009) in 
paediatric age groups. †One VE estimate for monovalent vaccine in older adults is not shown.

Table 3: Pooled vaccine eff ectiveness in paediatric age groups, working-age adults, and older adults 

Pooled VE (%) Pooled 
standard error

VE estimates 
(n)*

p value for 
heterogeneity

I²

H3N2 by season

2010–11 46% (30 to 58) 0·131 5 0·368 26·1

2011–12 32% (23 to 40) 0·063 9 0·626 0·0

2012–13 40% (32 to 46) 0·059 6 0·644 0·0

2013–14 10% (–25 to 35) 0·164 3 0·913 0·0

2014–15 7% (–32 to 34) 0·179 3 0·051 74·3

H3N2 by antigenic similarity

Variant 23% (2 to 40) 0·126 6 0·081 55·6

Similar 33% (22 to 43) 0·080 12 0·014 56·1

H1N1pdm09 by season

2010–11 60% (54 to 65) 0·071 12 0·894 0·0

2011–12 68% (50 to 80) 0·239 3 0·541 7·2

2012–13 55% (41 to 66) 0·142 6 0·930 0·0

2013–14 62% (52 to 70) 0·117 6 0·260 35·2

Type B by season†

2005–06 52% (25 to 70) 0·231 3 0·648 0·0

2007–08 50% (29 to 64) 0·172 5 0·235 41·2

2010–11 55% (48 to 62) 0·080 11 0·554 0·0

2011–12 49% (0 to 74) 0·343 7 <0·0001 89·7

2012–13 55% (46 to 62) 0·087 7 0·566 0·0

Data in parentheses are 95% CIs. VE=vaccine eff ectiveness. *Seasons with fewer than three VE estimates for a given 
subtype were not included. †2009–10 is not shown because only one estimate for type B during that season existed.

Table 4: Pooled VE estimates by season and reported antigenic similarity of H3N2 viruses to the 
vaccine strain 
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This systematic review and meta-analysis has several 
limitations, including few eligible studies being done 
before 2009 and few VE estimates existing for older adults. 
Additionally, evidence is increasing that VE might be 
infl uenced by vaccines received in previous seasons,43,72,73 
and this factor was not assessed in most studies. We did 
not assess VE for prevention of serious outcomes such as 
admission to hospital. We chose to exclude hospital-based 
studies because of the potential for diff erent VEs in 
outpatients versus inpatients and the absence of consensus 
regarding the optimal control group and analytical 
approach for these studies. Although we included studies 
with combined outpatient and inpatient enrolment, most 
of these studies adjusted for enrolment location and our 
sensitivity analysis did not suggest that VE estimates were 
biased by including them.

This analysis was also limited by variability in study 
methods and reporting, despite the restriction to TND 
studies meeting specifi c eligibility criteria. Symptom 
eligibility criteria, recruitment methods, and vaccine 
ascertainment methods were not adequately reported in 
many studies, and consistency regarding the specifi c 
covariates that were included in the models was low. Our 
fi ndings are consistent with a review,74 authors of which 
found substantial variation in methods across TND studies 
of infl uenza VE. However, the major fi ndings of this meta-
analysis are unlikely to be due to bias or confounding 
because the magnitude and direction of any bias should be 
similar for each infl uenza subtype, allowing valid 
comparisons to be made across them. Although few 
studies met our stringent criteria for quality, the pooled VE 
from high-quality studies was similar to the overall VE in 
the primary analysis.

We have identifi ed several factors that can be addressed 
to optimise VE methods in the outpatient setting and 
facilitate pooling of VE estimates (panel). Additionally, 
WHO has developed a draft fi eld guide for evaluation of 
infl uenza VE.75 The guide describes the role of VE for 
assessment of infl uenza vaccination programmes and 
provides a framework for development and implementation 
of VE studies. This guide will be an important tool for 
public health and programme assessment, particularly in 
low-income settings.

In this systematic review and meta-analysis, we have 
shown that infl uenza vaccines provide substantial 
protection against H1N1pdm09, H1N1 (pre-2009), and 
type B, and reduced protection against H3N2. An 
accumulating body of evidence suggests that egg-based 
manufacturing is not optimal for H3N2 infl uenza 
viruses that are poorly adapted for growth in eggs. A 
crucial need exists for alternative vaccine technologies 
that generate greater protection against H3N2 than do 
current vaccines, and product-specifi c VE studies will be 
needed to assess their eff ect after licensure. The 
European Medicines Agency has already embarked on 
this path by releasing a draft framework76 that calls for 
manufacturers to routinely do postlicensure studies to 

assess product-specifi c VE. The TND will play a key role 
in these assessments.
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Panel: Recommendations for implementation and reporting of infl uenza vaccine 
eff ectiveness studies using  the test-negative design 

• Require and report specifi c symptom eligibility criteria corresponding to infl uenza-like 
illness or acute cough illness. VE analyses based on a convenience sample of clinical 
diagnostic tests could be biased and should be avoided.

• Defi ne and report standard procedures for collection of respiratory samples and RT-PCR 
testing.

• Restrict enrolment to patients with a duration of illness of 7 days or fewer to minimise 
misclassifi cation of infl uenza status.

• Exclude patients vaccinated within 14 days before illness onset because of latent period 
between vaccination and serological response.

• Report source of vaccination data. Use medical records or registries to confi rm vaccine 
receipt, dates (including previous season vaccination), and manufacturer whenever 
possible. Describe infl uenza vaccine manufacturers and products used in the study 
population.

• Include parameters for age group and calendar time in VE logistic regression models; 
studies done in multiple sites should adjust for enrolment location. Other potential 
confounders should be individually assessed to establish whether they change the 
unadjusted odds ratio by 10% or more, although this threshold is arbitrary and can be 
adjusted up or down. Covariates that exceed this threshold are potential confounders 
and should be included in the adjusted model.

• Report VE estimates by type, subtype, and lineage whenever sample size is suffi  cient. 
Report age-stratifi ed VE estimates separately for paediatric and older adult age groups.

• Restrict VE analysis to periods of continuous local infl uenza circulation. One approach is to 
exclude controls with symptom onset before the week of the fi rst infl uenza-positive case 
and those with symptom onset after the week when the last infl uenza case was identifi ed.

• When previous season vaccination data are available, analyse the independent and 
combined eff ect of current and previous season vaccination with classifi cation of vaccine 
exposure into four groups: vaccinated current season and previous season, vaccinated 
current season only, vaccinated previous season only, and unvaccinated in both current 
and previous season (referent group).
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