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Abstract 

Context:  Per- and polyfluoroalkyl substances (PFAS) are widespread chemicals that may 
affect sex hormones and accelerate reproductive aging in midlife women.
Objective: To examine associations between serum PFAS concentrations at baseline (1999-
2000) and longitudinal serum concentrations of follicle-stimulating hormone (FSH), estradiol, 
testosterone, and sex hormone-binding globulin (SHBG) at baseline and through 2015-2016.
Design:  Prospective cohort.
Setting:  General community.
Participants:  1371 midlife women 45 to 56  years of age at baseline in the Study of 
Women’s Health Across the Nation (SWAN).
Main Outcome Measure(s):  FSH, estradiol, testosterone, SHBG.
Results:  In linear mixed models fitted with log-transformed hormones and log-
transformed PFAS adjusting for age, site, race/ethnicity, smoking status, menopausal 
status, parity, and body mass index, FSH was positively associated with linear 
perfluorooctanoate [n-PFOA; 3.12% (95% CI 0.37%, 5.95%) increase for a doubling in 
serum concentration), linear perfluorooctane sulfonate [PFOS; 2.88% (0.21%, 5.63%)], 
branched perfluorooctane sulfonate [2.25% (0.02%, 4.54%)], total PFOS (3.03% (0.37%, 
5.76%)), and 2-(N-ethyl-perfluorooctane sulfonamido) acetate [EtFOSAA; 1.70% (0.01%, 
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3.42%)]. Estradiol was inversely associated with perfluorononanoate [PFNA; −2.47% 
(−4.82%, −0.05%)) and n-PFOA (−2.43% (−4.97%, 0.18%)]. Significant linear trends were 
observed in the associations between PFOS and EtFOSAA with SHBG across parity (Ps 
trend ≤ 0.01), with generally inverse associations among nulliparous women but positive 
associations among women with 3+ births. No significant associations were observed 
between PFAS and testosterone.
Conclusions: This study observed positive associations of PFOA and PFOS with FSH 
and inverse associations of PFNA and PFOA with estradiol in midlife women during the 
menopausal transition, consistent with findings that PFAS affect reproductive aging.

Key Words: PFAS, sex hormones, menopausal transition, longitudinal study, parity

Per- and polyfluoroalkyl substances (PFAS) are a large 
group of manmade chemicals used extensively for oil and 
water repellency and friction reduction and in surfactants 
with a wide range of industrial and consumer applications 
(1,2). PFAS do not break down in the environment, and 
some accumulate in the human body (1). Several PFAS, es-
pecially 2 legacy compounds, perfluorooctanoate (PFOA) 
and perfluorooctane sulfonate (PFOS), have been detected 
in blood samples of almost all persons tested in the United 
States and other countries (3-7). PFAS are endocrine-
disrupting chemicals (8) and can directly interfere with the 
function of estrogen and androgen receptors (9,10). PFAS 
have been associated with later menarche, irregular and 
longer menstrual cycles, and earlier menopause and thus 
are potential ovarian toxicants (11).

Information on PFAS and serum hormone concentra-
tions is limited, and the evidence has been inconsistent. 
Epidemiologic studies have reported links between 
PFOS and lower estradiol (E2) (12-15), lower proges-
terone (13), lower free androgen index (16), and higher 
follicle-stimulating hormone (FSH) levels (15) in women. 
Other studies found no significant associations between 
hormone profiles and PFOS or PFOA (17,18). Conflicting 
results have also been reported for other PFAS (13-17). 
Most previous studies were cross-sectional with hormone 
levels measured at a single time point in highly selected 
samples of women undergoing in vitro fertilization or in 
women with polycystic ovarian syndrome or primary 
ovarian insufficiency (POI) (14-16). The lack of prospective 
studies in community-based samples of women has made it 
difficult to conclude that the observed findings were inde-
pendent of reverse causality because elevated PFAS serum 
concentrations occur after menopause when E2 drops and 
FSH increases (19).

We examined longitudinal associations between serum 
PFAS concentrations at baseline and serial serum concen-
trations of FSH, E2, testosterone (T), and sex hormone-
binding globulin (SHBG) in the Study of Women’s 
Health Across the Nation (SWAN), a multiracial/ethnic, 

community-based cohort study of midlife women transi-
tioning through menopause. We also tested whether parity 
modified the associations, given that ovarian toxicity 
of PFAS could be diminished in parous women because 
bleeding during parturition is an important elimination 
pathway for PFAS (13).

Materials and Methods

Study Population

SWAN is a community-based cohort study of the natural 
history of menopause designed to characterize the meno-
pausal transition and its association with chronic diseases 
(http://www.swanstudy.org) (20). In 1996-1997, 3302 
premenopausal women were enrolled at 7 study sites. At 
each site, white women and women from 1 specified mi-
nority group were recruited (black women in Boston, MA, 
USA; Pittsburgh, PA, USA; Southeast Michigan, USA; and 
Chicago, IL, USA; Hispanic women in Newark, NJ, USA; 
Chinese women in Oakland, CA, USA; and Japanese women 
in Los Angeles, CA, USA). Women were eligible if they were 
42 to 52 years of age, had an intact uterus, and had had 
a menstrual period and were not taking hormone medica-
tions in the prior 3 months. Data and biospecimens were 
collected prior to 11 am at baseline and in 15 follow-up 
visits approximately annually or biannually through 2016-
2017. Institutional review board approval was obtained at 
each study site. All participants provided signed informed 
consent at each study visit.

The SWAN Multi-Pollutant Study (MPS) was initiated 
to examine reproductive health effects of multiple envir-
onmental pollutants, including PFAS, in midlife women 
using repository serum and urine samples from the third 
SWAN follow-up (MPS baseline, 1999-2000) for envir-
onmental exposure assessment (n  =  2694). Women from 
Chicago (n = 368) and Newark (n = 278) were not eligible 
because urine samples were not collected at these sites. We 
excluded 648 women with insufficient serum or urine sam-
ples, yielding a sample of 1400 women from 4 racial/ethnic 
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groups (white, black, Chinese, and Japanese). For the pre-
sent study, women were required to have at least 1 of the 
hormone outcomes measured at MPS baseline or later 
while not using hormone therapy or during pregnancy. We 
excluded all hormone measurements taken at any visits 
at which women were on hormone therapy. If women 
were missing covariates at MPS baseline, information was 
obtained from the prior visit. Two women who did not 
have information on core covariates were excluded from 
all analyses. Models of FSH and SHBG, measured through 
visit 15, had a final analytical sample of 1371 women with 
10 842 and 10 841 observations. E2 was measured through 
visit 13, and T, through visit 10, resulting in final analyt-
ical samples of 1361 (9920 observations) and 1331 women 
(7875 observations), respectively [see Supplemental Figure 
1 in (21)].

Sex Hormone Assessment

SWAN assayed E2, T, FSH, and the binding protein SHBG 
from fasting serum samples obtained in the early follicular 
phase (days 2-5). Two attempts were made to obtain an 
early follicular sample. If a follicular phase sample could not 
be collected, a random fasting blood sample was obtained 
within 90 days of the anniversary date of the baseline visit. 
For women who were postmenopausal, a blood sample 
was drawn at their clinic visit, scheduled to be on the an-
niversary of their previous visit. FSH, T, and SHBG assays 
were conducted in singlicate and E2 assays in duplicate 
using the automated Ciba Corning Diagnostics ACS-180 
analyzer (Bayer Diagnostics Corp., Norwood, MA, USA). 
Serum E2 concentrations were measured with a modified, 
offline ACS-180 immunoassay, with a lower limit of de-
tection (LLD) of 1 pg/mL. FSH and SHBG were measured 
with a 2-site chemiluminometric immunoassay, with LLDs 
of 1.1 IU/L for FSH and 2 nM for SHBG. T concentrations 
were determined by the modified rabbit polyclonal anti-T 
ACS-180 immunoassay, with a LLD of 2 ng/dL. Inter- and 
intra-assay coefficients of variation were 10.6% and 6.4% 
for E2, 12.0% and 6.0% for FSH, 10.5% and 8.5% for T, 
and 9.9% and 6.1% for SHBG, respectively.

PFAS Assessment

PFAS assessment was conducted at the Division of 
Laboratory Sciences, National Center for Environmental 
Health, Centers for Disease Control and Prevention 
(CDC). The CDC laboratory’s involvement did not con-
stitute engagement in human-subjects research. As 
serum concentrations of the target analytes are relatively 
stable over time, only MPS baseline serum was analyzed 
(22). Online solid phase extraction-high performance 

liquid chromatography-isotope dilution-tandem mass 
spectrometry was used to quantify 11 PFAS, including 
linear PFOA (n-PFOA), sum of branched PFOA iso-
mers, perfluorononanoate (PFNA), perfluorodecanoate, 
perfluoroundecanoate, perfluorododecanoate, perfluoro
hexane sulfonate (PFHxS), linear PFOS (n-PFOS), sum 
of perfluoromethylheptane sulfonate isomers (Sm-PFOS), 
and 2 PFOS precursors (23), namely 2-(N-methyl-
perfluorooctane sulfonamido) acetate (MeFOSAA) 
and 2-(N-ethyl-perfluorooctane sulfonamido) acetate 
(EtFOSAA) (24). Total PFOS was computed as the sum of 
n-PFOS and Sm-PFOS. We did not include sum of branched 
PFOA isomers, perfluorodecanoate, perfluoroundecanoate, 
and perfluorododecanoate in data analyses due to low de-
tection rates (<50%). Detection rates of included PFAS 
were >97%. Concentrations below the limit of detection 
(LOD) were substituted with LOD/

√
2. The LOD for all 

analytes was 0.1 ng/mL. Comprehensive quality assurance/
quality control procedures were conducted. The coefficient 
of variation of low- and high-concentration quality controls 
ranged from 6% to 12%, depending on the analyte.

Covariates

Annual visits included an in-person interview, self-
administered questionnaires, and measurements of weight 
and height. Sociodemographic variables included age, race/
ethnicity, study site, and education. Race/ethnicity was 
classified into self-identified black, Chinese, Japanese, or 
white. Education was categorized as some high school, high 
school degree, some college, college degree, or postcollege. 
Health-related variables at the SWAN MPS baseline in-
cluded smoking status (never, former, or current smoker), 
secondhand smoking, physical activity, and parity (nul-
liparous, 1-2 births, or 3+ births). Total person-hours of 
secondhand smoke exposure was calculated from 7 ques-
tions about exposure during a typical week at home, work, 
and in other public environments and dichotomized as any 
exposure vs none (25). Physical activity was measured using 
a modified Baecke questionnaire, which included 3 indices 
(sports and exercise activity, nonsports leisure activity, and 
household and childcare activity), with a minimum possible 
score of 3 and maximum of 15 (26). Time-varying body 
mass index (BMI) and menopausal status were considered. 
For analyzing the mean effects of PFAS on hormone levels, 
menopausal status was categorized into 2 groups [pre- and 
early perimenopausal and late peri- and postmenopausal 
(natural and surgical)]. Race/ethnicity and geographical lo-
cation were strongly associated with PFAS concentrations 
(3), but only certain study sites included black, Chinese, and 
Japanese women; therefore, site and race/ethnicity were com-
bined into 1 categorical variable (black women in Boston, 
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white women in Boston, black women in Pittsburgh, white 
women in Pittsburgh, black women in Southeast Michigan, 
white women in Southeast Michigan, Chinese women in 
Oakland, white women in Oakland, Japanese women in Los 
Angeles, and white women in Los Angeles).

Statistical Analysis

We examined the distributions of population characteris-
tics at the MPS baseline. We calculated means and SDs of 
continuous covariates, medians, and interquartile ranges 
for PFAS and hormones due to right skewness and frequen-
cies for categorical covariates. To assess the association be-
tween PFAS concentrations and hormone levels across the 
menopausal transition, we ran linear mixed effects models 
with a random intercept and unstructured covariance. All 
hormone outcomes were natural-log transformed, and all 
PFAS were log-2 transformed. A log-base 2 transformation 
was applied to PFAS so that coefficients could be inter-
preted as percentage change of each hormone associated 
with a doubling in PFAS concentrations. We also categor-
ized PFAS concentrations into tertiles. Each hormone was 
regressed on each PFAS individually. We selected potential 
confounders a priori including age (time-varying), meno-
pausal status (time-varying), site/race-ethnicity, smoking 
status, parity, and BMI (time-varying). We chose BMI as 
time-varying because hormone levels highly depend on BMI 
during the menopausal transition (19). We also evaluated 
the associations without adjustment for BMI to examine 
the influence of BMI on the PFAS-hormone associations be-
cause BMI and body weight may be influenced by PFAS ex-
posure (27). To evaluate the robustness of the associations, 
we conducted 2 sensitivity analyses. First, we ran models 
using baseline BMI (time-constant) instead of time-varying 
BMI. Second, we also evaluated the associations by time-
varying BMI categories by adding an interaction between 
PFAS and BMI categories (<25, 25-29.9, ≥30  kg/m2). As 
sensitivity analyses, we additionally adjusted for education, 
physical activity, or secondhand smoking status.

To determine if the relationship between PFAS and hor-
mone levels differed by parity and, in particular, if stronger 
associations were seen within nulliparous women, we ran 
all adjusted models with an interaction between PFAS and 
parity (nulliparous, 1-2 births, 3+ births). We calculated es-
timates for the PFAS/hormone associations for each parity 
category from the interaction models. For all models, coef-
ficients were back-transformed using exponentiation and 
percent changes and 95% CIs were calculated. Statistical 
significance was defined at α < 0.05 and borderline signifi-
cance at α < 0.1.

To evaluate the associations of hormones with PFAS as 
mixtures as an exploratory analysis, we conducted a 2-stage 

modeling approach to account for correlations in both de-
pendent and independent variables (28). Stage 1 accounted 
for correlations in repeatedly measured outcomes within 
each participant. Hormone levels were regressed on time-
varying covariates (age, menopausal status, BMI) in linear 
mixed effects models, and participant-specific hormone levels 
(random intercepts) were estimated. Stage 2 accounted for 
correlations among exposure variables, using an adaptive 
elastic-net method (29). A linear combination of standardized 
PFAS variables (exposures) were regressed on participant-
specific hormone estimates from Stage 1 with adjustment for 
site/race-ethnicity, smoking status, and parity (time-constant 
covariates). Details of adaptive elastic-net and modeling pro-
cedures are provided in the Supplemental Material in (21).

All statistical analyses were conducted in SAS 9.4 (SAS 
Institute, Inc., Cary, NC, USA) except the mixture analysis, 
which was performed in R using the package gcdnet (ver-
sion 1.0.5) for adaptive elastic-net.

Results

At the MPS baseline, mean age was 49.5 years (SD = 2.6) 
and the mean BMI was 28.0 kg/m2 (SD = 7.4) (Table 1). 
The proportions of each race/ethnic group were 49.8% for 
white, 22.2% for black, 15.1% for Japanese, and 12.9% 
for Chinese. Median concentrations of hormones meas-
ured at MPS baseline were 30.0 pg/mL for E2; 34.1 IU/L 
for FSH; 33.6 ng/dL for T; and 38.7 nM for SHBG. Median 
concentrations of PFAS were 4.1  ng/mL for n-PFOA, 
0.6 ng/mL for PFNA, 1.5 ng/mL for PFHxS, 17.5 ng/mL 
for n-PFOS, 7.3  ng/mL for Sm-PFOS, 24.9  ng/mL for 
total PFOS, 1.5 ng/mL for MeFOSAA, and 1.2 ng/mL for 
EtFOSAA. [More details of PFAS statistics are presented in 
Supplemental Table 1 in (21)]

After adjustment for age, site/race-ethnicity, smoking 
status, menopausal status, parity, and BMI, FSH was posi-
tively associated with n-PFOA [3.12% (95% CI 0.37%, 
5.95%) increase in risk for a doubling in serum concentra-
tion], n-PFOS [2.88% (95% CI 0.21%, 5.63%)], Sm-PFOS 
[2.25% (95% CI 0.02%, 4.53%)], total PFOS [3.03% 
(95% CI 0.37%, 5.76%)], and EtFOSAA [1.70% (95% 
CI 0.01%, 3.42%)] (Table 2). Percentage changes in FSH, 
comparing the top with the bottom tertiles, were 6.74% 
(95% CI 0.88%, 12.94%) for n-PFOA (P for trend = 0.02), 
4.87% (95% CI −0.67%, 10.72%) for n-PFOS (P for 
trend = 0.09), and 5.64% (95% CI −0.17%, 11.78%) for 
EtFOSAA (P for trend = 0.05). When BMI was not included 
in the adjustment, associations with FSH were not signifi-
cant [see Supplemental Table 2 in (21)].

E
2 was significantly or borderline significantly in-

versely associated with PFNA [−2.47% (95% CI −4.82%, 
−0.05%)] and n-PFOA [−2.43% (95% CI −4.97%, 0.18%)]. 
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A significant association of E2 was also found with tertiles 
of PFNA [− 6.59% (95% CI −11.6%, −1.30%) comparing 
the top vs the bottom tertiles; P for trend = 0.02]. No stat-
istically significant association was observed between PFAS 
and SHBG, although SHBG was significantly inversely 
associated with Sm-PFOS [− 4.31% (95% CI −6.84%, 
−1.72%)] and total PFOS [−3.45% (95% CI −6.48%, 
−0.32%)] when BMI was not included in the models [see 
Supplemental Table 2 in (21)]. PFAS were not significantly 
associated with T concentrations. No clear patterns of 
the association between PFAS and hormone levels were 
observed across BMI categories although stronger as-
sociations of PFNA with E2 [−4.47% (95% CI −7.83%, 
−0.99%)] and T [4.35% (95% CI 0.66%, 8.17%)] were 
observed in women with BMI < 25 kg/m2 whereas null as-
sociations were observed in women with BMI ≥ 30 kg/m2 
(P-values for linear trends < 0.1) [see Supplemental Table 3 
in (21))]. The results were robust when baseline BMI was 
included in the adjustment instead of time-varying BMI [see 
Supplemental Table 4 in (21)]. The associations remained 
essentially unchanged with further adjustment for educa-
tion, physical activity, and secondhand smoking status [see 
Supplemental Table 5 in (21)].

Examination of effect modification by parity revealed 
that associations between PFOS and EtFOSAA and SHBG 
differed by parity (Table 3). In the fully adjusted model, 
significant linear trends appeared across parity (Ps for 
trend  ≤  0.01), generally inverse associations among nul-
liparous women but positive associations among women 
with 3+ births. We did not observe significant effect modifi-
cation by parity in the association between FSH and PFOA 
and PFOS, although a significant linear trend in effect 
across parity between FSH and PFHxS was observed (P for 
linear trend = 0.012).

The 2-stage modeling, combining linear mixed effects 
and adaptive elastic-net, that accounted for copollutant 
confounding and collinearity identified the following 
PFAS components to have nonzero coefficients: n-PFOA 
for FSH; n-PFOA, PFNA, and MeFOSAA for E

2; n-PFOS, 
PFNA, MeFOSAA, and EtFOSAA for T; and MeFOSAA for 
SHBG (Table 4). Only the association between n-PFOA and 
FSH was statistically significant [2.27% (95% CI 0.26%, 
4.32%)].

Discussion

This is the first study of which we are aware to examine 
longitudinal associations between serum PFAS concen-
trations and sex hormones conducted in a community-
based longitudinal cohort of midlife women. Two legacy 
PFAS, PFOS and PFOA, measured at baseline were asso-
ciated with higher FSH concentrations, whereas PFNA 
and PFOA were associated with lower E2 concentrations 

Table 1.  Baseline (1999-2000) characteristics of the MPS 

study population, the Study of Women’s Health Across the 

Nation (N = 1371).

Characteristics Statistics

PFAS (ng/mL), median (Q1, Q3)  

  n-PFOA 4.1 (2.9, 5.8)

  PFNA 0.6 (0.4, 0.8)

  PFHxS 1.5 (1.0, 2.4)

  n-PFOS 17.5 (12.5, 24.9)

  Sm-PFOS 7.3 (4.7, 11.0)

  Total PFOS 24.9 (17.6, 35.8)

  MeFOSAA 1.5 (0.9, 2.3)

  EtFOSAA 1.2 (0.7, 2.2)

Sex hormone, median (Q1, Q3)a  

  FSH, IU/L 34.1 (14.8, 84.8)

  E2, pg/mL 30.0 (17.5, 67.3)

  Testosterone, ng/dL 33.6 (23.8, 46.9)

  SHBG, nM 38.7 (25.4, 54.3)

Covariate, mean ± SD or n (%)  

  Age, year 49.5 ± 2.6

  Body mass index, kg/m2 28.0 ± 7.4

  Site  

    Southeast Michigan, USA 254 (18.5)

    Boston, MA, USA 231 (16.9)

    Oakland, CA, USA 303 (22.1)

    Los Angeles, CA, USA 356 (26.0)

    Pittsburgh, PA, USA 227 (16.6)

  Race/ethnicity  

    White 683 (49.8)

    Black 304 (22.2)

    Chinese 177 (12.9)

    Japanese 207 (15.1)

  Education  

    Some high school 41 (3.0)

    High school 208 (15.2)

    Some college 439 (32.2)

    College 334 (24.5)

    Postcollege 342 (25.1)

  Smoking status  

    Never 864 (63.0)

    Former 364 (26.6)

    Current 143 (10.4)

  Secondhand smoking exposure  

    None 816 (59.5)

    Any 555 (40.5)

  Parity  

    Nulliparous 265 (19.3)

    1-2 713 (52.0)

    ≥3 393 (28.7)

  Menopausal statusb  

    Pre or early peri 924 (67.4)

    Late peri or post (natural and surgical) 447 (32.6)

Abbreviations: E2, estradiol; EtFOSAA, 2-(N-ethyl-perfluorooctane 
sulfonamido) acetate FSH, follicle-stimulating hormone; MeFOSAA, 
2-(N-methyl-perfluorooctane sulfonamido) acetate; n-PFOA, linear 
perfluorooctanoate; n-PFOS, linear perfluorooctane sulfonate; PFAS, per- 
and polyfluoroalkyl substances; PFHxS, perfluorohexane sulfonate; PFNA, 
perfluorononanoate; SHBG, sex hormone-binding globulin; Sm-PFOS, sum 
of perfluoromethylheptane sulfonate isomers.
aMeasure taken from first visit not using hormone therapy.
bMenopausal status from first visit not using hormone therapy.
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over 15 years of follow-up. The observed magnitude in-
crease for FSH comparing the top vs the bottom tertiles 
of n-PFOA (6.74%) was roughly equivalent to the mag-
nitudes of the association for about 2.5  years of aging, 
2.5 kg/m2 of BMI, and current smokers vs never smokers. 
For E2, the magnitude decrease comparing the top vs the 
bottom tertiles of PFNA (6.59%) was similar to those for 
4 years of aging and 7 kg/m2 of BMI and was much larger 

than the smoking effect (2.2%). Significant linear trends 
in the associations between PFOS and EtFOSAA (PFOS 
precursor) and SHBG across parity were observed, sug-
gesting that parity may play an important role in the asso-
ciations between some PFAS serum concentration and sex 
hormones.

FSH is a well-known indirect marker of ovarian 
aging as FSH production and secretion is modulated by 

Table 2.  Percentage changes (95% CIs) in serum concentrations of sex hormones for a doubling in and by tertiles of PFAS 

concentrations

PFAS Per doubling in PFAS 
concentrations

Tertiles of PFAS concentrations P for trend

 T1 T2 T3

FSH      
  n-PFOA 3.12 (0.37, 5.95)** Ref 1.88 (−3.48, 7.53) 6.74 (0.88, 12.94)** 0.02
  PFNA 1.17 (−1.35, 3.75) Ref −2.09 (−7.01, 3.08) 1.09 (−4.50, 7.01) 0.72
  PFHxS −0.03 (−1.96, 1.94) Ref 0.22 (−4.92, 5.63) 0.17 (−5.22, 5.87) 0.95
  n-PFOS 2.88 (0.21, 5.63)** Ref −0.21 (−5.26, 5.11) 4.87 (−0.67, 10.72)* 0.09
  Sm-PFOS 2.25 (0.02, 4.53)** Ref −0.08 (−5.24, 5.35) 4.54 (−1.10, 10.51) 0.11
  Total PFOS 3.03 (0.37, 5.76)** Ref −0.67 (−5.71, 4.64) 4.07 (−1.44, 9.89) 0.16
  MeFOSAA 0.13 (−2.09, 2.40) Ref −1.53 (−6.68, 3.91) 0.66 (−4.87, 6.50) 0.80
  EtFOSAA 1.70 (0.01, 3.42)** Ref −0.09 (−5.27, 5.39) 5.64 (−0.17, 11.78)* 0.05
E2      
  n-PFOA −2.43 (−4.97, 0.18)* Ref −5.62 (−10.44, −0.55)** −4.02 (−9.15, 1.41) 0.16
  PFNA −2.47 (−4.82, −0.05)** Ref −0.70 (−5.52, 4.37) −6.59 (−11.6, −1.30)** 0.02
  PFHxS −0.86 (−2.72, 1.03) Ref −1.45 (−6.35, 3.71) −1.74 (−6.87, 3.68) 0.52
  n-PFOS −1.82 (−4.31, 0.75) Ref 1.20 (−3.79, 6.44) −3.05 (−8.04, 2.20) 0.26
  Sm-PFOS −1.27 (−3.38, 0.88) Ref −2.94 (−7.81, 2.18) −1.75 (−6.92, 3.70) 0.53
  Total PFOS −1.72 (−4.20, 0.83) Ref −0.90 (−5.79, 4.25) −1.76 (−6.83, 3.59) 0.51
  MeFOSAA 0.97 (−1.21, 3.21) Ref 4.42 (−0.88, 10.01) −0.66 (−5.97, 4.94) 0.75
  EtFOSAA 0.37 (−1.26, 2.04) Ref 0.09 (−4.97, 5.42) −0.34 (−5.69, 5.32) 0.90
Testosterone      
  n-PFOA 0.31 (−2.68, 3.39) Ref −0.53 (−6.35, 5.65) −0.87 (−6.93, 5.59) 0.79
  PFNA 2.20 (−0.62, 5.11) Ref 2.75 (−2.98, 8.82) 3.81 (−2.57, 10.62) 0.25
  PFHxS 0.90 (−1.27, 3.12) Ref −3.99 (−9.46, 1.82) 1.08 (−4.95, 7.50) 0.74
  n-PFOS 1.40 (−1.53, 4.42) Ref 3.31 (−2.52, 9.48) 2.81 (−3.23, 9.23) 0.36
  Sm-PFOS 0.52 (−1.92, 3.02) Ref 6.08 (−0.01, 12.54)* −0.41 (−6.37, 5.94) 0.87
  Total PFOS 1.22 (−1.69, 4.21) Ref 2.69 (−3.11, 8.85) 2.56 (−3.47, 8.97) 0.41
  MeFOSAA −1.55 (−3.99, 0.95) Ref −2.83 (−8.48, 3.17) −3.32 (−9.25, 2.99) 0.30
  EtFOSAA −1.51 (−3.34, 0.35) Ref 0.00 (−5.80, 6.16) −5.54 (−11.32, 0.63)* 0.07
SHBG      
  n-PFOA 0.86 (−2.18, 4.00) Ref 0.72 (−5.28, 7.10) 1.25 (−5.03, 7.95) 0.71
  PFNA 0.18 (−2.65, 3.09) Ref 1.20 (−4.54, 7.29) −1.74 (−7.88, 4.81) 0.60
  PFHxS 0.39 (−1.81, 2.63) Ref −1.22 (−6.95, 4.86) 1.04 (−5.11, 7.58) 0.75
  n-PFOS 0.98 (−1.99, 4.03) Ref 8.82 (2.60, 15.41)*** 2.88 (−3.24, 9.39) 0.33
  Sm-PFOS 0.20 (−2.27, 2.73) Ref −0.45 (−6.26, 5.73) 0.23 (−5.88, 6.73) 0.94
  Total PFOS 0.92 (−2.02, 3.95) Ref 6.94 (0.81, 13.44)** 2.46 (−3.65, 8.96) 0.41
  MeFOSAA 1.73 (−0.82, 4.34) Ref −0.37 (−6.25, 5.89) 4.23 (−2.22, 11.12) 0.19
  EtFOSAA 1.14 (−0.76, 3.08) Ref 0.63 (−5.28, 6.92) 4.13 (−2.32, 11.02) 0.21

Models adjusted for age (time-varying), race/ethnicity, site, smoking status, parity, menopausal status (time-varying), and BMI (time-varying).
Abbreviations: E2, estradiol; EtFOSAA, 2-(N-ethyl-perfluorooctane sulfonamido) acetate; FSH, follicle-stimulating hormone; MeFOSAA, 2-(N-methyl-
perfluorooctane sulfonamido) acetate; n-PFOA, linear perfluorooctanoate; PFAS, per- and polyfluoroalkyl substances; PFHxS, perfluorohexane sulfonate; PFNA, 
perfluorononanoate; n-PFOS, linear perfluorooctane sulfonate; SHBG, sex hormone-binding globulin; Sm-PFOS, sum of perfluoromethylheptane sulfonate 
isomers. *P < 0.10; **P < 0.05; ***P < 0.01.
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negative feedback regulators from granulosa cells, specif-
ically E2 and the inhibins (30). The declining number of 
follicles and decreasing follicular function with ovarian 
aging and the progression through the menopausal tran-
sition lead to decreased negative feedback and increased 
hypothalamic signaling to the pituitary gland, resulting in 
a progressive rise in FSH (31). The observed positive asso-
ciations of PFOS and PFOA with FSH in the present study 
suggests that these compounds may accelerate ovarian 
aging through direct effect on ovarian negative feedback, 

potentially E2 and the inhibins. This finding is in agree-
ment with our previous report on the association between 
PFAS and earlier age of menopause (32). Only a few other 
studies have examined the association between serum 
PFAS concentrations and FSH, and the results have been 
mixed. A  study of 120 Chinese women with overt POI 
and 120 healthy controls 20 to 40 years of age found that 
PFOS exposure was associated with lower E2 and higher 
FSH levels in women with POI cases but not in controls 
(15). A study of 265 young female students 18 to 30 years 

Table 3.  Percentage changes (95% CIs) in serum concentrations of sex hormones for a doubling in PFAS concentrations by 

parity

Nulliparous (%) 1-2 births (%) 3+ births (%) P for trend

FSH     
  n-PFOA 2.21 (−3.05, 7.75) 2.55 (−1.20, 6.45) 4.95 (−0.06, 10.21)* 0.393
  PFNA −1.58 (−6.98, 4.14) 0.12 (−3.40, 3.75) 4.54 (0.03, 9.26)** 0.069
  PFHxS −4.62 (−8.60, −0.47)** 0.47 (−2.13, 3.14) 2.32 (−1.24, 6.00) 0.012
  n-PFOS −0.91 (−6.45, 4.96) 4.56 (0.86, 8.39)** 2.61 (−2.16, 7.61) 0.445
  Sm-PFOS 0.37 (−4.04, 4.98) 2.64 (−0.43, 5.80)* 3.14 (−1.01, 7.47) 0.356
  Total PFOS −0.22 (−5.71, 5.59) 4.43 (0.74, 8.26)** 2.90 (−1.84, 7.86) 0.472
  MeFOSAA 1.43 (−3.32, 6.41) −0.91 (−3.76, 2.03) 1.41 (−2.79, 5.79) 0.998
  EtFOSAA 2.86 (−0.90, 6.77) 1.30 (−0.95, 3.61) 1.68 (−1.36, 4.81) 0.666
E2     
  n-PFOA −4.34 (−9.11, 0.68)* −1.10 (−4.64, 2.57) −3.03 (−7.52, 1.68) 0.838
  PFNA −3.12 (−8.32, 2.38) −2.01 (−5.35, 1.45) −2.77 (−6.84, 1.47) 0.984
  PFHxS 1.96 (−2.15, 6.25) −2.55 (−5.01, −0.01)** 0.31 (−3.06, 3.80) 0.648
  n-PFOS −3.85 (−9.09, 1.70) 0.47 (−3.02, 4.10) −4.29 (−8.60, 0.22)* 0.658
  Sm-PFOS −3.02 (−7.18, 1.34) −0.24 (−3.15, 2.77) −1.70 (−5.54, 2.29) 0.765
  Total PFOS −4.09 (−9.24, 1.36) 0.42 (−3.07, 4.03) −3.62 (−7.92, 0.87) 0.866
  MeFOSAA −2.86 (−7.31, 1.79) 3.14 (0.25, 6.12)** −0.64 (−4.63, 3.52) 0.556
  EtFOSAA −2.26 (−5.73, 1.32) 2.70 (0.47, 4.98)** −2.11 (−4.97, 0.85) 0.750
Testosterone     
  n-PFOA 2.58 (−3.27, 8.79) −0.13 (−4.21, 4.13) −0.90 (−6.22, 4.72) 0.449
  PFNA 3.18 (−3.07, 9.83) 2.82 (−1.18, 6.97) 0.67 (−4.17, 5.74) 0.520
  PFHxS 1.47 (−3.23, 6.40) 1.09 (−1.83, 4.11) 0.14 (−3.77, 4.21) 0.722
  n-PFOS 6.15 (−0.39, 13.12)* 1.31 (−2.68, 5.46) −1.66 (−6.75, 3.70) 0.076
  Sm-PFOS 1.30 (−3.64, 6.49) 1.25 (−2.12, 4.74) −1.50 (−5.94, 3.15) 0.424
  Total PFOS 5.24 (−1.15, 12.04) 1.34 (−2.65, 5.49) −1.76 (−6.81, 3.55) 0.105
  MeFOSAA 1.96 (−3.31, 7.51) −2.86 (−5.98, 0.36)* −1.46 (−6.04, 3.35) 0.364
  EtFOSAA 0.13 (−3.91, 4.35) −2.04 (−4.47, 0.46) −1.63 (−4.92, 1.78) 0.551
SHBG     
  n-PFOA −1.11 (−6.84, 4.99) −1.32 (−5.39, 2.92) 6.67 (0.91, 12.77)** 0.063
  PFNA 0.21 (−5.98, 7.03) −0.70 (−4.64, 3.41) 1.53 (−3.44, 6.76) 0.695
  PFHxS −0.10 (−4.84, 4.86) −0.44 (−3.36, 2.57) 2.31 (−1.74, 6.52) 0.428
  n-PFOS −5.34 (−11.30, 1.01)* 0.90 (−3.12, 5.08) 5.82 (0.25, 11.69)** 0.010
  Sm-PFOS −3.68 (−8.44, 1.33) −0.75 (−4.09, 2.72) 5.49 (0.68, 10.53)** 0.009
  Total PFOS −5.27 (−11.13, 0.98)* 0.45 (−3.55, 4.61) 6.42 (0.87, 12.27)** 0.006
  MeFOSAA −2.87 (−7.97, 2.51) 1.57 (−1.72, 4.98) 6.00 (1.04, 11.20)** 0.014
  EtFOSAA −3.57 (−7.54, 0.57)* 1.24 (−1.30, 3.84) 4.15 (0.66, 7.77)** 0.005

All models were adjusted for age (time-varying), race/ethnicity, site, smoking status, menopausal status (time-varying), and BMI (time-varying).
Abbreviations: E2, estradiol; EtFOSAA, 2-(N-ethyl-perfluorooctane sulfonamido) acetate; FSH, follicle-stimulating hormone; MeFOSAA, 2-(N-methyl-
perfluorooctane sulfonamido) acetate; n-PFOA, linear perfluorooctanoate; n-PFOS, linear perfluorooctane sulfonate; PFAS, per- and polyfluoroalkyl substances; 
PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate; SHBG, sex hormone-binding globulin; Sm-PFOS, sum of perfluoromethylheptane sulfonate 
isomers. *P < 0.10; **P < 0.05.
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of age found no associations of PFOS and PFOA with FSH 
or with E2, T, and SHBG (18). Accelerated ovarian aging 
attributable to PFAS exposure may not be observable in 
young, healthy women.

PFAS are structurally similar to fatty acids and have 
been identified as endocrine-disrupting chemicals (33). 
Endocrine disruption may be facilitated at the molecular 
level either by interaction of PFAS with the estrogen and/or 
androgen receptor or by an interference with sex hormone 
biosynthesis (11). Some PFAS possess weak estrogen-like 
effects; however, previous mechanistic studies suggest that 
these chemicals did not directly activate human estrogen 
receptor α, estrogen receptor β, or androgen receptor in 
vitro (34). It remains unclear whether PFAS affect estrogen 
receptor or androgen receptor pathways at concentrations 
relevant to human exposure. Nonetheless, PFAS could 
modulate the expression of estrogen-responsive genes, 
which are responsible for the maintenance of gonado-
tropin releasing hormone neurons in the hypothalamus 
(35,36). PFAS could also interfere with the negative feed-
back regulation of FSH by E2 at the receptor level resulting 
in higher E2 levels.

Our data also support a direct effect of PFNA and 
PFOA on E2. PFAS have been shown to alter sex hor-
mone steroidogenesis through activation of peroxisome 

proliferator-activated receptors (PPARs) and modulation 
of gene expression for enzymes responsible for choles-
terol transport and ovarian steroidogenesis (37). Although 
human PPARs appear to be less responsive to PFAS than 
mouse PPARs, most perfluoroalkyl carboxylates and 
sulfonates activate PPARα and, to a lesser extent, PPARγ 
in mouse and human models (37). The ability to stimulate 
PPAR activation and further inhibit secretion of E2 and 
possibly progesterone and androstenedione offers an alter-
native explanation, although weaker, nonsignificant associ-
ations between PFOS and E2 compared to PFNA and PFOA 
in the present study are unclear. Toxicological studies have 
suggested that PFAS may disrupt ovarian steroidogenesis. 
In mice, PFOS administration for 4 to 6 months reduced 
the expression of genes responsible for transport of chol-
esterol as a necessary precursor for ovarian steroidogenesis 
(38). Epidemiologic studies also suggest a negative effect of 
PFAS on E2. A Norwegian study reported a significant asso-
ciation of PFOS, but not PFOA, exposure with lower E2 and 
lower progesterone levels in nulliparous, but not parous, 
women in a cross-sectional study of 178 healthy women 25 
to 35 years of age (13). Similarly, Knox et al found lower 
E2 was related to PFOS exposure but not PFOA among 
25 957 women 18 to 65 years of age in the West Virginia 
C8 Health Project (12). In the Chinese POI study, PFOS ex-
posure was associated with lower E2 and higher FSH levels 
in women with POI cases but not in controls; however, no 
associations were detected for PFOA or with T (15).

We observed that the associations between PFAS and 
SHBG depended on parity. We tested effect modification 
by parity because it has been proposed that a valid test of 
ovarian toxicity of PFAS could be conducted in nulliparous 
women (13). Breastfeeding and reproductive characteris-
tics associated with blood loss, including parity, menstrual 
bleeding, and menopause, have been associated with lower 
serum concentrations of PFAS (3,22,39,40) and may be im-
portant PFAS elimination pathways. With the same lifetime 
exposure to PFAS, nulliparous women would be expected 
to have higher body burden of PFAS compared with parous 
women, which may complicate evaluation of PFAS toxicity. 
SHBG is a glycoprotein binding globulin produced by the 
liver that transports sex steroids and determines the free 
fractions of both E2 and T (41), with E2 upregulating and 
T downregulating SHBG levels. While no evidence exists 
that PFAS directly suppress hepatic SHBG synthesis from 
animal models, it is possible that a PFAS-mediated reduc-
tion in E2 signaling could explain the association.

The PFAS-SHBG association may operate through adi-
posity. In our study, a significant inverse association between 
PFOS and SHBG was observed when BMI was not in the 
model (Table 2). No significant effect modification by BMI 
suggests that the PFAS-SHBG association is independent of 

Table 4.  Percentage changes (95% CIs) in serum 

concentrations of sex hormones for a doubling in PFAS 

concentrations that were selected in adaptive elastic-net 

models.

Selected PFAS in  
adaptive elastic-net

Percentage change (95% CI)

FSH  
  n-PFOA 2.27 (0.26, 4.32)**
E2  
  n-PFOA −1.01 (−2.50, 0.50)
  PFNA −1.10 (−2.48, 0.30)
  MeFOSAA 1.09 (−0.08, 2.26)*
Testosterone  
  n-PFOS 2.43 (−1.40, 6.42)
  PFNA 1.70 (−1.50, 5.00)
  MeFOSAA −1.67 (−4.12, 0.84)
  EtFOSAA −1.88 (−3.92, 0.22)*
SHBG  
  MeFOSAA 0.0001 (−2.22, 2.27)

All models were adjusted for age (time-varying), race/ethnicity, site, smoking 
status, parity, menopausal status (time-varying), and BMI (time-varying). 
*P <0.10; **P < 0.05.
Abbreviations: E2, estradiol; EtFOSAA, 2-(N-ethyl-perfluorooctane 
sulfonamido) acetate; FSH, follicle-stimulating hormone; MeFOSAA, 
2-(N-methyl-perfluorooctane sulfonamido) acetate; n-PFOA, linear 
perfluorooctanoate; n-PFOS, linear perfluorooctane sulfonate; PFAS, per- 
and polyfluoroalkyl substances; PFNA, perfluorononanoate; SHBG, sex 
hormone-binding globulin.
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adiposity. A potential link between PFAS and obesity has 
been reported (42,43), and in our population, baseline BMI 
was associated with serum PFAS concentrations. Hence, if 
past exposure to PFAS led to higher adiposity, which in turn 
influenced lower SHBG during the menopausal transition 
(44), the results with adjustment for BMI could be biased 
due to overadjustment. Toxicological studies are needed to 
elucidate underlying biological mechanisms.

The importance of evaluating of health effects of pollu-
tion mixtures has received considerable attention recently. 
However, statistical approaches for longitudinal data are 
limited, and no consensus exists regarding which approach 
is optimal (45). We, therefore, conducted an exploratory 
analysis and chose a 2-stage modeling approach to handle 
correlations in both dependent (linear mixed effects re-
gression) and independent variables (adaptive elastic-net) 
(28). A major strength of elastic-net is its ability to identify 
important components (ie, variables with nonzero coef-
ficients) in mixtures while handling the complex correl-
ation structure of mixtures. In the present analysis, only 
n-PFOA remained statistically significant in relation to 
FSH, and beta coefficients for PFOS and its precursors 
were shrunk to zero. This shrinkage is due to modest to 
strong correlations between n-PFOA and PFOS and its 
precursors (MeFOSAA and EtFOSAA) [Spearman correl-
ations, 0.41-0.82; see Supplemental Figure 2 in (21)]. This 
finding suggests that n-PFOA may be a factor that is caus-
ally associated with FSH while other PFAS may be proxies 
and their associations with FSH may be confounded by 
n-PFOA. However, it cannot be ruled out that n-PFOA 
was selected because its serum concentration captured 
true exposure more accurately than other compounds. An 
alternative approach is Bayesian kernel machine regres-
sion, which is designed to evaluate nonlinear associations 
as well as potential interactions in mixtures (46), but we 
were unable to implement it because of computational 
limitations.

The major strength of the present study was its longi-
tudinal design. We were able to capture individual-level 
hormone concentrations over a 15-year period as women 
transitioned through the menopause. The multiracial/ethnic, 
community-based cohort permits the observed findings to 
be more generalizable than studies limited to 1 or 2 racial/
ethnic groups or using clinic-based samples with medical 
conditions. The present study also had several limitations. 
First, we censored hormone data measured when women 
began hormone therapy. If women with high PFAS concen-
trations entered the menopausal transition earlier and were 
more likely to start hormone therapy, our findings may be 
biased toward the null. Second, PFAS were quantified only 
at baseline, 1999-2000. Around this time the population 
exposure might have peaked, especially for PFOS, because 

PFOS production started to phase out in 2000 (47), but 
since then, serum concentrations of PFOS and other PFAS 
have dropped (7,22,48). Despite long elimination half-life 
of several PFAS, including PFOS, exposure measurement 
bias cannot be ruled out. Third, we cannot rule out the pos-
sibility that the significant associations were observed by 
chance given the number of tests we conducted.

In conclusion, this longitudinal prospective study found 
positive associations of PFOA and PFOS with FSH and in-
verse associations of PFNA and PFOA with E

2 in midlife 
women during the menopausal transition, consistent with 
findings that PFAS affect reproductive aging. Parity may 
play a role in susceptibility to the PFAS-SHBG association. 
Given the widespread exposure in the general population, 
PFAS may be a potential risk factor for early ovarian aging 
and related chronic diseases later in life.
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