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A B S T R A C T   

Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures 
directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to 
various obstacles, which may include lack of data readiness (e.g., disparate databases, missing data, low validity) 
and personnel competencies. This paper provides a primer on the application of big data to safety. We then 
describe a safety analytics readiness assessment framework that highlights system requirements and the chal
lenges that safety professionals may encounter in meeting these requirements. The proposed framework suggests 
that safety analytics readiness depends on (a) the quality of the data available, (b) organizational norms around 
data collection, scaling, and nomenclature, (c) foundational infrastructure, including technological platforms and 
skills required for data collection, storage, and analysis of health and safety metrics, and (d) measurement 
culture, or the emergent social patterns between employees, data acquisition, and analytic processes. A safety- 
analytics readiness assessment can assist organizations with understanding current capabilities so measure
ment systems can be matured to accommodate more advanced analytics for the ultimate purpose of improving 
decisions that mitigate injury and incidents.   

1. Introduction 

Safety incidents have a major impact on the workforce and organi
zations (Bureau of Labor Statistics [BLS], 2018). There are approxi
mately 2.8 million injuries and illnesses within the private work sector 
in the United States annually (BLS, 2018, 2019, 2020). Costs associated 
with these work injuries go beyond workers’ compensation. The Na
tional Safety Council (2019) estimates that work injuries cost companies 
$161.5 billion annually, from expenses such as wage and productivity 
losses ($50.7 billion); medical expenses ($34.3 billion); and adminis
trative expenses ($52.0 billion). 

Initiatives and regulations introduced by agencies in the United 
States, such as the Occupational Safety and Health Administration 
(OSHA), have done much to reduce injuries and illnesses (OSHA, 2012). 
Organizations are required to notify OSHA when injuries and fatalities 
occur in the workplace and store large amounts of data that can be 
presented as proof of compliance with regulations when necessary 
(OSHA, 2001). As such, many industrial organizations have large 
amounts of safety data available that could be analyzed statistically. 

Further, current analytics research within occupational safety has 
demonstrated the predictive capabilities of (a) demographic informa
tion, such as age, gender, and worker experience (Chi et al., 2014; 
Stewart, 2013), (b) job-related information such as industry, equipment, 
job risk, and training (Lingard et al., 2017), and (c) behavioral infor
mation, such as the use of personal protective equipment, hazard iden
tification, and housekeeping (Mistikoglu et al., 2015) in predicting 
adverse safety outcomes. Some of these models are quite sophisticated 
and have a high degree of accuracy. For example, Carnegie Mellon 
University (Predictive Solutions, 2012) incorporated 112 million safety 
observations and safety incident data from over 15,000 work sites to 
predict incidents with accuracy rates as high as 80–97 percent and R2 as 
high as 0.75 between actual and predicted incidents. 

Using predictive models such as these, organizations can direct 
scarce resources to the locations and work teams that are at highest risk 
of safety incidents (Schultz, 2012). For example, Deloitte analyzed five 
years of data on injuries, demographics, production, operations, and 
weather from Goldcorp, a gold-mining company (Stewart, 2013). Sta
tistically significant relationships were found between injury rates and 
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compensation, age, job roles and other operational factors. Goldcorp 
used these insights to increase managerial training, write new policies, 
and focus supervisor support on employees with higher risk profiles. 

Despite the demonstrated success of safety analytics, these applica
tions remain the exception and not the rule. Organizations have made 
limited progress in developing analytics for safety (Tan et al., 2016), and 
many safety professionals lack an understanding of what is possible with 
existing data pools (Ferguson, 2018). In this paper, we provide a thor
ough primer on data attributes, analytic sophistication, and the appli
cation of data strategies to Occupational Safety and Health (OSH). We 
then highlight system requirements for advanced analytics and describe 
safety-specific challenges. In doing so, we develop a framework for 
assessing current safety analytics capabilities, maximizing analytic 
value, and making prioritization decisions for investment in system 
improvements. 

1.1. Features of big data 

Safety professionals have more data than ever at their fingertips 
(Canitz, 2019). In addition to artifacts of employee reporting, there is a 
flood of data being created by new safety devices that provide detailed 
information on people, machines, and the environment (Ferguson, 
2018). These increasingly large datasets approach the size of big data, 
defined as a lot of different types of data handled in new ways, or large 
datasets that tax system capacity (Dastjerdi et al., 2016). Big data is a 
term used ubiquitously within the analytics zeitgeist, yet it is distin
guishable from other data forms and statistics through five defining 
features: volume, velocity, variety, value, and veracity (Ramadan, 
2017). While big data often refers to data that is unmanageable by 
traditional architecture (Goel et al., 2017), these five features (see Fig. 1) 
can be useful in identifying the characteristics of any size data that 
contribute to sophisticated analytical output. 

Overall, analytics within OSH will be more successful (e.g., value) in 
identifying trends that lead to risk mitigation when there is more (e.g., 
volume) high quality (e.g., veracity) data of varied type (e.g., variety of 
data type) over time, considering both archival and continuously 
updated current data (e.g., velocity), originating from safety as well as 
other organizational units (e.g., variety of source; quality control, pro
duction, human resources). 

Volume is defined as the quantity and size of data that are generated 

and stored. Increasingly, OSH is collecting data in volumes that are 
difficult or impossible for traditional databases and statistical methods 
to handle. Text analysis in R, for example, can only analyze a certain 
number of observation comments. For less advanced analytics, such as 
identifying trends by frequency count, volume is typically less of a 
concern. However, as OSH increases exponentially in data volume, 
constraints to conducting analytics may include man hour costs for 
personnel and technical expertise necessary to collect, aggregate, store, 
and analyze the high-volume data. Thus, as volume increases, OSH may 
need to invest in a dedicated position or allot significant time for 
incumbent staff to manage the safety data. 

Velocity is defined as the speed at which data are generated and 
processed. In the past, high velocity was less of a challenge, as incident 
reports happened relatively infrequently, and other data collection 
mechanisms required manual entry. There are new technologies within 
safety (e.g., wearable ergonomic belts), however, that provide 
constantly streaming real-time information via sensors. Though high 
velocity data collection is not necessary for all analytics, data that are 
collected more frequently will allow for more precise temporal output of 
predictions, as continuously updating information makes real-time 
predictions possible. High velocity can lead to high volume, however, 
and OSH professionals will face challenges in maintaining pace in 
decision-making with the continuously updated information. In addi
tion, practitioners will need to make decisions about timing of analyses 
(i.e., frequency of insight dissemination to managerial personnel) and 
retention periods. 

Variety is defined as the heterogeneity of data type and nature, 
including the different sources of information across processes and 
functions, forms of data (e.g., electronic monitoring, fillable forms, 
surveys), and types of database structures utilized within the organiza
tion. This wide variety of data can make aggregation and analysis 
challenging. For example, data may be structured (e.g., text observa
tions in a relational or tidy format), semi-structured (e.g., csv files) or 
unstructured (e.g., images and video). OSH faces obstacles in gaining or 
utilizing the technologies and infrastructure that allow for this data to be 
stored, aggregated, and analyzed despite these different formats. 

The final features of big data—veracity and value—are essential 
characteristics of all data, not just big data (Ramadan, 2017). Veracity is 
defined by three dimensions of information quality: data objectivity, 
truthfulness, and credibility (Lukoianova & Rubin, 2014). The validity 
and reliability of data are rarely formally assessed yet analytical output 
is only as accurate or as trustworthy as data inputs; a concept succinctly 
summarized by the popular adage “garbage in, garbage out.” Veracity 
impacts data quality and analytic value, and big data is often plagued by 
biases, ambiguity, or error (Lukoianova & Rubin, 2014). Safety data 
relies heavily on employee and front-line supervisor reporting where 
rater errors in reporting can occur due to concerns over negative out
comes on their jobs such as discipline for rule violations, extra personal 
attention by management, or added cumbersome safety rules and 
equipment. These workplace variables may cause a degree of “pencil 
whipping” (Ludwig, 2014) whereby information entered into safety 
reports are underreported or not factual (Probst & Graso, 2013). In other 
instances, employees may not have the technical expertise to correctly 
categorize safety events and/or adequately describe the event. These 
and other rater errors can impact the validity and reliability of the data. 
Luckily, big data is typically of such volume that trends are often still 
useful. There are also methods of managing data veracity, such as 
identifying suspicious outliers, automated detection and sorting of 
quality using machine learning, or crowdsourcing techniques (see Assiri, 
2020, Table 1). 

The last feature of optimal data is also related to quality, but for 
outcomes. Value is defined as the measurable impact of data-driven 
insights. Value can thus refer to both inputs and outputs; data itself 
(input) has a value in how it can contribute towards data-driven insights, 
and those insights (output) have value when actions derived from data 
have a measurable impact (e.g., reliably predict risk profiles and Fig. 1. Five Characteristics of Big Data.  
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mitigate injury). Each piece of information is more or less important to 
an analysis in terms of its relevancy to the question of interest, as well as 
how much value the information adds to the output statistically (e.g., 
increases in R2 or explained variance). For example, within OSH, the 
data collected from smart wearable ergonomic belts are important in 
determining risk profiles for back injuries, and likely make up the bulk of 
the necessary information to determine risk factors, along with behav
iors and equipment associated with the task. In contrast, hazard iden
tification data would contribute to a risk profile for the same job but add 
less value to the prediction of back injuries. The “value” of analytics is 
thus created when the right objective and credible data (e.g., the sensory 
information from smart ergonomic belts) drives action (e.g., new stan
dard operating procedures or targeted observations) that has measur
able impact (e.g., fewer back injuries). 

While these five features of big data are typically used to describe the 
challenges of data management on a huge scale, we argue that these 
characteristics can also be used to determine the level of readiness of 
smaller OSH datasets to successfully engage in advanced analytics. In 
addition, there exist common obstacles (e.g., difficulty in aggregating 
data of different forms) and techniques for mitigating these challenges 
(e.g., ‘data lake’ management systems for unstructured data). This 
comparison between big data characteristics and analytics within OSH 
may also aid organizations in determining the level of statistical 
methods or analytics that organizations can aspire to, given the con
straints of their data characteristics. 

1.2. Levels of analytics 

There are five levels of analytics that offer increasing degrees of 
sophistication in terms of their ability to drive improved decision- 
making (Fred & Kinange, 2015): (a) descriptive analytics, (b) diag
nostic analytics, (c) predictive analytics, and (d) prescriptive analytics, 
and (e) cognitive analytics (Canitz, 2019; Lepenioti et al., 2020). 
Descriptive analytics answer questions about what has happened in the 
past. Data are analyzed for characteristics and relationships through 
data visualizations and statistics such as sums, means, and averages 
(Huang et al., 2018). In OSH, descriptive analytics may look at the 
number of behavioral observations or equipment inspections in a month 
and distribution curves across different departments in the company. 
Dashboards and reports are also a form of descriptive analytic 
technique. 

Diagnostic analytics provide clues about the reason for such past 
occurrences. These types of analytics (e.g., correlational analysis) 
describe relationships between variables to provide context. Diagnostic 
analytics use historical and past safety performance to identify reasons 
for the success or failure of initiatives—or explanations for specific 
outcomes—by investigating relationships, outliers, and sequences 
(Huang et al., 2018). An example of a diagnostic analytic technique in 
OSH would include a root cause analysis (Canitz, 2019). Safety data 
analytics at this level has focused on correlates to workplace injury such 
as external pressures, internal social context, and organization charac
teristics including job demands (e.g., environmental conditions, sched
uling and workload, physical job demands, and the overall complexity of 
work; Barling et al., 2002), leadership (e.g., relationship with the 
manager, leadership style, trust, and accountability; Fogarty, 2004), and 
organizational commitment to safety (Fogarty, 2004). 

Predictive analytics (e.g., regression analysis) attempt to prognosti
cate future outcomes to answer questions about which incidents are 
likely to happen and why. In addition to historical data, predictive 
analysis incorporates current information in an attempt to predict the 
likelihood of an event (Huang et al., 2018). Predictive analytics in OSH 
can include both short-term and longer-term predictions. For example, 
Lingard et al. (2017) used injury rate and other data from a large con
struction company’s safety program (e.g., toolbox talks, prestart meet
ings, safety observations, hazards reported, etc.) to identify a lagging 
predictive pattern between indicators. Their findings suggested that 

Table 1 
Variable List consisting of the 26 important variables that may impact safety 
outcomes, along with their definitions.  

Variable Definition 

Safety Metrics 
Hazard ID The metrics surrounding the reports made by employees 

of hazardous environments that could lead to safety 
incidents. 

Audits/Inspections These metrics track the frequency of audits and 
inspections of workplaces and workgroups to measure if 
the work is being done safely and if the environment is 
safe. 

First Aid/Minor Injury 
Reporting 

These metrics track minor injuries, such as small cuts, 
trips, or falls that may need first aid. 

Near Miss/Close Call 
Reporting 

This metric measures the number of instances where 
employees report that a safety incident did not occur, but 
almost did. 

Environmental Environmental metrics track adverse conditions such as 
weather, heat, wind, storms, etc. 

Behavioral Observations Metrics collected on behavioral observations may 
include video or checklists, either paper and pencil forms 
or electronic. 

Fatigue Measures tracking the point at which employees are 
likely to have a safety incident due to strain and fatigue 
caused by the nature of their work/workload. 

Safety Participation Measures of safety participation track indirect and 
voluntary behaviors that contribute to a safe work 
environment, including participating in shift 
discussions, safety meetings, close call/near miss 
reporting, or investigating incidents. 

Safety Culture Safety culture measures the extent to which employees 
and managers think about, talk about, and are 
committed to having a safe workplace. 

Production 
Volume Trends The quantity of product output at a given time. 
Scheduled Events These metrics relate to changes to the production that 

managers may make, such as switching a machine from 
one product to another. 

Staffing Loads These metrics relate to accounting for people working at 
a given time, and how much those employees are 
working. 

Calendar Events These are events that may center around a date on a 
calendar, like a holiday or vacation. 

Quality A measure of excellence or a state of being free from 
defects, deficiencies, and significant variations. These 
metrics may also measure the opposite, such as errors or 
reworks. 

Cost/Budget These metrics would measure estimated costs, revenues, 
and resources over a specified period. 

Maintenance 
Failures (Equipment) These metrics track what machines have failed, how 

often, or why. 
Action Item Backlog These metrics measure unfinished tasks that need to be 

completed. 
Preventative 

Maintenance 
Data centered around equipment and facilities by 
tracking systematic inspection, detection, and correction 
of incipient failures either before they occur or before 
they develop into major defects. 

Procedures 
Change Management These metrics could track what occurs after a change in 

procedure, product, or could track leadership changes 
over time. These organizational metrics may cross- 
functions and help to provide a strategic lens. 

Human Resources 
Safety Knowledge Knowledge of how to perform tasks safely; affected by 

T&D practices. 
Job Attitudes Job satisfaction, organizational commitment, etc. 
Safety motivation Willingness to exert effort to enact safety behaviors. 
Turnover A measurement of the number of employees who leave 

an organization during a specified time period. 
Absenteeism The measure of the number of employees that are absent 

from their scheduled shift. 
Employee 

Characteristics 
Personality characteristics (e.g., Big 5, locus of control, 
risk taking propensity, demographics of the workforce 
that is being measured (e.g., tenure, sex, age, education). 

Culture The measure of the cultural norms of the workforce, 
including what they prioritize, talk about, and behave.  
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injuries were often followed by an increase in preventative measures (e. 
g., toolbox talks) which subsequently decreased until the occurrence of 
the next injury. In another example, a construction contracting company 
in Singapore used five different types of machine learning models on 
project- and safety-related variables to predict conditions under which 
no accidents would be likely to occur, conditions which may cause 
minor accidents, and conditions which may cause major accidents. The 
most effective of these, a random forest regression, a type of decision 
tree, predicted these conditions with 78% accuracy (Poh et al., 2018). 

Prescriptive analytics take results from predictive analytics and uti
lize real-time data streams to provide more accurate guidance for 
decision-making (Mousanif et al., 2014). Safety data, mathematical 
formulae, safety rules, and machine learning are used in continuously 
updated models to suggest the most advantageous real-time decision 
options based on the identification of future opportunities or risks 
(Huang et al., 2018). For example, Ayhan et al. (2018) built a Viterbi 
algorithm variant (i.e., a dynamic programming algorithm that finds the 
most likely of events within a sequence) to reduce the chances of air 
traffic and collisions by predicting when an airplane trajectory may 
infringe on the protected zone of another aircraft. The prescriptive 
model detects and resolves these potential conflicts before aircraft even 
depart, resulting in safer operations, higher efficiency, higher capacity, 
and reduced air traffic controller workload. 

Finally, cognitive analytics represent a further advancement in ca
pabilities. Cognitive analytics refer to the integrative process of 
acquiring and transforming heterogeneous data sources into real-time 
actionable insights using models and systems inspired by the mecha
nisms and intelligence of the human brain (Gudivada et al., 2016; 
Osman & Anouze, 2014). By integrating substantial amounts of knowl
edge, these systems can reason, perceive and reflect on their capabilities 
and behavior, learn and improve from past experiences, plan, and 
respond quickly and efficiently to system shocks or surprises (Bannat 
et al., 2011). Cognitive analytics differ from the other levels because 
processes are fully automated and operate without human oversight 
(Gudivada et al., 2016). For example, cognitive architecture for un
manned surface vehicles (e.g., cars or nautical equipment) engages in 
human-like behavior and decision-making to prevent hazardous or 
catastrophic events to equipment and personnel, such as sensing the 
environment, maintaining safe distances from obstacles, and responding 
to stimuli appropriately and timely (Dreany & Roncace, 2019). 

The levels of analytics require increasingly complex data character
istics. For example, prescriptive analytics require data that updates in 
real-time (e.g., high velocity), while descriptive analytics can use 
archival data to assess past trends (e.g., low velocity). The techniques 
implemented in the different analytic strategies described above, how
ever, are varied and similar techniques can be used to answer questions 
in a descriptive or prescriptive phase. For example, one could use mul
tiple linear regression to identify trends in existing data or to predict 
future patterns of injuries or near misses. There have been a variety of 
techniques implemented in the extant literature including classification 
and regression trees (Shirali et al., 2018), support vector machines 
(Sarkar et al., 2017; Sarkar et al., 2016), decision trees (Ajayi et al., 
2020; Sarkar et al., 2020a), and k-nearest neighbors (Poh et al., 2018). 
Additionally, organizations may be able to create functional models yet 
have relatively low analytic capabilities. Successful analytics, then, is 
not about the sophistication of the analytic technique but is rather 
defined by the value of the outcome. 

Not all firms who make large investments in analytics achieve these 
improvements in performance and value, however (Cosic et al., 2012). 
Indeed, the successful use of data analytics within occupational health 
and safety has been lagging other industries due to many unique chal
lenges. One issue is that large amounts of safety data are reliant on 
worker observations and voluntary reporting. In many cases employees 
may be unwilling to report on or take the time to identify hazards. 
Additional obstacles such as disparate data platforms, data input errors, 
or the lack of support staff to organize, clean, and run statistics on the 

data (Gao et al., 2015), may also prevent organizations from running 
more advanced levels of analytics (Hadaya & Pellerin, 2010). 

While many organizations may be interested in the valuable out
comes safety data analytics might provide, they may not know if their 
safety measurement systems are adequate for analytical techniques nor 
how they might mature these systems. Determining current capabilities 
will allow organizations to utilize the most efficacious level of analytics 
(i.e., the level of analytics that provides the most accurate and action
able output given system constraints) to inform decision-making and 
identify the components of the data analytic process that need to be 
further developed (Foreman et al., 2020; Lepenioti et al., 2020). 
Therefore, organizations need to be able to reliably predict their level of 
success at analytics (i.e., descriptive, diagnostic, predictive, prescriptive, 
cognitive). Accordingly, this paper describes a diagnostic framework 
that identifies data analytic system readiness. 

2. Data analytics readiness assessment framework for safety 

Readiness assessments evaluate an organization’s current stage of 
system and process maturity across individual components to provide 
recommendations for how to improve readiness (Klievink et al., 2017). 
Other industries have developed frameworks to assess data readiness, 
including healthcare (Snyder & Fields, 2006), education (Arnold et al., 
2014), city planning (Barham & Daim, 2020), and supply chain opera
tions (Nemati & Udiavar, 2013). Snyder & Fields (2006) developed a 
data readiness assessment in the healthcare industry to assist in the 
utilization of predictive variables to create safer environments by 
reducing medication errors and adverse drug outcomes. Another read
iness assessment within healthcare, the Healthcare-Analytics Pre- 
Adoption Readiness Assessment Instrument (HAPRA; Venkatraman 
et al., 2016) guides organizations to self-rate their maturity across 
medical technologies, IT, user adoption of technology, data quality, and 
management. Within supply chain operations, analytic readiness as
sessments have also been useful to prepare data structures for analytics 
to improve efficiency, quality, and supply chain strategies (Nemati & 
Udiavar, 2013). Industry-specific readiness assessments provide value 
by aligning the focus of the readiness assessment to variables, re
lationships, and strategies/goals of importance in that industry. 

Research has yet to develop an industry-specific framework for 
assisting OSH in identifying current capabilities for data analytics. The 
first task for such a framework is to identify common predictor and 
outcome variables within organizations. These variables will be the 
minutiae upon which larger organizational factors (e.g., data quality 
and norms of data collection) are assessed. 

2.1. Safety variables for analytics 

Organizations planning on engaging in analytics should create their 
own comprehensive list of available and aspirational metrics consid
ering a variety of safety and other operational measures. These measures 
should be organized in meaningful predictive groupings suggesting hy
pothetical relationships in a path that may be predictive of OSH outcome 
variables (e.g., injuries). 

Important variables within the safety function are typically dichot
omized into two categories: leading and lagging. Safety leading in
dicators are defined as “proactive, preventative, and predictive 
measures that monitor and provide current information about the 
effective performance, activities, and processes of a safety management 
system that can drive the identification and elimination or control of 
risks in the workplace that can cause incidents and injuries” (The 
Campbell Institute, n.d., p. 2), whereas lagging indicators are reactive 
measures that track outcomes or events after they have already occurred 
(Usrey, 2016). Data collection coverage of leading and lagging in
dicators has been an established measure of OSH program effectiveness 
(Wurzelbacher & Jin, 2011). 

Researchers focused on identifying current enterprise- and 
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establishment-level analytics within safety found that most studies re
ported only on variables contained within injury reports (Foreman et al., 
2020). These variables, collected after the occurrence of an injury, are 
classified as examples of lagging indicators (Lingard et al., 2017; Ludwig 
& Laske, 2020; Pawłowska, 2015). Lagging indicators are limited in 
their ability to predict future incidents because these types of reports 
generally have low velocity and variability due to the low base-rate 
occurrence of injuries. Additionally, prediction relies on causal mecha
nisms; to reliably say that a variable predicts an outcome, it must both 
covary statistically with that outcome (i.e., implying that the two pieces 
of information are related) and happen prior to the outcome. Although 
lagging indicators do describe pre-incident variables (e.g., causes of 
incidents) lagging indicators are post-incident artifacts (e.g., text de
scriptives of the accident) and cannot be used to predict risk or injury 
with great confidence, as they are not causally related to those incidents. 

Some safety analytic studies reviewed by Foreman et al. (2020) 
assessed leading indicator data (e.g., near miss reports) that represent 
the current environment in predicting risk of incident (e.g., Dhalmaha
patra et al., 2019; Sarkar et al., 2019; Sarkar et al., 2020b; Verma et al., 
2014; Verma et al., 2017). Leading indicators include variables such as 
incident reports, surveillance, and surveys covering hazard identifica
tion, injury and first aid reports, near miss reporting, inspections/audits, 
and behavioral observations. 

Safety data used for analytic studies should come from a variety of 
safety management system sources covering both leading and lagging 
indicator variables (Foreman et al., 2020). Numerous studies, however, 
have demonstrated the importance of variables generated outside of 
safety in business operations such as planning, maintenance, training, 
management (e.g., Bevilacqua et al., 2010), and culture (e.g., Goh et al., 
2018). Moreover, studies on construction site planning (e.g., Elbeltagi 
et al., 2001; El-Rayes & Khalafallah, 2005; Sanad et al., 2008; Zhang 
et al., 2016), process safety (e.g., Baek & Choi, 2019; Li et al., 2019), 
equipment maintenance (e.g., Tan et al., 2011) and structural engi
neering (e.g., Zhao et al., 2020) delineate the relationship between op
erations and safety outcomes. Therefore, additional operational 
variables should be considered across common business functions such 
as production (e.g., quality, volume, cost, and budget), maintenance (e. 
g., equipment failure, action item backlogs, and preventative mainte
nance), procedures (e.g., change management and leadership) and 
human resources (e.g., safety attitudes, job attitudes, safety motivation 
& knowledge, turnover, absenteeism, hours worked, or employee 

characteristics; see Christian et al., 2009). 
We created an example Risk Metrics Framework using a cause and 

effect diagram (Ishikawa, 1982) outlining potential groupings of rele
vant organizational metrics and safety outcomes such as incidents, near 
misses, and fatalities (see Fig. 2). Although safety analytics is focused on 
reducing these adverse outcomes, a full breadth of variables must be 
analyzed for safety analytics to discover novel relationships and provide 
impactful insights. Organizations seeking to understand their current 
capabilities should assess a variety of these metrics across analytics 
readiness factors. 

These common safety and operational metrics are compiled into a 
variable list which summarizes common metrics within safety mea
surement and other operational areas that impact risk and injury. The 
variable list in Table 1 was devised by safety Subject Matter Experts 
(SMEs) from two multinational manufacturing organizations along with 
a comprehensive review of the literature (Forman et al., 2020) to pro
vide an example of organizational metrics that might be considered for 
inclusion in safety analytics. As organizations engage in building ana
lytics capability, they can use the proposed variable list as a comparison 
or antecedent in deciding which of their own metrics to build, collect, 
and analyze. However, note that this is not an exhaustive list and may 
not include metrics more common in alternative industries (e.g., con
struction) or culture- and regulation-specific variables commonly 
measured in organizations based outside of the United States. 

While having a wide and comprehensive array of metrics and vari
ables will lead to analytics that are better able to identify a more holistic 
network of risks, this coverage in itself does not contribute to analytic 
capability. Instead, there are several factors of the organizational system 
that ultimately contribute to data analytics readiness. 

2.2. Analytics readiness assessment factors 

Established analytic readiness frameworks (e.g., Arnold, et al., 2014; 
Comuzzi & Patel, 2016; Eybers & Hattingh, 2017) suggest that assess
ments focused on optimizing analytics must evaluate the adequacy of 
individual measurement data features (i.e., volume, velocity, variety, 
veracity, and value) as well as the organizational capacity to manage 
and analyze larger data sets. For example, in a readiness assessment 
developed for education, Arnold et al. (2014) emphasize the assessment 
of data itself but also include an evaluation of personnel expertise (e.g., 
ability), infrastructure (e.g., resources), and culture. In city planning, 

Fig. 2. Risk Metrics Framework of Variables Affecting Safety Outcomes.  
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factors associated with the success of big data projects include people, 
technology, politics, and the organization (Barham & Daim, 2020). 

Based on common themes across readiness assessments in other in
dustries and the body of safety analytics literature, we propose orga
nizing data and organizational factors related to safety analytics 
readiness into four key factors that affect an organization’s system ca
pabilities: data quality, rules and operations, infrastructure, and safety 
measurement culture (see Fig. 3). Each of these readiness factors are 
comprised of several components which are evaluated individually; the 
combined assessment of these components provides evaluation of the 
higher order readiness factor. The readiness factors and their compo
nents are summarized in Table 2. 

2.2.1. Data quality 
High-quality data are necessary to realize valuable outcomes (i.e., 

outcomes which can improve decision-making) from analytics (Cai & 
Zhu, 2015). Unfortunately, archival databases of organizational safety 
measures are often created for a purpose other than conducting analytics 
and this can affect the quality of the data and analytics process. Many 
safety processes such as inspections collect high volumes of information 
but are only used to find equipment issues to fix. Human resources 
employment data, such as overtime, are collected for payroll but not 
used to assess the amount of time an employee is working and how it 
may relate to injuries. Such measurements were not designed to satisfy 
the quality requirements for the proposed analyses. Accordingly, the 
framework assesses the quality of the data across three components (i.e., 
validity, reliability, and variability) for its adequacy to conduct different 
levels of initial and advanced analytics. 

Validity assesses the extent to which inferences from the data accu
rately represents the “real world” phenomenon targeted by the mea
surement (Jugulum, 2016; Sechrest, 2005). Validity can be a concern in 
the safety industry because many metrics are reliant on employee 
reporting, which may be affected by culture or biases (Salas & Hallowell, 
2016). 

Reliability refers to consistency of measurement across time and 
units. Disparate databases and collection methods may lead to decreased 
consistency in variables being named, defined, formatted, and scaled in 
the same manner across systems. For example, data collected on 
“overtime” may be consistent definitionally in that each measure con
tains information about time spent at work beyond a predetermined 
schedule of time (i.e., name and definition), but inconsistent in scaling 
when, for example, one department collects daily punch card informa
tion such as the minutes worked beyond eight hours in a day and another 

department collects information electronically on the hours worked 
beyond a total of forty, whether that begins on the third day of the 
workweek or the fifth (i.e., format and scaling). 

Finally, data must contain enough variance to conduct statistical 
analyses. Variance is defined as the divergence of a set of measurements 
from the mean of the total sample within a variable. Standard de
viations, mathematically calculated as the square root of variance, are 
commonly used in statistics to describe dispersion or how spread out the 
observations are (i.e., data variability). Another way to check dispersion 
is to assess kurtosis. If range restriction occurs, causing an abnormal 
distribution shape (e.g., leptokurtic distribution shapes contain greater 
amounts of measures very close to the mean) with a very low standard 

Fig. 3. Applicability of Readiness Components to the Data Analytics System.  

Table 2 
Summary of Readiness Factors with their Components and Definitions.  

Readiness Factors Components Definitions 

Data Quality Validity Refers to the extent to which measures 
accurately represents the “real world” 
phenomenon targeted 

Reliability Refers to consistency of measurement 
across time and units 

Variability Refers to the ability of a measure to 
detect differences across time and units 

Rules and 
Operations 

Adequate 
Coverage 

Measures the extent to which the things 
we want to look for in relation to safety 
outcomes are represented in data 
collection 

Velocity Refers to the frequency with which data 
are collected, entered, and updated in 
our databases 

Harmonization Refers to having common demographics 
(e.g., who, what, where, when 
variables) across datasets that allow for 
data to be linked 

Foundational 
Infrastructure 

Personnel 
Infrastructure 

Refers to the availability of key 
personnel with the necessary expertise 
to carry out technical processes of 
working with big data 

Centralized 
Database 

Refers to the degree to which data 
variables are stored or can be readily 
combined into a central database 

Measurement 
Culture 

Employee 
Participation 

The extent to which employees 
participate in the process and reporting 
of safety matters 

Management 
Concern 

The extent to which managers support 
and encourage employees to participate: 
includes transparency about the purpose 
of reporting  
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deviation, then the chance of finding a correlation between variables 
becomes limited (Type II error). Many statistical analyses based on the 
general linear model rely on adequate variance in distributions in order 
to find relationships. 

A few variables in safety, such as outcome variables measuring in
juries, naturally have very little variation due to the low frequency of 
occurrence. In addition, there may be restrictions on the variance of 
predictor and precursor data because measures require individuals to 
voluntarily recognize the event(s) and record/enter the data. For 
example, the reporting of minor injuries, close calls, and at-risk behav
iors may be truncated because workers (a) don’t perceive their impor
tance, (b) forget to stop their work to report the event, (c) perceive 
personal negative outcomes in retaliation for reporting the information, 
or (d) engage in extreme rater response styles like pencil whipping 
(Ludwig, 2014). Finally, in reality most variables assessed using safety 
measures are regarded as safe, which reduces the variance typically 
introduced by risk. For these reasons, the variability in safety mea
surement is often reduced to a small standard deviation. 

2.2.2. Rules and operations 
Rules and Operations refers to organization-level processes of data 

collection (Comuzzi & Patel, 2016; Eybers & Hattingh, 2017; Gao et al., 
2015). This readiness factor is assessed across three levels. First, in order 
to run analytics, the organization must have access to a range of vari
ables that can be used to predict outcomes (i.e., adequate coverage). 
Second, the data must be collected with consistent and common vari
ables so that un-centralized data can be connected (i.e., harmonization). 
Third, the speed at which the data are updated is assessed (i.e., velocity). 

Adequate coverage measures the extent to which targeted safety 
variables in the variable list (e.g., pre-incident “leading” indicators, 
“lagging” outcome variables, and process measures such as behavioral 
observations and inspections) are adequately covered within the data. 
Additional variables from cross-functional areas should be included and 
evaluated if trends identify a relationship with important outcomes. 

Data harmonization refers to the ability to link and combine dispa
rate variables and databases. For example, Microsoft Excel© uses the 
VLOOKUP formula to combine data from different sheets; the formula 
requires a common, unique variable by which the data sets can be 
matched. The same process is used within big data, which necessitates 
the availability of a common variable to match across datasets for 
combination into a single database. These most likely include de
mographics such as names, employee numbers, departments, dates, 
tasks, etc. These variables can be as specific as employee names/ID 
numbers, can be aggregated by intermediate levels like work team or 
department, or can be as general as a calendar unit (e.g., week, month, 
or quarter). 

Velocity refers to the frequency at which data enters a database and 
is updated (SAS, 2021). Examples of data velocity are the frequency of 
interval updates (e.g., daily, weekly, monthly, quarterly, or annually) of 
historical, batch, and real-time data feeds. Historical data, and data 
updated in larger intervals, are sufficient to describe what events have 
occurred in the past (e.g., descriptive and diagnostic analytics) and 
make predictions on what may occur in the future (e.g., predictive an
alytics), but in order to run prescriptive or cognitive analyses, real-time 
data updates are essential for the ability to make automatic adjustments 
based on nuanced changes in the data stream. Within OSH, certain 
technologies such as sensors can provide real-time information 
measuring pressure, ambient temperature, speed, and direction or angle 
of body movement. Most safety data, however, is collected through 
manual reports on paper or in an electronic system, and this delay be
tween occurrence and report may prevent some organizations from 
being able to use those data sources for higher-level analytics. 

2.2.3. Foundational infrastructure 
Foundational infrastructure refers to the maturity of the organiza

tional environment and technological processes devised to acquire, 

store, manage, and extract knowledge from all the different sources of 
data proposed in Table 1 (Comuzzi & Patel, 2016; Eybers & Hattingh, 
2017; Gao et al., 2015). Included in the readiness factor of foundational 
infrastructure are (a) personnel with technical skills to manage and 
analyze data, and (b) centralization of the data, which refers to how 
compatible platforms are for integration, whether raw or aggregated 
data are available to be extracted from the system, or what variables are 
chosen to be stored locally versus shared cross-functionally due to the 
original purpose of the data collection. 

The availability and expertise of key personnel (i.e., the personnel 
infrastructure component) necessary to carry out the technical processes 
of working with large data sets should be considered. Such expertise 
includes: (a) ensuring availability of data while minimizing cost (e.g., 
data management), (b) developing and maintaining predictive and 
forecasting models while establishing common analyses and reusable 
processes to reduce execution time and cost (e.g., analytics modelling), 
and (c) leadership oversight to define strategies and tactics that ensure 
relevance of analyses. 

The degree to which data are stored or can be readily combined into 
a central database is a necessary component for efficient and effective 
analytics as the models must have access to all the variables of interest (i. 
e., centralized database component). It will be rare for organizations to 
have one database for storing big data, unless the organization is uti
lizing advanced technologies such as data lakes (e.g., Apache Hadoop) 
for storing unstructured data or disparate databases, which can be 
restructured, aggregated, and transformed as later required (Quix et al., 
2016). A more common scenario is for organizations to have multiple 
technological platforms for their data. For example, OSH departments 
may house their data (e.g., Velocity) differently than human resources 
(e.g., Workday), finance, operations, or other functions. In addition, 
some data are stored at the worker level (e.g., payroll information), 
while other data may be stored at the project level (e.g., inspection rate), 
causing further challenges to data centralization (Pereira et al., 2020). 

2.2.4. Safety measurement culture 
Law and Ruppert (2013) describe the collection of data as a social 

system where culture, which may be called safety measurement culture, 
impacts the entirety of the process through which data are collected and 
used to make decisions. When people interact with data entry forms (or 
not) in the context of their work or use what emerges from the data to 
mitigate safety issues they are engaging with the safety measurement 
process. Law and Ruppert (2013) posit that these processes are hetero
geneous arrangements between technology and humans. Therefore, 
active social patterns emerge concerning data collection (e.g., em
ployees conduct more observations and log reports at the end of a quota 
cycle), and the communication of data can be political in their circula
tion (e.g., management purposefully may not discuss data findings with 
front-line workers), thereby affecting willingness to collect data in the 
first place. 

A company can have the best data infrastructure possible, but the 
system will be ineffective for analysis and improvement if employees are 
not willing to participate in that system with integrity. Noncompliance 
with existing protocols may be affected by potential ramifications (e.g., 
negative job outcomes), how data are presented to employees, and how 
improvements made based on the data are marketed (Beer, 2015). The 
culture surrounding reporting (e.g., the employee’s comfort with 
speaking about incidents or risks, or protection from retaliatory prac
tices) and management use of the data to find problems and make 
positive changes may impact the employee’s willingness to report ac
curate information (Kagan & Barnoy, 2016). 

Safety measurement culture, then, refers to the extent to which 
employees and management are inclined to engage in the voluntary 
extra-role activities that may contribute to improved measurement 
systems, in addition to meeting minimum requirements for compliance, 
which refers to engaging in core baseline measurement activities (e.g., 
compliance versus participation, Griffin & Neal, 2000). Safety 
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measurement culture assesses the willingness of employees to regularly 
and voluntarily record information correctly, honestly, and in a timely 
manner. 

Safety measurement culture has some conceptual similarities to 
safety voice behavior, defined as “explicit communication that is (1) 
discretionary, (2) aimed at improving a perceived unsafe situation, and 
(3) addressed to others of equal or senior status” (Noort et al., 2019, p. 
381). However, they do differ in a few important ways. First, safety voice 
describes discretionary behaviors, whereas safety measurement culture 
is comprised of both compliant (e.g., documentation of the administra
tion of first aid) and discretionary (e.g., consistently submitting near 
miss reports) efforts. Safety voice is singularly focused on prohibitive 
messages (i.e., voice behaviors that mitigate harmful outcomes) where 
safety measurement culture would also include positive feedback or 
ideas for improvement among its outcomes. Further, safety voice is 
singularly focused on upwards or horizontal verbal communication 
(Bazzoli & Curcuruto, 2020; Noort et al., 2019), while safety measure
ment culture considers the bidirectional (i.e., interactions between 
employees and managers) cultural impact of perceptions, behavior, and 
communication message content on data artifacts (e.g., quality, timeli
ness, and frequency). We have, accordingly, separated perceptions, be
haviors, and communication content about measurement practices (i.e., 
safety measurement culture) into two primary components: employee 
participation and management actions. 

Employee participation in safety initiatives like reporting has been 
found to improve safety outcomes (Hagge et al., 2017). Within OSH, 
employees are a necessary component of data collection for hazard 
identifications, near miss identifications, observations and checklist 
completions, audits, and inspections. The extent to which employees 
participate in the reporting process can impact both safety outcomes and 
quality of data. This can be affected by positive cultural perceptions (i.e., 
“my reporting can help reduce injuries”) as well as negative cultural 
perceptions. For example, a factor that often impacts data quality related 
to employee participation is pencil whipping. Pencil whipping happens 
for many reasons, such as within mandatory quota systems (i.e., 
compliant yet untrustworthy reporting), where an employee may feel 
pressured to fill out a certain number of reports regardless of whether a 
recordable event took place or fear of reporting accurately due to 
negative repercussions from management (Ludwig, 2014). Therefore, 
several different perceptions of participation must be assessed to 
determine which cultural mechanisms are affecting employee reporting 
behavior. 

Safety measurement culture is additionally impacted by manage
ment actions that demonstrate concern for worker safety (Frazier et al., 
2013). Employee participation in reporting processes is impacted by 
visible manager behaviors that reinforce a consistent narrative of safety 
importance. OSHA (2016) recommendations for building safety culture 
are also applicable to the data collection and management process: (a) 
encourage employees to participate in reporting, (b) encourage workers 
to report safety and health concerns, (c) involve workers in all aspects of 
a safety program, and (d) remove barriers to participation and reporting. 
Managers and organizations can show their commitment through 
financial investments in OSH departments, training, and tools. Similarly, 
the number of employees in the OSH department, time permitted for 
OSH reporting versus production expectations, and positive reward 
programs are signals of manager commitment to safety (Paz, 2019). 
Finally, key behaviors of management concern complete a feedback 
loop; for employees to feel that their time spent reporting is valuable, 
managers must communicate to employees the positive changes, im
provements, and impact that their reporting has had on the organization 
and safety outcomes. 

An evaluation of each of these readiness factors and their compo
nents will diagnose organizational capabilities regarding safety ana
lytics. As each organization improves their systems and are capable of 
more advanced analyses, the field of safety analytics itself will be 
improved, leading to initiatives and improved industry standards that 

are targeted and more efficient, improving worker health and safety. 

2.3. Capability evaluation: Addressing the final V(alue) 

As we have discussed previously in this paper, the promise of data 
analytics lies in improved decision-making resulting from valuable data- 
driven insights. Top performing organizations tend to use analytics at 
five times the rate of lower performers (LaValle et al., 2011). This is 
corroborated by empirical research, which has found that high capac
ities for data volume, variety, and veracity lead to valuable insights that 
drive firm performance (Cappa et al., 2020). While analytic models can 
improve efficiency, prevent injury, and reduce costs within OSH, victory 
can only be declared when such models are used to create new value 
(Morison, 2013; Veeramachaneni, 2016). Often, however, there is a 
push to advance technologically without pausing to consider how to 
evaluate those models for value creation. 

The data analytic process captured in Fig. 3 describes an information 
value chain: data is captured, aggregated, integrated, and analyzed with 
the promise of gaining information that can guide future action (Kiron 
et al., 2013). As we have described in our discussion of analytic readi
ness factors, this process can be stymied by issues upstream at collection 
(e.g., poor quality or coverage of metrics), aggregation (e.g., harmoni
zation) and storage access (e.g., centralized databases) phases, as well as 
downstream where the data is analyzed and disseminated (Kiron et al., 
2013). Our framework for assessing these key phases of the analytic 
process thus offers an additional method of evaluation for the ultimate 
goal—value creation. 

2.3.1. Output evaluation 
The readiness framework is designed to give organizations an un

derstanding of their current capabilities. This extends beyond an 
assessment of components of the analytic process to a measure of the 
integrity of analytic output. As the levels of analytics increase in so
phistication, the system requirements also increase. Thus, more 
advanced analytics require higher maturity across the readiness factors. 
In this way, “capabilities” refers to the capabilities required for optimal 
results rather than the capabilities necessary to run a model. 

While an organization may be able to run an advanced model, the 
results may not be trustworthy, relevant, or valuable. The analytic 
output will only produce value if each component in the information 
value chain contributes at the level of maturity required for the analytic 
sophistication. Prior statistical analyses have demonstrated some of the 
necessary components for each level of analytics. For example, Vater 
et al. (2019) found that prescriptive analytics in manufacturing required 
optimal data acquisition, connectivity, data storage, data processing and 
control. With enough high quality data collected over time, OHS can 
trust that their descriptive analytics (e.g., trend analyses over time) can 
provide trustworthy insights for reducing risk. Correlations (e.g., diag
nostic analytics) can provide incremental value over trends when there 
is additional coverage of variables (i.e., potential covariates) and vari
ability. Without variability across outcome measures, however, and 
more frequent data collection (i.e., velocity), predictive analytics may 
not be reliable. In this way, understanding current capabilities using our 
framework aids organizations in identifying the level of analytics that 
will be the most accurate and actionable, thus providing maximum 
value for decision-making given system constraints. 

Of course, additional value created by our framework lies in the 
identification of maturity across the smaller components of our frame
work. By diagnosing areas of both strength and opportunities for 
improvement, our framework provides an action plan for improving 
system sophistication and increasing capabilities. 

2.3.2. Improving capabilities 
The path to improved analytic capability is incremental. Imple

mentation can begin in a smaller scope within areas of strength, as these 
improvements are often more achievable and less overwhelming to 
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budget and staff (LaValle et al., 2011). Often, there is not a need to 
overhaul entire systems; rather, improvements can be made to existing 
process management tools. In fact, some of the more successful orga
nizations take smaller, staggered steps that allow leaders to focus efforts 
and resources on the areas that will provide the most value, leading to 
exponential increases in analytic capability over time (LaValle et al., 
2011). 

Conversely, organizations may encounter large deficits that prevent 
value generation using analytics. For example, data veracity or quality is 
foundational; organizations cannot trust the insights gained from ana
lytics if data inputs aren’t trustworthy. Our framework will aid organi
zations in identifying areas that need significant improvement. 
Improvement in these areas, while requiring more time investment and 
higher costs, may provide significant and large gains. 

Organizations should not be discouraged if they discover deficiencies 
in their data processes. Value creation can be achieved even at early and 
less mature stages (LaValle et al., 2011). Perfect data, infrastructure, or 
sophisticated analytic strategies aren’t necessary for organizations to 
gain insights that can improve decision-making. Rather, understanding 
current capabilities can aid organizations in choosing strategies that will 
maximize value creation at any level of sophistication. In addition, this 
readiness framework can be used to incrementally increase value by 
aiding organizations in identifying strengths which can be developed 
and pain points that need investment. As organizations transition from 
one level of analytic capability to the next, the frequency with which 
analytics are used and resultant decision support insights will increase 
(LaValle et al., 2011). 

3. Discussion 

This safety analytics readiness assessment framework proposes four 
major readiness factors and corresponding components which may 
impact the ability of OSH to engage in analytics with insightful and 
meaningful output. These factors are likely to adapt and change as 
literature and participating organizations discover additional relation
ships between variables and important safety outcomes. Additionally, 
these factors likely differ in importance and priority. For example, data 
quality may be the most essential for insightful analytics. One could 
argue that it is not worthwhile to perform analytics unless the organi
zation has developed high quality data; again, that old adage warns us 
that garbage data will only lead to garbage insights, leading to wasted 
resources in performing the analytics. This logic may mean that data 
quality is more important to conducting analytics than a centralized 
database. 

Additional research must be conducted to develop appropriate 
assessment and scoring methodology to (a) assess if these readiness 
factors are indeed predictive of success across the elementary to 
advanced levels of analytics, (b) evaluate if analytics readiness can be 
predicted across disparate organizations and industries, and (c) compare 
the relative importance of these factors in contributing to analytics 
readiness. The following section proposes future research that may aid 
in the development of this system. 

3.1. Self-Assessment of data analytic readiness 

Future researchers should attempt to discern the best methodology 
for an organization to self-assess the readiness factors. Such a rating 
system could include a numeric scale based on maturity model criteria 
(Pfleeger, 1995) where each readiness factor is rated from baseline to 
optimal stages. A low maturity or baseline rating in the Rules and Op
erations readiness factor, for example, may be categorized by ill-defined 
inputs (e.g., a lack of definition and consistency) where data variables 
can only be loosely connected to expected outcomes (Pfleeger, 1995). At 
this lower rating of maturity, organizations are just starting to explore 
what can be done with current capabilities and analytic results are 
difficult to explain and interpret (Comuzzi & Patel, 2016). Ratings in the 

middle of this continuum may reflect analytic systems that have defined 
activities within the analytics process, including collecting metrics, 
defining variables, designing systems and code, and testing results. 
Defined activities increase the consistency, replicability, and efficiency 
of analyses. There may, however, continue to be challenges with metric 
and data validity. The highest rating of optimal maturity would be 
applied to organizations who continuously collect and centralize quality 
information on the entire safety management process (e.g., input, 
management, and outcomes) allowing for the most sophisticated forms 
of data analytics. Specific text descriptions, like those in the Rules and 
Operations example above, may serve as anchors for maturity ratings 
specific to each of the readiness factors. The development of this 
anchored rating scale might facilitate increased fidelity of the scoring 
system over a Likert-type scale. 

Finally, a process will need to be developed to adequately prepare for 
and use the readiness assessment. Such a process should guide assessors 
in creating their own list of key variables hypothesized to have re
lationships with injury outcomes and then describe the method of rating 
maturity of these variables against the analytics readiness factors. These 
ratings can then be summarized by factor to provide diagnoses of current 
capabilities and distinguish areas of high optimization that need little 
investment from areas which need improvement. Ideally, the assessment 
could be taken periodically, which would provide additional informa
tion for how investments in various capabilities enhance analytics 
readiness over time. 

A final consideration for the development of an instrument based on 
this framework should be on the reliability of the raters. While safety 
professionals may be well versed on data collected within their function, 
they may find it more difficult to assess the maturity of data and pro
cesses within other functions. Additionally, an acquaintance with the 
data itself may not imply an understanding of the data management 
mechanisms that contribute to analytic success. Finally, there may be 
concerns for inflated self-ratings; excitement about the possibilities of 
analytics in reducing injuries and fatalities may cause a kind of optimism 
halo effect whereby safety professionals rate their capabilities more 
strongly. For these reasons, further investigation is needed on the level 
of expertise required for an assessor. 

3.2. Potential roadblocks and limitations 

While we believe the practice of measuring and tracking safety an
alytics readiness and the related safety metrics has great potential in 
improving occupational safety outcomes, we also acknowledge that 
there are factors to consider before attempting such an initiative. First, 
for many organizations, the time, effort, and monetary costs involved in 
setting up and maintaining these systems may effectively hinder such 
efforts. While having some measurement is better than having none, this 
point is still worthy of consideration. Importantly, our framework is not 
built to be implemented in an all-or-none fashion. Rather, we argue that 
organizations of all sizes can endorse the overarching idea of creating a 
safety measurement system and take the pieces from our framework that 
are within their capabilities (Ogbuokiri et al., 2015). Indeed, the popular 
press has been encouraging small business owners to take advantage of 
big data in fostering a competitive advantage (e.g., Polakoff, 2020), and 
the fundamentals of our framework may help guide system imple
mentation and improvement even at these smaller scales. 

Second, and more importantly, we believe that it is very important 
for organizations to secure the buy-in of all the parties involved in the 
implementation of these systems, such as the supervisors and IT pro
fessionals who will manage such systems and especially employees 
whose data will be collected as part of these initiatives. It is possible that 
employees’ privacy concerns and concerns regarding the use of 
advanced analytical tools such as artificial intelligence may influence 
employee participation levels and even cause legal issues between the 
employees and/or their unions and the organizations that implement 
such systems. In response to some of these concerns, there has been a 
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practitioner movement dubbed “AI Ethics” (e.g., IBM, 2020), which 
aims to embed fairness in all models, ensure that outcomes have no 
adverse impact on minority groups, and promote transparency about 
data inputs and algorithms used in analyses. Organizations can follow 
these principles to augment perceptions of fairness in treatment, pro
cesses, and outcomes related to data analyses (e.g., justice perceptions; 
Gilliland, 1993). 

Finally, we acknowledge that the development of this framework has 
been impacted by the use of SMEs from a singular indus
try—manufacturing. As we mentioned earlier in the paper, this may 
impact the applicability of this framework to other industries or to or
ganizations in countries with differing safety processes and norms. 
However, a comparison of our framework to analytics readiness as
sessments in other industries (e.g., LARI for education analytics; Arnold 
et al., 2014) does provide evidence for the universality of some neces
sary elements (e.g., data quality). We are thus encouraged that our 
framework will provide value in safety functions across industries but 
advise future research to apply this framework in various contexts to 
assess generalizability 

4. Conclusions 

Unlike other organizational functions, OSH has just begun to explore 
advanced analytic techniques and methods such as machine learning 
(Vallmuur et al., 2016) and data lake management (Guo et al, 2016). 
With safety analytics being at such a nascent stage, it is imperative that 
organizations assess their current capabilities and make improvements 
to their safety systems. This proposed safety-industry readiness assess
ment framework gives managers and safety professionals an overview of 
safety analytics and the areas that drive this capability. This framework 
will allow organizations to identify areas of strength and weakness in 
their existing data management systems, thereby aiding organizations in 
allocating their resources to areas in which improvements will have the 
largest impact. Ultimately, this will enhance an organization’s ability to 
gain analytical insight, leading to improved data-driven initiatives that 
target and reduce risk. 
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