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Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures
directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to
various obstacles, which may include lack of data readiness (e.g., disparate databases, missing data, low validity)
and personnel competencies. This paper provides a primer on the application of big data to safety. We then
describe a safety analytics readiness assessment framework that highlights system requirements and the chal-
lenges that safety professionals may encounter in meeting these requirements. The proposed framework suggests
that safety analytics readiness depends on (a) the quality of the data available, (b) organizational norms around
data collection, scaling, and nomenclature, (c) foundational infrastructure, including technological platforms and
skills required for data collection, storage, and analysis of health and safety metrics, and (d) measurement
culture, or the emergent social patterns between employees, data acquisition, and analytic processes. A safety-
analytics readiness assessment can assist organizations with understanding current capabilities so measure-
ment systems can be matured to accommodate more advanced analytics for the ultimate purpose of improving

decisions that mitigate injury and incidents.

1. Introduction

Safety incidents have a major impact on the workforce and organi-
zations (Bureau of Labor Statistics [BLS], 2018). There are approxi-
mately 2.8 million injuries and illnesses within the private work sector
in the United States annually (BLS, 2018, 2019, 2020). Costs associated
with these work injuries go beyond workers’ compensation. The Na-
tional Safety Council (2019) estimates that work injuries cost companies
$161.5 billion annually, from expenses such as wage and productivity
losses ($50.7 billion); medical expenses ($34.3 billion); and adminis-
trative expenses ($52.0 billion).

Initiatives and regulations introduced by agencies in the United
States, such as the Occupational Safety and Health Administration
(OSHA), have done much to reduce injuries and illnesses (OSHA, 2012).
Organizations are required to notify OSHA when injuries and fatalities
occur in the workplace and store large amounts of data that can be
presented as proof of compliance with regulations when necessary
(OSHA, 2001). As such, many industrial organizations have large
amounts of safety data available that could be analyzed statistically.

Further, current analytics research within occupational safety has
demonstrated the predictive capabilities of (a) demographic informa-
tion, such as age, gender, and worker experience (Chi et al., 2014;
Stewart, 2013), (b) job-related information such as industry, equipment,
job risk, and training (Lingard et al., 2017), and (c) behavioral infor-
mation, such as the use of personal protective equipment, hazard iden-
tification, and housekeeping (Mistikoglu et al., 2015) in predicting
adverse safety outcomes. Some of these models are quite sophisticated
and have a high degree of accuracy. For example, Carnegie Mellon
University (Predictive Solutions, 2012) incorporated 112 million safety
observations and safety incident data from over 15,000 work sites to
predict incidents with accuracy rates as high as 80-97 percent and R? as
high as 0.75 between actual and predicted incidents.

Using predictive models such as these, organizations can direct
scarce resources to the locations and work teams that are at highest risk
of safety incidents (Schultz, 2012). For example, Deloitte analyzed five
years of data on injuries, demographics, production, operations, and
weather from Goldcorp, a gold-mining company (Stewart, 2013). Sta-
tistically significant relationships were found between injury rates and
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compensation, age, job roles and other operational factors. Goldcorp
used these insights to increase managerial training, write new policies,
and focus supervisor support on employees with higher risk profiles.

Despite the demonstrated success of safety analytics, these applica-
tions remain the exception and not the rule. Organizations have made
limited progress in developing analytics for safety (Tan et al., 2016), and
many safety professionals lack an understanding of what is possible with
existing data pools (Ferguson, 2018). In this paper, we provide a thor-
ough primer on data attributes, analytic sophistication, and the appli-
cation of data strategies to Occupational Safety and Health (OSH). We
then highlight system requirements for advanced analytics and describe
safety-specific challenges. In doing so, we develop a framework for
assessing current safety analytics capabilities, maximizing analytic
value, and making prioritization decisions for investment in system
improvements.

1.1. Features of big data

Safety professionals have more data than ever at their fingertips
(Canitz, 2019). In addition to artifacts of employee reporting, there is a
flood of data being created by new safety devices that provide detailed
information on people, machines, and the environment (Ferguson,
2018). These increasingly large datasets approach the size of big data,
defined as a lot of different types of data handled in new ways, or large
datasets that tax system capacity (Dastjerdi et al., 2016). Big data is a
term used ubiquitously within the analytics zeitgeist, yet it is distin-
guishable from other data forms and statistics through five defining
features: volume, velocity, variety, value, and veracity (Ramadan,
2017). While big data often refers to data that is unmanageable by
traditional architecture (Goel et al., 2017), these five features (see Fig. 1)
can be useful in identifying the characteristics of any size data that
contribute to sophisticated analytical output.

Overall, analytics within OSH will be more successful (e.g., value) in
identifying trends that lead to risk mitigation when there is more (e.g.,
volume) high quality (e.g., veracity) data of varied type (e.g., variety of
data type) over time, considering both archival and continuously
updated current data (e.g., velocity), originating from safety as well as
other organizational units (e.g., variety of source; quality control, pro-
duction, human resources).

Volume is defined as the quantity and size of data that are generated
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Fig. 1. Five Characteristics of Big Data.
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and stored. Increasingly, OSH is collecting data in volumes that are
difficult or impossible for traditional databases and statistical methods
to handle. Text analysis in R, for example, can only analyze a certain
number of observation comments. For less advanced analytics, such as
identifying trends by frequency count, volume is typically less of a
concern. However, as OSH increases exponentially in data volume,
constraints to conducting analytics may include man hour costs for
personnel and technical expertise necessary to collect, aggregate, store,
and analyze the high-volume data. Thus, as volume increases, OSH may
need to invest in a dedicated position or allot significant time for
incumbent staff to manage the safety data.

Velocity is defined as the speed at which data are generated and
processed. In the past, high velocity was less of a challenge, as incident
reports happened relatively infrequently, and other data collection
mechanisms required manual entry. There are new technologies within
safety (e.g., wearable ergonomic belts), however, that provide
constantly streaming real-time information via sensors. Though high
velocity data collection is not necessary for all analytics, data that are
collected more frequently will allow for more precise temporal output of
predictions, as continuously updating information makes real-time
predictions possible. High velocity can lead to high volume, however,
and OSH professionals will face challenges in maintaining pace in
decision-making with the continuously updated information. In addi-
tion, practitioners will need to make decisions about timing of analyses
(i.e., frequency of insight dissemination to managerial personnel) and
retention periods.

Variety is defined as the heterogeneity of data type and nature,
including the different sources of information across processes and
functions, forms of data (e.g., electronic monitoring, fillable forms,
surveys), and types of database structures utilized within the organiza-
tion. This wide variety of data can make aggregation and analysis
challenging. For example, data may be structured (e.g., text observa-
tions in a relational or tidy format), semi-structured (e.g., csv files) or
unstructured (e.g., images and video). OSH faces obstacles in gaining or
utilizing the technologies and infrastructure that allow for this data to be
stored, aggregated, and analyzed despite these different formats.

The final features of big data—veracity and value—are essential
characteristics of all data, not just big data (Ramadan, 2017). Veracity is
defined by three dimensions of information quality: data objectivity,
truthfulness, and credibility (Lukoianova & Rubin, 2014). The validity
and reliability of data are rarely formally assessed yet analytical output
is only as accurate or as trustworthy as data inputs; a concept succinctly
summarized by the popular adage “garbage in, garbage out.” Veracity
impacts data quality and analytic value, and big data is often plagued by
biases, ambiguity, or error (Lukoianova & Rubin, 2014). Safety data
relies heavily on employee and front-line supervisor reporting where
rater errors in reporting can occur due to concerns over negative out-
comes on their jobs such as discipline for rule violations, extra personal
attention by management, or added cumbersome safety rules and
equipment. These workplace variables may cause a degree of “pencil
whipping” (Ludwig, 2014) whereby information entered into safety
reports are underreported or not factual (Probst & Graso, 2013). In other
instances, employees may not have the technical expertise to correctly
categorize safety events and/or adequately describe the event. These
and other rater errors can impact the validity and reliability of the data.
Luckily, big data is typically of such volume that trends are often still
useful. There are also methods of managing data veracity, such as
identifying suspicious outliers, automated detection and sorting of
quality using machine learning, or crowdsourcing techniques (see Assiri,
2020, Table 1).

The last feature of optimal data is also related to quality, but for
outcomes. Value is defined as the measurable impact of data-driven
insights. Value can thus refer to both inputs and outputs; data itself
(input) has a value in how it can contribute towards data-driven insights,
and those insights (output) have value when actions derived from data
have a measurable impact (e.g., reliably predict risk profiles and
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Table 1

Variable List consisting of the 26 important variables that may impact safety

outcomes, along with their definitions.

Variable Definition

Safety Metrics

Hazard ID The metrics surrounding the reports made by employees
of hazardous environments that could lead to safety
incidents.

Audits/Inspections These metrics track the frequency of audits and

First Aid/Minor Injury
Reporting

Near Miss/Close Call
Reporting

Environmental

Behavioral Observations

Fatigue

Safety Participation

Safety Culture

Production
Volume Trends
Scheduled Events

Staffing Loads

Calendar Events

Quality

Cost/Budget

Maintenance
Failures (Equipment)

Action Item Backlog
Preventative

Maintenance

Procedures
Change Management

Human Resources
Safety Knowledge

Job Attitudes
Safety motivation
Turnover

Absenteeism

Employee
Characteristics

Culture

inspections of workplaces and workgroups to measure if
the work is being done safely and if the environment is
safe.

These metrics track minor injuries, such as small cuts,
trips, or falls that may need first aid.

This metric measures the number of instances where
employees report that a safety incident did not occur, but
almost did.

Environmental metrics track adverse conditions such as
weather, heat, wind, storms, etc.

Metrics collected on behavioral observations may
include video or checklists, either paper and pencil forms
or electronic.

Measures tracking the point at which employees are
likely to have a safety incident due to strain and fatigue
caused by the nature of their work/workload.

Measures of safety participation track indirect and
voluntary behaviors that contribute to a safe work
environment, including participating in shift
discussions, safety meetings, close call/near miss
reporting, or investigating incidents.

Safety culture measures the extent to which employees
and managers think about, talk about, and are
committed to having a safe workplace.

The quantity of product output at a given time.

These metrics relate to changes to the production that
managers may make, such as switching a machine from
one product to another.

These metrics relate to accounting for people working at
a given time, and how much those employees are
working.

These are events that may center around a date on a
calendar, like a holiday or vacation.

A measure of excellence or a state of being free from
defects, deficiencies, and significant variations. These
metrics may also measure the opposite, such as errors or
reworks.

These metrics would measure estimated costs, revenues,
and resources over a specified period.

These metrics track what machines have failed, how
often, or why.

These metrics measure unfinished tasks that need to be
completed.

Data centered around equipment and facilities by
tracking systematic inspection, detection, and correction
of incipient failures either before they occur or before
they develop into major defects.

These metrics could track what occurs after a change in
procedure, product, or could track leadership changes
over time. These organizational metrics may cross-
functions and help to provide a strategic lens.

Knowledge of how to perform tasks safely; affected by
T&D practices.

Job satisfaction, organizational commitment, etc.
Willingness to exert effort to enact safety behaviors.

A measurement of the number of employees who leave
an organization during a specified time period.

The measure of the number of employees that are absent
from their scheduled shift.

Personality characteristics (e.g., Big 5, locus of control,
risk taking propensity, demographics of the workforce
that is being measured (e.g., tenure, sex, age, education).
The measure of the cultural norms of the workforce,
including what they prioritize, talk about, and behave.
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mitigate injury). Each piece of information is more or less important to
an analysis in terms of its relevancy to the question of interest, as well as
how much value the information adds to the output statistically (e.g.,
increases in R? or explained variance). For example, within OSH, the
data collected from smart wearable ergonomic belts are important in
determining risk profiles for back injuries, and likely make up the bulk of
the necessary information to determine risk factors, along with behav-
iors and equipment associated with the task. In contrast, hazard iden-
tification data would contribute to a risk profile for the same job but add
less value to the prediction of back injuries. The “value” of analytics is
thus created when the right objective and credible data (e.g., the sensory
information from smart ergonomic belts) drives action (e.g., new stan-
dard operating procedures or targeted observations) that has measur-
able impact (e.g., fewer back injuries).

While these five features of big data are typically used to describe the
challenges of data management on a huge scale, we argue that these
characteristics can also be used to determine the level of readiness of
smaller OSH datasets to successfully engage in advanced analytics. In
addition, there exist common obstacles (e.g., difficulty in aggregating
data of different forms) and techniques for mitigating these challenges
(e.g., ‘data lake’ management systems for unstructured data). This
comparison between big data characteristics and analytics within OSH
may also aid organizations in determining the level of statistical
methods or analytics that organizations can aspire to, given the con-
straints of their data characteristics.

1.2. Levels of analytics

There are five levels of analytics that offer increasing degrees of
sophistication in terms of their ability to drive improved decision-
making (Fred & Kinange, 2015): (a) descriptive analytics, (b) diag-
nostic analytics, (c) predictive analytics, and (d) prescriptive analytics,
and (e) cognitive analytics (Canitz, 2019; Lepenioti et al., 2020).
Descriptive analytics answer questions about what has happened in the
past. Data are analyzed for characteristics and relationships through
data visualizations and statistics such as sums, means, and averages
(Huang et al., 2018). In OSH, descriptive analytics may look at the
number of behavioral observations or equipment inspections in a month
and distribution curves across different departments in the company.
Dashboards and reports are also a form of descriptive analytic
technique.

Diagnostic analytics provide clues about the reason for such past
occurrences. These types of analytics (e.g., correlational analysis)
describe relationships between variables to provide context. Diagnostic
analytics use historical and past safety performance to identify reasons
for the success or failure of initiatives—or explanations for specific
outcomes—by investigating relationships, outliers, and sequences
(Huang et al., 2018). An example of a diagnostic analytic technique in
OSH would include a root cause analysis (Canitz, 2019). Safety data
analytics at this level has focused on correlates to workplace injury such
as external pressures, internal social context, and organization charac-
teristics including job demands (e.g., environmental conditions, sched-
uling and workload, physical job demands, and the overall complexity of
work; Barling et al., 2002), leadership (e.g., relationship with the
manager, leadership style, trust, and accountability; Fogarty, 2004), and
organizational commitment to safety (Fogarty, 2004).

Predictive analytics (e.g., regression analysis) attempt to prognosti-
cate future outcomes to answer questions about which incidents are
likely to happen and why. In addition to historical data, predictive
analysis incorporates current information in an attempt to predict the
likelihood of an event (Huang et al., 2018). Predictive analytics in OSH
can include both short-term and longer-term predictions. For example,
Lingard et al. (2017) used injury rate and other data from a large con-
struction company’s safety program (e.g., toolbox talks, prestart meet-
ings, safety observations, hazards reported, etc.) to identify a lagging
predictive pattern between indicators. Their findings suggested that
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injuries were often followed by an increase in preventative measures (e.
g., toolbox talks) which subsequently decreased until the occurrence of
the next injury. In another example, a construction contracting company
in Singapore used five different types of machine learning models on
project- and safety-related variables to predict conditions under which
no accidents would be likely to occur, conditions which may cause
minor accidents, and conditions which may cause major accidents. The
most effective of these, a random forest regression, a type of decision
tree, predicted these conditions with 78% accuracy (Poh et al., 2018).

Prescriptive analytics take results from predictive analytics and uti-
lize real-time data streams to provide more accurate guidance for
decision-making (Mousanif et al., 2014). Safety data, mathematical
formulae, safety rules, and machine learning are used in continuously
updated models to suggest the most advantageous real-time decision
options based on the identification of future opportunities or risks
(Huang et al., 2018). For example, Ayhan et al. (2018) built a Viterbi
algorithm variant (i.e., a dynamic programming algorithm that finds the
most likely of events within a sequence) to reduce the chances of air
traffic and collisions by predicting when an airplane trajectory may
infringe on the protected zone of another aircraft. The prescriptive
model detects and resolves these potential conflicts before aircraft even
depart, resulting in safer operations, higher efficiency, higher capacity,
and reduced air traffic controller workload.

Finally, cognitive analytics represent a further advancement in ca-
pabilities. Cognitive analytics refer to the integrative process of
acquiring and transforming heterogeneous data sources into real-time
actionable insights using models and systems inspired by the mecha-
nisms and intelligence of the human brain (Gudivada et al., 2016;
Osman & Anouze, 2014). By integrating substantial amounts of knowl-
edge, these systems can reason, perceive and reflect on their capabilities
and behavior, learn and improve from past experiences, plan, and
respond quickly and efficiently to system shocks or surprises (Bannat
et al., 2011). Cognitive analytics differ from the other levels because
processes are fully automated and operate without human oversight
(Gudivada et al., 2016). For example, cognitive architecture for un-
manned surface vehicles (e.g., cars or nautical equipment) engages in
human-like behavior and decision-making to prevent hazardous or
catastrophic events to equipment and personnel, such as sensing the
environment, maintaining safe distances from obstacles, and responding
to stimuli appropriately and timely (Dreany & Roncace, 2019).

The levels of analytics require increasingly complex data character-
istics. For example, prescriptive analytics require data that updates in
real-time (e.g., high velocity), while descriptive analytics can use
archival data to assess past trends (e.g., low velocity). The techniques
implemented in the different analytic strategies described above, how-
ever, are varied and similar techniques can be used to answer questions
in a descriptive or prescriptive phase. For example, one could use mul-
tiple linear regression to identify trends in existing data or to predict
future patterns of injuries or near misses. There have been a variety of
techniques implemented in the extant literature including classification
and regression trees (Shirali et al., 2018), support vector machines
(Sarkar et al., 2017; Sarkar et al., 2016), decision trees (Ajayi et al.,
2020; Sarkar et al., 2020a), and k-nearest neighbors (Poh et al., 2018).
Additionally, organizations may be able to create functional models yet
have relatively low analytic capabilities. Successful analytics, then, is
not about the sophistication of the analytic technique but is rather
defined by the value of the outcome.

Not all firms who make large investments in analytics achieve these
improvements in performance and value, however (Cosic et al., 2012).
Indeed, the successful use of data analytics within occupational health
and safety has been lagging other industries due to many unique chal-
lenges. One issue is that large amounts of safety data are reliant on
worker observations and voluntary reporting. In many cases employees
may be unwilling to report on or take the time to identify hazards.
Additional obstacles such as disparate data platforms, data input errors,
or the lack of support staff to organize, clean, and run statistics on the
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data (Gao et al., 2015), may also prevent organizations from running
more advanced levels of analytics (Hadaya & Pellerin, 2010).

While many organizations may be interested in the valuable out-
comes safety data analytics might provide, they may not know if their
safety measurement systems are adequate for analytical techniques nor
how they might mature these systems. Determining current capabilities
will allow organizations to utilize the most efficacious level of analytics
(i.e., the level of analytics that provides the most accurate and action-
able output given system constraints) to inform decision-making and
identify the components of the data analytic process that need to be
further developed (Foreman et al., 2020; Lepenioti et al., 2020).
Therefore, organizations need to be able to reliably predict their level of
success at analytics (i.e., descriptive, diagnostic, predictive, prescriptive,
cognitive). Accordingly, this paper describes a diagnostic framework
that identifies data analytic system readiness.

2. Data analytics readiness assessment framework for safety

Readiness assessments evaluate an organization’s current stage of
system and process maturity across individual components to provide
recommendations for how to improve readiness (Klievink et al., 2017).
Other industries have developed frameworks to assess data readiness,
including healthcare (Snyder & Fields, 2006), education (Arnold et al.,
2014), city planning (Barham & Daim, 2020), and supply chain opera-
tions (Nemati & Udiavar, 2013). Snyder & Fields (2006) developed a
data readiness assessment in the healthcare industry to assist in the
utilization of predictive variables to create safer environments by
reducing medication errors and adverse drug outcomes. Another read-
iness assessment within healthcare, the Healthcare-Analytics Pre-
Adoption Readiness Assessment Instrument (HAPRA; Venkatraman
et al., 2016) guides organizations to self-rate their maturity across
medical technologies, IT, user adoption of technology, data quality, and
management. Within supply chain operations, analytic readiness as-
sessments have also been useful to prepare data structures for analytics
to improve efficiency, quality, and supply chain strategies (Nemati &
Udiavar, 2013). Industry-specific readiness assessments provide value
by aligning the focus of the readiness assessment to variables, re-
lationships, and strategies/goals of importance in that industry.

Research has yet to develop an industry-specific framework for
assisting OSH in identifying current capabilities for data analytics. The
first task for such a framework is to identify common predictor and
outcome variables within organizations. These variables will be the
minutiae upon which larger organizational factors (e.g., data quality
and norms of data collection) are assessed.

2.1. Safety variables for analytics

Organizations planning on engaging in analytics should create their
own comprehensive list of available and aspirational metrics consid-
ering a variety of safety and other operational measures. These measures
should be organized in meaningful predictive groupings suggesting hy-
pothetical relationships in a path that may be predictive of OSH outcome
variables (e.g., injuries).

Important variables within the safety function are typically dichot-
omized into two categories: leading and lagging. Safety leading in-
dicators are defined as “proactive, preventative, and predictive
measures that monitor and provide current information about the
effective performance, activities, and processes of a safety management
system that can drive the identification and elimination or control of
risks in the workplace that can cause incidents and injuries” (The
Campbell Institute, n.d., p. 2), whereas lagging indicators are reactive
measures that track outcomes or events after they have already occurred
(Usrey, 2016). Data collection coverage of leading and lagging in-
dicators has been an established measure of OSH program effectiveness
(Wurzelbacher & Jin, 2011).

Researchers focused on identifying current enterprise- and
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establishment-level analytics within safety found that most studies re-
ported only on variables contained within injury reports (Foreman et al.,
2020). These variables, collected after the occurrence of an injury, are
classified as examples of lagging indicators (Lingard et al., 2017; Ludwig
& Laske, 2020; Pawlowska, 2015). Lagging indicators are limited in
their ability to predict future incidents because these types of reports
generally have low velocity and variability due to the low base-rate
occurrence of injuries. Additionally, prediction relies on causal mecha-
nisms; to reliably say that a variable predicts an outcome, it must both
covary statistically with that outcome (i.e., implying that the two pieces
of information are related) and happen prior to the outcome. Although
lagging indicators do describe pre-incident variables (e.g., causes of
incidents) lagging indicators are post-incident artifacts (e.g., text de-
scriptives of the accident) and cannot be used to predict risk or injury
with great confidence, as they are not causally related to those incidents.

Some safety analytic studies reviewed by Foreman et al. (2020)
assessed leading indicator data (e.g., near miss reports) that represent
the current environment in predicting risk of incident (e.g., Dhalmaha-
patra et al., 2019; Sarkar et al., 2019; Sarkar et al., 2020b; Verma et al.,
2014; Verma et al., 2017). Leading indicators include variables such as
incident reports, surveillance, and surveys covering hazard identifica-
tion, injury and first aid reports, near miss reporting, inspections/audits,
and behavioral observations.

Safety data used for analytic studies should come from a variety of
safety management system sources covering both leading and lagging
indicator variables (Foreman et al., 2020). Numerous studies, however,
have demonstrated the importance of variables generated outside of
safety in business operations such as planning, maintenance, training,
management (e.g., Bevilacqua et al., 2010), and culture (e.g., Goh et al.,
2018). Moreover, studies on construction site planning (e.g., Elbeltagi
et al., 2001; El-Rayes & Khalafallah, 2005; Sanad et al., 2008; Zhang
et al., 2016), process safety (e.g., Baek & Choi, 2019; Li et al., 2019),
equipment maintenance (e.g., Tan et al., 2011) and structural engi-
neering (e.g., Zhao et al., 2020) delineate the relationship between op-
erations and safety outcomes. Therefore, additional operational
variables should be considered across common business functions such
as production (e.g., quality, volume, cost, and budget), maintenance (e.
g., equipment failure, action item backlogs, and preventative mainte-
nance), procedures (e.g., change management and leadership) and
human resources (e.g., safety attitudes, job attitudes, safety motivation
& knowledge, turnover, absenteeism, hours worked, or employee
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characteristics; see Christian et al., 2009).

We created an example Risk Metrics Framework using a cause and
effect diagram (Ishikawa, 1982) outlining potential groupings of rele-
vant organizational metrics and safety outcomes such as incidents, near
misses, and fatalities (see Fig. 2). Although safety analytics is focused on
reducing these adverse outcomes, a full breadth of variables must be
analyzed for safety analytics to discover novel relationships and provide
impactful insights. Organizations seeking to understand their current
capabilities should assess a variety of these metrics across analytics
readiness factors.

These common safety and operational metrics are compiled into a
variable list which summarizes common metrics within safety mea-
surement and other operational areas that impact risk and injury. The
variable list in Table 1 was devised by safety Subject Matter Experts
(SMEs) from two multinational manufacturing organizations along with
a comprehensive review of the literature (Forman et al., 2020) to pro-
vide an example of organizational metrics that might be considered for
inclusion in safety analytics. As organizations engage in building ana-
lytics capability, they can use the proposed variable list as a comparison
or antecedent in deciding which of their own metrics to build, collect,
and analyze. However, note that this is not an exhaustive list and may
not include metrics more common in alternative industries (e.g., con-
struction) or culture- and regulation-specific variables commonly
measured in organizations based outside of the United States.

While having a wide and comprehensive array of metrics and vari-
ables will lead to analytics that are better able to identify a more holistic
network of risks, this coverage in itself does not contribute to analytic
capability. Instead, there are several factors of the organizational system
that ultimately contribute to data analytics readiness.

2.2. Analytics readiness assessment factors

Established analytic readiness frameworks (e.g., Arnold, et al., 2014;
Comuzzi & Patel, 2016; Eybers & Hattingh, 2017) suggest that assess-
ments focused on optimizing analytics must evaluate the adequacy of
individual measurement data features (i.e., volume, velocity, variety,
veracity, and value) as well as the organizational capacity to manage
and analyze larger data sets. For example, in a readiness assessment
developed for education, Arnold et al. (2014) emphasize the assessment
of data itself but also include an evaluation of personnel expertise (e.g.,
ability), infrastructure (e.g., resources), and culture. In city planning,
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Fig. 2. Risk Metrics Framework of Variables Affecting Safety Outcomes.
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factors associated with the success of big data projects include people,
technology, politics, and the organization (Barham & Daim, 2020).

Based on common themes across readiness assessments in other in-
dustries and the body of safety analytics literature, we propose orga-
nizing data and organizational factors related to safety analytics
readiness into four key factors that affect an organization’s system ca-
pabilities: data quality, rules and operations, infrastructure, and safety
measurement culture (see Fig. 3). Each of these readiness factors are
comprised of several components which are evaluated individually; the
combined assessment of these components provides evaluation of the
higher order readiness factor. The readiness factors and their compo-
nents are summarized in Table 2.

2.2.1. Data quality

High-quality data are necessary to realize valuable outcomes (i.e.,
outcomes which can improve decision-making) from analytics (Cai &
Zhu, 2015). Unfortunately, archival databases of organizational safety
measures are often created for a purpose other than conducting analytics
and this can affect the quality of the data and analytics process. Many
safety processes such as inspections collect high volumes of information
but are only used to find equipment issues to fix. Human resources
employment data, such as overtime, are collected for payroll but not
used to assess the amount of time an employee is working and how it
may relate to injuries. Such measurements were not designed to satisfy
the quality requirements for the proposed analyses. Accordingly, the
framework assesses the quality of the data across three components (i.e.,
validity, reliability, and variability) for its adequacy to conduct different
levels of initial and advanced analytics.

Validity assesses the extent to which inferences from the data accu-
rately represents the “real world” phenomenon targeted by the mea-
surement (Jugulum, 2016; Sechrest, 2005). Validity can be a concern in
the safety industry because many metrics are reliant on employee
reporting, which may be affected by culture or biases (Salas & Hallowell,
2016).

Reliability refers to consistency of measurement across time and
units. Disparate databases and collection methods may lead to decreased
consistency in variables being named, defined, formatted, and scaled in
the same manner across systems. For example, data collected on
“overtime” may be consistent definitionally in that each measure con-
tains information about time spent at work beyond a predetermined
schedule of time (i.e., name and definition), but inconsistent in scaling
when, for example, one department collects daily punch card informa-
tion such as the minutes worked beyond eight hours in a day and another
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Table 2
Summary of Readiness Factors with their Components and Definitions.
Readiness Factors Components Definitions
Data Quality Validity Refers to the extent to which measures
accurately represents the “real world”
phenomenon targeted
Reliability Refers to consistency of measurement
across time and units
Variability Refers to the ability of a measure to
detect differences across time and units
Rules and Adequate Measures the extent to which the things
Operations Coverage we want to look for in relation to safety
outcomes are represented in data
collection
Velocity Refers to the frequency with which data
are collected, entered, and updated in
our databases
Harmonization Refers to having common demographics
(e.g., who, what, where, when
variables) across datasets that allow for
data to be linked
Foundational Personnel Refers to the availability of key
Infrastructure Infrastructure personnel with the necessary expertise
to carry out technical processes of
working with big data
Centralized Refers to the degree to which data
Database variables are stored or can be readily
combined into a central database
Measurement Employee The extent to which employees
Culture Participation participate in the process and reporting
of safety matters
Management The extent to which managers support
Concern and encourage employees to participate:

includes transparency about the purpose
of reporting

department collects information electronically on the hours worked
beyond a total of forty, whether that begins on the third day of the
workweek or the fifth (i.e., format and scaling).

Finally, data must contain enough variance to conduct statistical
analyses. Variance is defined as the divergence of a set of measurements
from the mean of the total sample within a variable. Standard de-
viations, mathematically calculated as the square root of variance, are
commonly used in statistics to describe dispersion or how spread out the
observations are (i.e., data variability). Another way to check dispersion
is to assess kurtosis. If range restriction occurs, causing an abnormal
distribution shape (e.g., leptokurtic distribution shapes contain greater
amounts of measures very close to the mean) with a very low standard
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Fig. 3. Applicability of Readiness Components to the Data Analytics System.



M.E. Ezerins et al.

deviation, then the chance of finding a correlation between variables
becomes limited (Type II error). Many statistical analyses based on the
general linear model rely on adequate variance in distributions in order
to find relationships.

A few variables in safety, such as outcome variables measuring in-
juries, naturally have very little variation due to the low frequency of
occurrence. In addition, there may be restrictions on the variance of
predictor and precursor data because measures require individuals to
voluntarily recognize the event(s) and record/enter the data. For
example, the reporting of minor injuries, close calls, and at-risk behav-
iors may be truncated because workers (a) don’t perceive their impor-
tance, (b) forget to stop their work to report the event, (c) perceive
personal negative outcomes in retaliation for reporting the information,
or (d) engage in extreme rater response styles like pencil whipping
(Ludwig, 2014). Finally, in reality most variables assessed using safety
measures are regarded as safe, which reduces the variance typically
introduced by risk. For these reasons, the variability in safety mea-
surement is often reduced to a small standard deviation.

2.2.2. Rules and operations

Rules and Operations refers to organization-level processes of data
collection (Comuzzi & Patel, 2016; Eybers & Hattingh, 2017; Gao et al.,
2015). This readiness factor is assessed across three levels. First, in order
to run analytics, the organization must have access to a range of vari-
ables that can be used to predict outcomes (i.e., adequate coverage).
Second, the data must be collected with consistent and common vari-
ables so that un-centralized data can be connected (i.e., harmonization).
Third, the speed at which the data are updated is assessed (i.e., velocity).

Adequate coverage measures the extent to which targeted safety
variables in the variable list (e.g., pre-incident “leading” indicators,
“lagging” outcome variables, and process measures such as behavioral
observations and inspections) are adequately covered within the data.
Additional variables from cross-functional areas should be included and
evaluated if trends identify a relationship with important outcomes.

Data harmonization refers to the ability to link and combine dispa-
rate variables and databases. For example, Microsoft Excel© uses the
VLOOKUP formula to combine data from different sheets; the formula
requires a common, unique variable by which the data sets can be
matched. The same process is used within big data, which necessitates
the availability of a common variable to match across datasets for
combination into a single database. These most likely include de-
mographics such as names, employee numbers, departments, dates,
tasks, etc. These variables can be as specific as employee names/ID
numbers, can be aggregated by intermediate levels like work team or
department, or can be as general as a calendar unit (e.g., week, month,
or quarter).

Velocity refers to the frequency at which data enters a database and
is updated (SAS, 2021). Examples of data velocity are the frequency of
interval updates (e.g., daily, weekly, monthly, quarterly, or annually) of
historical, batch, and real-time data feeds. Historical data, and data
updated in larger intervals, are sufficient to describe what events have
occurred in the past (e.g., descriptive and diagnostic analytics) and
make predictions on what may occur in the future (e.g., predictive an-
alytics), but in order to run prescriptive or cognitive analyses, real-time
data updates are essential for the ability to make automatic adjustments
based on nuanced changes in the data stream. Within OSH, certain
technologies such as sensors can provide real-time information
measuring pressure, ambient temperature, speed, and direction or angle
of body movement. Most safety data, however, is collected through
manual reports on paper or in an electronic system, and this delay be-
tween occurrence and report may prevent some organizations from
being able to use those data sources for higher-level analytics.

2.2.3. Foundational infrastructure
Foundational infrastructure refers to the maturity of the organiza-
tional environment and technological processes devised to acquire,
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store, manage, and extract knowledge from all the different sources of
data proposed in Table 1 (Comuzzi & Patel, 2016; Eybers & Hattingh,
2017; Gao et al., 2015). Included in the readiness factor of foundational
infrastructure are (a) personnel with technical skills to manage and
analyze data, and (b) centralization of the data, which refers to how
compatible platforms are for integration, whether raw or aggregated
data are available to be extracted from the system, or what variables are
chosen to be stored locally versus shared cross-functionally due to the
original purpose of the data collection.

The availability and expertise of key personnel (i.e., the personnel
infrastructure component) necessary to carry out the technical processes
of working with large data sets should be considered. Such expertise
includes: (a) ensuring availability of data while minimizing cost (e.g.,
data management), (b) developing and maintaining predictive and
forecasting models while establishing common analyses and reusable
processes to reduce execution time and cost (e.g., analytics modelling),
and (c) leadership oversight to define strategies and tactics that ensure
relevance of analyses.

The degree to which data are stored or can be readily combined into
a central database is a necessary component for efficient and effective
analytics as the models must have access to all the variables of interest (i.
e., centralized database component). It will be rare for organizations to
have one database for storing big data, unless the organization is uti-
lizing advanced technologies such as data lakes (e.g., Apache Hadoop)
for storing unstructured data or disparate databases, which can be
restructured, aggregated, and transformed as later required (Quix et al.,
2016). A more common scenario is for organizations to have multiple
technological platforms for their data. For example, OSH departments
may house their data (e.g., Velocity) differently than human resources
(e.g., Workday), finance, operations, or other functions. In addition,
some data are stored at the worker level (e.g., payroll information),
while other data may be stored at the project level (e.g., inspection rate),
causing further challenges to data centralization (Pereira et al., 2020).

2.2.4. Safety measurement culture

Law and Ruppert (2013) describe the collection of data as a social
system where culture, which may be called safety measurement culture,
impacts the entirety of the process through which data are collected and
used to make decisions. When people interact with data entry forms (or
not) in the context of their work or use what emerges from the data to
mitigate safety issues they are engaging with the safety measurement
process. Law and Ruppert (2013) posit that these processes are hetero-
geneous arrangements between technology and humans. Therefore,
active social patterns emerge concerning data collection (e.g., em-
ployees conduct more observations and log reports at the end of a quota
cycle), and the communication of data can be political in their circula-
tion (e.g., management purposefully may not discuss data findings with
front-line workers), thereby affecting willingness to collect data in the
first place.

A company can have the best data infrastructure possible, but the
system will be ineffective for analysis and improvement if employees are
not willing to participate in that system with integrity. Noncompliance
with existing protocols may be affected by potential ramifications (e.g.,
negative job outcomes), how data are presented to employees, and how
improvements made based on the data are marketed (Beer, 2015). The
culture surrounding reporting (e.g., the employee’s comfort with
speaking about incidents or risks, or protection from retaliatory prac-
tices) and management use of the data to find problems and make
positive changes may impact the employee’s willingness to report ac-
curate information (Kagan & Barnoy, 2016).

Safety measurement culture, then, refers to the extent to which
employees and management are inclined to engage in the voluntary
extra-role activities that may contribute to improved measurement
systems, in addition to meeting minimum requirements for compliance,
which refers to engaging in core baseline measurement activities (e.g.,
compliance versus participation, Griffin & Neal, 2000). Safety
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measurement culture assesses the willingness of employees to regularly
and voluntarily record information correctly, honestly, and in a timely
manner.

Safety measurement culture has some conceptual similarities to
safety voice behavior, defined as “explicit communication that is (1)
discretionary, (2) aimed at improving a perceived unsafe situation, and
(3) addressed to others of equal or senior status” (Noort et al., 2019, p.
381). However, they do differ in a few important ways. First, safety voice
describes discretionary behaviors, whereas safety measurement culture
is comprised of both compliant (e.g., documentation of the administra-
tion of first aid) and discretionary (e.g., consistently submitting near
miss reports) efforts. Safety voice is singularly focused on prohibitive
messages (i.e., voice behaviors that mitigate harmful outcomes) where
safety measurement culture would also include positive feedback or
ideas for improvement among its outcomes. Further, safety voice is
singularly focused on upwards or horizontal verbal communication
(Bazzoli & Curcuruto, 2020; Noort et al., 2019), while safety measure-
ment culture considers the bidirectional (i.e., interactions between
employees and managers) cultural impact of perceptions, behavior, and
communication message content on data artifacts (e.g., quality, timeli-
ness, and frequency). We have, accordingly, separated perceptions, be-
haviors, and communication content about measurement practices (i.e.,
safety measurement culture) into two primary components: employee
participation and management actions.

Employee participation in safety initiatives like reporting has been
found to improve safety outcomes (Hagge et al., 2017). Within OSH,
employees are a necessary component of data collection for hazard
identifications, near miss identifications, observations and checklist
completions, audits, and inspections. The extent to which employees
participate in the reporting process can impact both safety outcomes and
quality of data. This can be affected by positive cultural perceptions (i.e.,
“my reporting can help reduce injuries”) as well as negative cultural
perceptions. For example, a factor that often impacts data quality related
to employee participation is pencil whipping. Pencil whipping happens
for many reasons, such as within mandatory quota systems (i.e.,
compliant yet untrustworthy reporting), where an employee may feel
pressured to fill out a certain number of reports regardless of whether a
recordable event took place or fear of reporting accurately due to
negative repercussions from management (Ludwig, 2014). Therefore,
several different perceptions of participation must be assessed to
determine which cultural mechanisms are affecting employee reporting
behavior.

Safety measurement culture is additionally impacted by manage-
ment actions that demonstrate concern for worker safety (Frazier et al.,
2013). Employee participation in reporting processes is impacted by
visible manager behaviors that reinforce a consistent narrative of safety
importance. OSHA (2016) recommendations for building safety culture
are also applicable to the data collection and management process: (a)
encourage employees to participate in reporting, (b) encourage workers
to report safety and health concerns, (c) involve workers in all aspects of
a safety program, and (d) remove barriers to participation and reporting.
Managers and organizations can show their commitment through
financial investments in OSH departments, training, and tools. Similarly,
the number of employees in the OSH department, time permitted for
OSH reporting versus production expectations, and positive reward
programs are signals of manager commitment to safety (Paz, 2019).
Finally, key behaviors of management concern complete a feedback
loop; for employees to feel that their time spent reporting is valuable,
managers must communicate to employees the positive changes, im-
provements, and impact that their reporting has had on the organization
and safety outcomes.

An evaluation of each of these readiness factors and their compo-
nents will diagnose organizational capabilities regarding safety ana-
lytics. As each organization improves their systems and are capable of
more advanced analyses, the field of safety analytics itself will be
improved, leading to initiatives and improved industry standards that
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are targeted and more efficient, improving worker health and safety.
2.3. Capability evaluation: Addressing the final V(alue)

As we have discussed previously in this paper, the promise of data
analytics lies in improved decision-making resulting from valuable data-
driven insights. Top performing organizations tend to use analytics at
five times the rate of lower performers (LaValle et al., 2011). This is
corroborated by empirical research, which has found that high capac-
ities for data volume, variety, and veracity lead to valuable insights that
drive firm performance (Cappa et al., 2020). While analytic models can
improve efficiency, prevent injury, and reduce costs within OSH, victory
can only be declared when such models are used to create new value
(Morison, 2013; Veeramachaneni, 2016). Often, however, there is a
push to advance technologically without pausing to consider how to
evaluate those models for value creation.

The data analytic process captured in Fig. 3 describes an information
value chain: data is captured, aggregated, integrated, and analyzed with
the promise of gaining information that can guide future action (Kiron
et al., 2013). As we have described in our discussion of analytic readi-
ness factors, this process can be stymied by issues upstream at collection
(e.g., poor quality or coverage of metrics), aggregation (e.g., harmoni-
zation) and storage access (e.g., centralized databases) phases, as well as
downstream where the data is analyzed and disseminated (Kiron et al.,
2013). Our framework for assessing these key phases of the analytic
process thus offers an additional method of evaluation for the ultimate
goal—value creation.

2.3.1. Output evaluation

The readiness framework is designed to give organizations an un-
derstanding of their current capabilities. This extends beyond an
assessment of components of the analytic process to a measure of the
integrity of analytic output. As the levels of analytics increase in so-
phistication, the system requirements also increase. Thus, more
advanced analytics require higher maturity across the readiness factors.
In this way, “capabilities” refers to the capabilities required for optimal
results rather than the capabilities necessary to run a model.

While an organization may be able to run an advanced model, the
results may not be trustworthy, relevant, or valuable. The analytic
output will only produce value if each component in the information
value chain contributes at the level of maturity required for the analytic
sophistication. Prior statistical analyses have demonstrated some of the
necessary components for each level of analytics. For example, Vater
etal. (2019) found that prescriptive analytics in manufacturing required
optimal data acquisition, connectivity, data storage, data processing and
control. With enough high quality data collected over time, OHS can
trust that their descriptive analytics (e.g., trend analyses over time) can
provide trustworthy insights for reducing risk. Correlations (e.g., diag-
nostic analytics) can provide incremental value over trends when there
is additional coverage of variables (i.e., potential covariates) and vari-
ability. Without variability across outcome measures, however, and
more frequent data collection (i.e., velocity), predictive analytics may
not be reliable. In this way, understanding current capabilities using our
framework aids organizations in identifying the level of analytics that
will be the most accurate and actionable, thus providing maximum
value for decision-making given system constraints.

Of course, additional value created by our framework lies in the
identification of maturity across the smaller components of our frame-
work. By diagnosing areas of both strength and opportunities for
improvement, our framework provides an action plan for improving
system sophistication and increasing capabilities.

2.3.2. Improving capabilities

The path to improved analytic capability is incremental. Imple-
mentation can begin in a smaller scope within areas of strength, as these
improvements are often more achievable and less overwhelming to
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budget and staff (LaValle et al., 2011). Often, there is not a need to
overhaul entire systems; rather, improvements can be made to existing
process management tools. In fact, some of the more successful orga-
nizations take smaller, staggered steps that allow leaders to focus efforts
and resources on the areas that will provide the most value, leading to
exponential increases in analytic capability over time (LaValle et al.,
2011).

Conversely, organizations may encounter large deficits that prevent
value generation using analytics. For example, data veracity or quality is
foundational; organizations cannot trust the insights gained from ana-
lytics if data inputs aren’t trustworthy. Our framework will aid organi-
zations in identifying areas that need significant improvement.
Improvement in these areas, while requiring more time investment and
higher costs, may provide significant and large gains.

Organizations should not be discouraged if they discover deficiencies
in their data processes. Value creation can be achieved even at early and
less mature stages (LaValle et al., 2011). Perfect data, infrastructure, or
sophisticated analytic strategies aren’t necessary for organizations to
gain insights that can improve decision-making. Rather, understanding
current capabilities can aid organizations in choosing strategies that will
maximize value creation at any level of sophistication. In addition, this
readiness framework can be used to incrementally increase value by
aiding organizations in identifying strengths which can be developed
and pain points that need investment. As organizations transition from
one level of analytic capability to the next, the frequency with which
analytics are used and resultant decision support insights will increase
(LaValle et al., 2011).

3. Discussion

This safety analytics readiness assessment framework proposes four
major readiness factors and corresponding components which may
impact the ability of OSH to engage in analytics with insightful and
meaningful output. These factors are likely to adapt and change as
literature and participating organizations discover additional relation-
ships between variables and important safety outcomes. Additionally,
these factors likely differ in importance and priority. For example, data
quality may be the most essential for insightful analytics. One could
argue that it is not worthwhile to perform analytics unless the organi-
zation has developed high quality data; again, that old adage warns us
that garbage data will only lead to garbage insights, leading to wasted
resources in performing the analytics. This logic may mean that data
quality is more important to conducting analytics than a centralized
database.

Additional research must be conducted to develop appropriate
assessment and scoring methodology to (a) assess if these readiness
factors are indeed predictive of success across the elementary to
advanced levels of analytics, (b) evaluate if analytics readiness can be
predicted across disparate organizations and industries, and (c) compare
the relative importance of these factors in contributing to analytics
readiness. The following section proposes future research that may aid
in the development of this system.

3.1. Self-Assessment of data analytic readiness

Future researchers should attempt to discern the best methodology
for an organization to self-assess the readiness factors. Such a rating
system could include a numeric scale based on maturity model criteria
(Pfleeger, 1995) where each readiness factor is rated from baseline to
optimal stages. A low maturity or baseline rating in the Rules and Op-
erations readiness factor, for example, may be categorized by ill-defined
inputs (e.g., a lack of definition and consistency) where data variables
can only be loosely connected to expected outcomes (Pfleeger, 1995). At
this lower rating of maturity, organizations are just starting to explore
what can be done with current capabilities and analytic results are
difficult to explain and interpret (Comuzzi & Patel, 2016). Ratings in the
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middle of this continuum may reflect analytic systems that have defined
activities within the analytics process, including collecting metrics,
defining variables, designing systems and code, and testing results.
Defined activities increase the consistency, replicability, and efficiency
of analyses. There may, however, continue to be challenges with metric
and data validity. The highest rating of optimal maturity would be
applied to organizations who continuously collect and centralize quality
information on the entire safety management process (e.g., input,
management, and outcomes) allowing for the most sophisticated forms
of data analytics. Specific text descriptions, like those in the Rules and
Operations example above, may serve as anchors for maturity ratings
specific to each of the readiness factors. The development of this
anchored rating scale might facilitate increased fidelity of the scoring
system over a Likert-type scale.

Finally, a process will need to be developed to adequately prepare for
and use the readiness assessment. Such a process should guide assessors
in creating their own list of key variables hypothesized to have re-
lationships with injury outcomes and then describe the method of rating
maturity of these variables against the analytics readiness factors. These
ratings can then be summarized by factor to provide diagnoses of current
capabilities and distinguish areas of high optimization that need little
investment from areas which need improvement. Ideally, the assessment
could be taken periodically, which would provide additional informa-
tion for how investments in various capabilities enhance analytics
readiness over time.

A final consideration for the development of an instrument based on
this framework should be on the reliability of the raters. While safety
professionals may be well versed on data collected within their function,
they may find it more difficult to assess the maturity of data and pro-
cesses within other functions. Additionally, an acquaintance with the
data itself may not imply an understanding of the data management
mechanisms that contribute to analytic success. Finally, there may be
concerns for inflated self-ratings; excitement about the possibilities of
analytics in reducing injuries and fatalities may cause a kind of optimism
halo effect whereby safety professionals rate their capabilities more
strongly. For these reasons, further investigation is needed on the level
of expertise required for an assessor.

3.2. Potential roadblocks and limitations

While we believe the practice of measuring and tracking safety an-
alytics readiness and the related safety metrics has great potential in
improving occupational safety outcomes, we also acknowledge that
there are factors to consider before attempting such an initiative. First,
for many organizations, the time, effort, and monetary costs involved in
setting up and maintaining these systems may effectively hinder such
efforts. While having some measurement is better than having none, this
point is still worthy of consideration. Importantly, our framework is not
built to be implemented in an all-or-none fashion. Rather, we argue that
organizations of all sizes can endorse the overarching idea of creating a
safety measurement system and take the pieces from our framework that
are within their capabilities (Ogbuokiri et al., 2015). Indeed, the popular
press has been encouraging small business owners to take advantage of
big data in fostering a competitive advantage (e.g., Polakoff, 2020), and
the fundamentals of our framework may help guide system imple-
mentation and improvement even at these smaller scales.

Second, and more importantly, we believe that it is very important
for organizations to secure the buy-in of all the parties involved in the
implementation of these systems, such as the supervisors and IT pro-
fessionals who will manage such systems and especially employees
whose data will be collected as part of these initiatives. It is possible that
employees’ privacy concerns and concerns regarding the use of
advanced analytical tools such as artificial intelligence may influence
employee participation levels and even cause legal issues between the
employees and/or their unions and the organizations that implement
such systems. In response to some of these concerns, there has been a
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practitioner movement dubbed “Al Ethics” (e.g., IBM, 2020), which
aims to embed fairness in all models, ensure that outcomes have no
adverse impact on minority groups, and promote transparency about
data inputs and algorithms used in analyses. Organizations can follow
these principles to augment perceptions of fairness in treatment, pro-
cesses, and outcomes related to data analyses (e.g., justice perceptions;
Gilliland, 1993).

Finally, we acknowledge that the development of this framework has
been impacted by the use of SMEs from a singular indus-
try—manufacturing. As we mentioned earlier in the paper, this may
impact the applicability of this framework to other industries or to or-
ganizations in countries with differing safety processes and norms.
However, a comparison of our framework to analytics readiness as-
sessments in other industries (e.g., LARI for education analytics; Arnold
et al., 2014) does provide evidence for the universality of some neces-
sary elements (e.g., data quality). We are thus encouraged that our
framework will provide value in safety functions across industries but
advise future research to apply this framework in various contexts to
assess generalizability

4. Conclusions

Unlike other organizational functions, OSH has just begun to explore
advanced analytic techniques and methods such as machine learning
(Vallmuur et al., 2016) and data lake management (Guo et al, 2016).
With safety analytics being at such a nascent stage, it is imperative that
organizations assess their current capabilities and make improvements
to their safety systems. This proposed safety-industry readiness assess-
ment framework gives managers and safety professionals an overview of
safety analytics and the areas that drive this capability. This framework
will allow organizations to identify areas of strength and weakness in
their existing data management systems, thereby aiding organizations in
allocating their resources to areas in which improvements will have the
largest impact. Ultimately, this will enhance an organization’s ability to
gain analytical insight, leading to improved data-driven initiatives that
target and reduce risk.
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