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a b s t r a c t

Over the past decade, multivariate time series classification has received great attention. We propose
transforming the existing univariate time series classification models, the Long Short Term Memory
Fully Convolutional Network (LSTM-FCN) and Attention LSTM-FCN (ALSTM-FCN), into a multivariate
time series classification model by augmenting the fully convolutional block with a squeeze-and-
excitation block to further improve accuracy. Our proposed models outperform most state-of-the-art
models while requiring minimum preprocessing. The proposed models work efficiently on various
complex multivariate time series classification tasks such as activity recognition or action recognition.
Furthermore, the proposed models are highly efficient at test time and small enough to deploy on
memory constrained systems.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Time series data is used in various fields of studies, ranging
from weather readings to psychological signals (Cui, Shi, & Wang,
2015; Kadous, 2002; Kehagias & Petridis, 1997; Sharabiani et al.,
2017). A time series is a sequence of data points in a time domain,
typically in a uniform interval (Wang, Wang, & Liu, 2016). There
is a significant increase of time series data being collected by sen-
sors (Spiegel, Gaebler, Lommatzsch, De Luca, & Albayrak, 2011).
A time series dataset can be univariate, where a sequence of
measurements from the same variable are collected, or multivari-
ate, where a sequence of measurements from multiple variables
or sensors are collected (Prieto, Alonso-González, & Rodríguez,
2015). Over the past decade, multivariate time series classifi-
cation has received significant interest. Multivariate time series
classifications are applied in healthcare (Kang & Choi, 2014),
phoneme classification (Graves & Schmidhuber, 2005), activity
recognition, object recognition, and action recognition (Fu, 2015;
Geurts, 2001; Pavlovic, Frey, & Huang, 1999; Yu & Lee, 2015). In
this paper, we propose two deep learning models that outperform
existing algorithms.

Several time series classification algorithms have been devel-
oped over the years. Distance-based methods along with
k-nearest neighbors have proven to be successful in classifying
multivariate time series (Orsenigo & Vercellis, 2010). Plenty of
research indicates Dynamic Time Warping (DTW) as the best
distance-based measure to use along k-NN (Seto, Zhang, & Zhou,
2015).
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In addition to distance-based metrics, other algorithms are
used. Typically, feature-based classification algorithms rely heav-
ily on the features being extracted from the time series data (Xing,
Pei, & Keogh, 2010). However, feature extraction is arduous be-
cause intrinsic features of time series data are challenging to
capture. For this reason, distance-based approaches are more
successful in classifying multivariate time series data (Zheng, Liu,
Chen, Ge, & Zhao, 2014). Hidden State Conditional Random Field
(HCRF) and Hidden Unit Logistic Model (HULM) are two success-
ful feature-based algorithms which have led to state-of-the-art
results on various benchmark datasets, ranging from online char-
acter recognition to activity recognition (Pei, Dibeklioğlu, Tax,
& van der Maaten, 2017). HCRF is a computationally expensive
algorithm that detects latent structures of the input time series
data using a chain of k-nominal latent variables. The number of
parameters in the model increases linearly with the total number
of latent states required (Quattoni, Wang, Morency, Collins, &
Darrell, 2007). Further, datasets that require a large number of
latent states tend to overfit the data. To overcome this, HULM
proposes using H binary stochastic hidden units to model 2H

latent structures of the data with only O(H) parameters. Results
indicate HULM outperforming HCRF on most datasets (Pei et al.,
2017).

Traditional models, such as the naive logistic model (NL)
and Fisher kernel learning (FKL) (Jaakkola, Diekhans, & Haussler,
2000), show strong performance on a wide variety of time series
classification problems. The NL logistic model is a linear logistic
model that makes a prediction by summing the inner products
between the model weights and feature vectors over time, which
is followed by a softmax function (Pei et al., 2017). The FKL model
is effective on time series classification problems when based
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on Hidden Markov Models (HMM). Subsequently, the features or
representation from the FKL model is used to train a linear SVM
to make a final prediction (Jaakkola et al., 2000; Maaten, 2011).

Another common approach for multivariate time series clas-
sification is by applying dimensional reduction techniques or by
concatenating all dimensions of a multivariate time series into a
univariate time series. Symbolic Representation for Multivariate
Time Series (SMTS) (Baydogan & Runger, 2015) applies a ran-
dom forest on the multivariate time series to partition it into
leaf nodes, each represented by a word to form a codebook.
Every word is used with another random forest to classify the
multivariate time series. Learned Pattern Similarity (LPS) (Baydo-
gan & Runger, 2016) is a similar model that extracts segments
from the multivariate time series. These segments are used to
train regression trees to find dependencies between them. Each
node is represented by a word. Finally, these words are used
with a similarity measure to classify the unknown multivari-
ate time series. Ultra Fast Shapelets (UFS) (Wistuba, Grabocka,
& Schmidt-Thieme, 2015) obtains random shapelets from the
multivariate time series and applies a linear SVM or a Random
Forest classifier. Subsequently, UFS was enhanced by comput-
ing derivatives as features (dUFS) (Wistuba et al., 2015). The
Auto-Regressive (AR) kernel (Cuturi & Doucet, 2011) applies an
AR kernel-based distance measure to classify the multivariate
time series. Auto-Regressive forests for multivariate time series
modeling (mv-ARF) (Tuncel & Baydogan, 2018) uses a tree en-
semble, where the trees are trained with different time lags. Most
recently, WEASEL+MUSE (Schäfer & Leser, 2017) builds a multi-
variate feature vector using a classical bag of patterns approach
on each variable with various sliding window sizes to capture dis-
crete features, words, and pairs of words. Subsequently, feature
selection is used to remove non-discriminative features using
a Chi-squared test. The final classification is obtained using a
logistic classifier on the final feature vector.

Deep learning has also yielded promising results for multi-
variate time series classification. In 2014, Yi et al. propose using
Multi-Channel Deep Convolutional Neural Network (MC-DCNN)
for multivariate time series classification. MC-DCNN takes input
from each variable to detect latent features. The latent features
from each channel are fed into an MLP to perform classifica-
tion (Zheng et al., 2014).

This paper proposes two deep learning models for multivariate
time series classification. These proposed models require minimal
preprocessing and are tested on 35 datasets, obtaining strong
performances in most of them. Performance is the classification
accuracy of a model on a particular dataset. The rest of the
paper is ordered as follows. Background works are discussed
in Section 2. We present the architecture of the two proposed
models in Section 3. In Section 4, we discuss the dataset, evaluate
the models on them, present our results and analyze our findings.
In Section 5, we draw our conclusion.

2. Background works

2.1. Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a form of neural net-
works that display temporal behavior through the direct con-
nections between individual layers. Pascanu, Gulcehre, Cho, and
Bengio (2013) implement RNN to maintain a hidden vector h that
is updated at time step t ,

ht = tanh(Wht−1 + Ixt ), (1)

where the hyperbolic tangent function is represented by tanh, the
input vector at time step t is denoted as xt , the recurrent weight
matrix is denoted by W and the projection matrix is signified by I.

A prediction, yt can be made using a hidden state, h, and a weight
matrix, W,

yt = softmax(Wht−1). (2)
The softmax function normalizes the output predictions of the
model to be a valid probability distribution and the logistic sig-
moid function is declared as σ . RNNs can be stacked to create
deeper networks by using the hidden state, hl−1 of a RNN layer
l−1 as an input to the hidden state, hl of another RNN layer l,

hl
t = σ (Whl

t−1 + Ihl−1
t ). (3)

2.2. Long short-term memory RNNs

A major issue with RNNs is that they often have to face the
issue of vanishing gradients. Long short-term memory (LSTM)
RNNs address this problem by integrating gating functions into
their state dynamics (Hochreiter & Schmidhuber, 1997). An LSTM
maintains a hidden vector, h, and a memory vector, m, which
control state updates and outputs at each time step, respectively.
The computation at each time step is depicted by Graves et al.
(2012) as the following:

gu
= σ (Wuht−1 + Iuxt )

gf
= σ (Wf ht−1 + If xt )

go
= σ (Woht−1 + Ioxt )

gc
= tanh(Wcht−1 + Icxt )

mt = gf
⊙ mt−1 + gu

⊙ gc

ht = tanh(go
⊙ mt )

(4)

where gu, gf , go, gc are the activation vectors of the input, for-
get, output and cell state gates respectively, ht is the hidden
state vector of the LSTM unit, the logistic sigmoid function is
defined by σ , the elementwise multiplication is represented by
⊙. The recurrent weight matrices are depicted using the notation
Wu,Wf ,Wo,Wc and the projection matrices are portrayed by
Iu, If , Io, Ic .

LSTMs can learn temporal dependencies. However, long-term
dependencies of long sequence are challenging to learn using
LSTMs. Bahdanau, Cho, and Bengio (2014) proposed using an
attention mechanism to learn these long-term dependencies.

2.3. Attention mechanism

An attention mechanism conditions a context vector V on
the target sequence y. This method is commonly used in neural
translation of texts. Bahdanau et al. (2014) argue the context
vector vi depends on a sequence of annotations (b1, . . . , bTx ), of
length Tx which is the maximum length of the input sequence x,
where an encoder maps the input sequence. Each annotation, bi,
comprises information on the whole input sequence, while focus-
ing on regions surrounding the ith word of the input sequence.
The weighted sum of each annotation, bi, is used to compute the
context vector as follows:

vi =

Tx∑
j=1

αijbj. (5)

The weight, αij, of each annotation is calculated through :

αij =
exp(eij)∑Tx
k=1 exp(eik)

, (6)

where the energy of alignment, eij, is given by a(νi−1, bj), which
measures how well the input position, j, and the output at po-
sition, i, match using the RNN hidden state, νi−1, and the jth
annotation, bj, of the input sequence. Bahdanau et al. (2014)
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use a feedforward neural network to parameterize the align-
ment model, a. The feedforward neural network is trained jointly
with all other components of the model. In addition, the align-
ment model calculates a soft alignment that can backpropa-
gate the gradient of the cost function. The gradient of the cost
function trains the alignment model and the translation model
simultaneously (Bahdanau et al., 2014).

2.4. Squeeze-and-excitation block

Hu, Shen, and Sun (2017) propose a squeeze-and-excitation
block that acts as a computational unit for any transformation
Ftr : X → U,X ∈ RW ′

×H ′
×C ′

,U ∈ RW×H×C . The outputs of Ftr are
represented as U = [u1,u2, . . . ,uC ] where

uc = vc ∗ X =

C ′∑
s=1

vsc ∗ xs (7)

The convolution operation is depicted by *, and the 2D spatial
kernel is depicted by vsc . The single channel of vc acts on the
corresponding channel of Hu et al. (2017) models the channel
interdependencies to adjust the filter responses in two steps,
squeeze and excitation.

The squeeze operation exploits the contextual information out-
side the local receptive field by using a global average pool to
generate channel-wise statistics. The transformation output, U,
is shrunk through spatial dimensions, W × H , to compute the
channel-wise statistics, z ∈ RC . The c-th element of z is calculated
by computing Fsq(uc), which is the channel-wise global average
over the spatial dimensions W × H , defined as:

zc = Fsq(uc) =
1

W × H

W∑
i=1

H∑
j=1

uc(i, j) (8)

For temporal sequence data, the transformation output, U, is
shrunk through the temporal dimension T to compute the
channel-wise statistics, z ∈ RC . The c-th element of z is then
calculated by computing Fsq(uc), which is the channel-wise global
average over the temporal dimension T , defined as:

zc = Fsq(uc) =
1
T

T∑
t=1

uc(t) (9)

The aggregated information obtained from the squeeze op-
eration is followed by an excite operation, whose objective is
to capture the channel-wise dependencies. To achieve this, a
simple gating mechanism is applied with a sigmoid activation, as
follows:

s = Fex(z,W) = σ (g(z,W)) = σ (W2δ(W1z)), (10)

where Fex is parameterized as a neural network, σ is the Sigmoid
activation function, δ is the ReLU activation function, W1 ∈

R
C
r ×C and W2 ∈ R

C
r ×C are learnable parameters of Fex and

r is the reduction ratio. W1 and W2 are used to limit model
complexity and aid with generalization. W1 are the parameters
of a dimensionality-reduction layer and W2 are the parameters
of a dimensionality-increasing layer.

Finally, the output of the block is rescaled as follows:

x̃c = Fscale(uc, sc) = sc · uc, (11)

where X̃ = [̃x1, x̃2, . . . , x̃C ] and Fscale(uc, sc) denotes the channel-
wise multiplication between the feature map uc ∈ RT and the
scale sc .

3. Multivariate LSTM fully convolutional network

3.1. Network architecture

Long Short Term Memory Fully Convolutional Network
(LSTM-FCN) and Attention LSTM-FCN (ALSTM-FCN) have been
successful in classifying univariate time series (Karim, Majum-
dar, Darabi, & Chen, 2017). However, they have never been
applied to on a multivariate time series classification problem.
The models we propose, Multivariate LSTM-FCN (MLSTM-FCN)
and Multivariate Attention LSTM-FCN (MALSTM-FCN), convert
their respective univariate models into multivariate variants.
We extend the squeeze-and-excite block to the case of 1D se-
quence models and augment the fully convolutional blocks of
the LSTM-FCN and ALSTM-FCN models to enhance classification
accuracy.

As the datasets now consist of multivariate time series, we can
define a time series dataset as a tensor of shape (N, Q, M), where
N is the number of samples in the dataset, Q is the maximum
number of time steps amongst all variables and M is the number
of variables processed per time step. Therefore a univariate time
series dataset is a special case of the above definition, where M
is 1. The alteration required to the input of the LSTM-FCN and
ALSTM-FCN models is to accept M inputs per time step, rather
than a single input per time step.

Similar to LSTM-FCN and ALSTM-FCN, the proposed models
comprise a fully convolutional block and a LSTM block, as de-
picted in Fig. 1. The fully convolutional block contains three
temporal convolutional blocks, used as a feature extractor, which
is replicated from the original fully convolutional block by Wang,
Yan, and Oates (2017). The convolutional blocks contain a con-
volutional layer with a number of filters (128, 256, and 128) and
a kernel size of 8, 5, and 3 respectively. Each convolutional layer
is succeeded by batch normalization, with a momentum of 0.99
and epsilon of 0.001. The batch normalization layer is succeeded
by the ReLU activation function. In addition, the first two convo-
lutional blocks conclude with a squeeze-and-excite block, which
sets the proposed model apart from LSTM-FCN and ALSTM-FCN.
Fig. 2 summarizes the process of how the squeeze-and-excite block
is computed in our architecture. For all squeeze and excitation
blocks, we set the reduction ratio r to 16. The final temporal
convolutional block is followed by a global average pooling layer.

The squeeze-and-excite block is an addition to the FCN block
which adaptively recalibrates the input feature maps. Due to the
reduction ratio r set to 16, the number of parameters required to
learn these self-attention maps is reduced such that the overall
model size increases by just 3%–10%. This can be computed as
below:

P =
2
r

S∑
s=1

Rs · G2
s

where P is the total number of additional parameters, r denotes
the reduction ratio, S denotes the number of stages (each stage
refers to the collection of blocks operating on feature maps of
a common spatial dimension), Gs denotes the number of output
feature maps for stage s and Rs denotes the repeated block
number for stage s. Since the FCN blocks are kept consistent for
all models, we can directly compute the additional number of
parameters as P =

2
16 ∗ (1282

+ 2562) = 10,240 for all models.
Squeeze and excitation is essential to the enhanced performance
on multivariate datasets, as not all feature maps may impact the
subsequent layers to the same degree. This adaptive recalibration
of the feature maps can be considered as a form of learned
self-attention on the output feature maps of prior layers. This
adaptive rescaling of the filter maps is of utmost importance to
the improved performance of the MLSTM-FCN model compared
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Fig. 1. The MLSTM-FCN architecture. LSTM cells can be replaced by Attention LSTM cells to construct the MALSTM-FCN architecture.

Fig. 2. The computation of the temporal squeeze-and-excite block.

to LSTM-FCN, as it incorporates learned self-attention to the
inter-correlations between multiple variables at each time step,
which was inadequate with the LSTM-FCN.

In addition, the multivariate time series input is passed
through a dimension shuffle layer (explained more in Section 3.2),
followed by the LSTM block. The LSTM block is identical to the
block from the LSTM-FCN or ALSTM-FCN models (Karim et al.,
2017), comprising either an LSTM layer or an Attention LSTM
layer, which is followed by a dropout layer.

3.2. Network input

Depending on the dataset, the input to the fully convolutional
block and LSTM block vary. The input to the fully convolutional
block is a multivariate variate time series with Q time steps
having M distinct variables per time step. If there is a time series
with M variables and Q time steps, the fully convolutional block
will receive the data as such. Variables are defined as the channels
of interconnected data streams.

In addition, the input to the LSTM can vary depending on the
application of dimension shuffle. The dimension shuffle trans-
poses the temporal dimension of the input data. If the dimension
shuffle operation is not applied to the LSTM path, the LSTM
will require Q time steps to process M variables at each time
step. However, if the dimension shuffle is applied, the LSTM will
require M time steps to process Q variables per time step. In
other words, the dimension shuffle improves the efficiency of the
model when the number of variables M is less than the number
of time steps Q.

After the dimension shuffle, at each time step t , where 1 ≤ t ≤

M , M being the number of variables, the input provides the LSTM
the entire history of that variable (data of that variable over all

Q time steps). Thus, the LSTM is given the global temporal infor-
mation of each variable at once. As a result, the dimension shuffle
operation reduces the computation time of training and inference
without losing accuracy for time series classification problems. An
ablation test is performed to show the performance of a model
with the dimension shuffle operation is statistically the same as
a model without using it (further discussed in Section 4.4).

The proposed models take a total of 13 h to process the
MLSTM-FCN and a total of 18 h to process the MALSTM-FCN
on a single GTX 1080 Ti GPU. While the time required to train
these models is significant, one can note their inference time is
comparable with other standard models.

4. Experiments

MLSTM-FCN and MALSTM-FCN have been tested on 35
datasets, in Section 4.2. The optimal number of LSTM cells for
each dataset was found via grid search over 3 distinct choices -
8, 64 or 128, and all other hyper parameters are kept constant.
The FCN block is comprised of 3 blocks of 128-256-128 filters
for all models, with kernel sizes of 8, 5, and 3 respectively,
comparable with the original models proposed by Wang et al.
(2017). Additionally, the first two FCN blocks are succeeded
by the squeeze-and-excitation block. We consistently chose 16
as the reduction ratio r for all squeeze-and-excitation blocks, as
suggested by Hu et al. (2017). During the training phase, we set
the total number of training epochs to 250 unless explicitly stated
and the dropout rate is set to 80% to mitigate overfitting. Each
of the proposed models is trained using a batch size of 128. The
convolution kernels are initialized by the Uniform He initialization
scheme proposed by He, Zhang, Ren, and Sun (2015), which
samples from the uniform distribution U ∈

(
−

√
6
d ,

√
6
d

)
, where

d is the number of input units to the weight tensor. For datasets
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Table 1
Properties of all datasets. The yellow cells are datasets used by Pei et al. (2017), the purple cells are datasets used by Schäfer and Leser (2017), and the blue cells are
datasets from the UCI repository Lichman (2013). (See Carnegie Mellon University, 0000; Hammami & Bedda, 2010; Li, Zhang, & Liu, 2010; Lichman, 2013; Olszewski,
2012; Sübakan, Kurt, Cemgil, & Sankur, 2014; van der Maaten & Hendriks, 2012; Wang, Liu, Wu, & Yuan, 2012; Williams, Toussaint, & Storkey, 2008.)

with class imbalance, a class weighing scheme inspired by King
et al. is utilized (King & Zeng, 2001), weighing the contribution of
each class Ci (1 ≤ i ≤ C) to the loss by the factor Gwi =

N
C×NCi

,
where Gwi is the loss scaling weight for the i-th class, N is the
number of samples in the dataset, C is the number of classes and
NCi is the number of samples which belong to class Ci.

We use the Adam optimizer (Kingma & Ba, 2014), with an
initial learning rate set to 1e-3 and the final learning rate set
to 1e-4 to train all models. In addition, after every 100 epochs,
the learning rate is reduced by a factor of 1/ 3√2. The datasets
were normalized and preprocessed to have zero mean and unit
variance. We append variable length time series with zeros af-
terwards to obtain a time series dataset with a constant length
Q, where Q is the maximum length of the time series. Mean-
standard deviation normalization and zero padding are the only
preprocessing steps performed for all models. We compute the
mean and standard deviation of the training dataset and apply
these values to normalize both the train and test datasets. We
use the Keras (Chollet et al., 2015) library with the Tensorflow
backend (Abadi et al., 2015) to train the proposed models.

4.1. Evaluation metrics

In this paper, various models, including the proposed models,
are evaluated using accuracy, arithmetic rank, geometric rank,

the Wilcoxon signed-rank test, and mean per class error. The
arithmetic and geometric rank are the arithmetic and geometric
mean of the ranks,

Arithmetic MeanK =

∑N
K rankK
N

Geometric MeanK =

∏N
K rankK
N

,

where K is the dataset and N is the number of datasets.
The Wilcoxon signed-rank test is a non-parametric statisti-

cal test that hypothesizes the median of the rank between the
compared models is the same. The alternative hypothesis of the
Wilcoxon signed-rank test is that the median of the rank between
the compared models is not the same. Finally, the mean per class
error is the average error of each class for all the datasets,

PCEk =
1 − accuracy

number of unique classes

MPCE =
1
N

∑
PCEK .

4.2. Datasets

A total of 35 datasets are used to test the proposed mod-
els. Five of the 35 datasets are benchmark datasets used by
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Table 2
Performance comparison of proposed models with the rest on benchmark datasets. Green cells denote model with best performance. Red font indicates models that
have a strided convolution prior to the LSTM block. (See Cuturi & Doucet, 2011; Pei et al., 2017; Schäfer & Leser, 2017; Tuncel & Baydogan, 2018.)

Pei et al. (2017), where the training and testing sets are provided
online. In addition, we test the proposed models on 20 bench-
mark datasets, most recently utilized by Schäfer and Leser (2017).
These 20 datasets are trained on the same training and testing
datasets as Schäfer and Leser (2017). These benchmark datasets
are from various fields. Some datasets encompass the domains
of medical care, speech recognition and motion recognition. Fur-
ther details of each dataset are depicted in Table 1. The max
training length in Table 1 is the maximum number of time steps
for the entire sequence. The remaining 10 datasets of various
classification tasks were obtained from the UCI repository (Lich-
man, 2013). ‘‘HAR’’, ‘‘EEG2’’, and the ‘‘Occupancy’’ datasets have
predefined training and testing sets. All the remaining datasets
are partitioned into training and testing sets with a split ratio of
50:50. Each of the datasets is normalized to have zero mean and
unit standard deviation. Furthermore, the datasets are padded
with zeros, such that each time series length is equivalent to
the maximum length of all variables in the training dataset. The
dataset is summarized in Table 1.

4.3. Results

MLSTM-FCN and MALSTM-FCN are applied on all 35 datasets.
We compare our results to the existing reported state-of-the-art
models (HULM (Pei et al., 2017), HCRF (Quattoni et al., 2007),
NL (Jaakkola et al., 2000), FKL (Jaakkola et al., 2000), ARKer-
nel (Cuturi & Doucet, 2011), LPS (Baydogan & Runger, 2016),
mv-ARF (Tuncel & Baydogan, 2018), SMTS (Baydogan & Runger,
2015), WEASEL+MUSE (Schäfer & Leser, 2017), and dUFS (Wis-
tuba et al., 2015)) of each dataset. Additionally, we compare our
models with LSTM-FCN (Karim et al., 2017), ALSTM-FCN (Karim
et al., 2017). Alongside these models, we also obtain baselines
for these datasets by testing them on DTW, Random Forest, SVM
with a linear kernel, SVM with a 3rd degree polynomial kernel
and choose the highest score as the baseline.

Due to the general variance of deep learning algorithms, repro-
ducing exact results is particularly onerous. For replicability, we
ran the experiments 3–5 times on various datasets. All the results
are similar, where the maximum variance of the accuracy is 3%.
The results presented in Table 2 are obtained when the training
loss is a minimum. The weights of the models trained on all of
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Fig. 3. Critical difference diagram of the arithmetic means of the ranks on all 35 datasets.

Table 3
Wilcoxon signed-rank test comparison of Each Model. Red cells denote models where we fail to reject the hypothesis and claim that the models
have similar performance.

Table 4
Comparison of MLSTM-FCN With and Without Dimension Shuffle.

MLSTM-FCN with
dimension shuffle

MLSTM-FCN without
dimension shuffle

MPCE 4.21 4.86
Time (h) 13 32

these datasets are provided online. In addition, we provide our
training and evaluation scripts that will simplify the replication
of similar results.1

Table 2 compares the performance of various models with
MLSTM-FCN and MALSTM-FCN. We define performance as the
classification accuracy of a model on a particular dataset. Two
datasets, ‘‘Activity’’ and ‘‘Action 3d’’, required a strided temporal
convolution (stride 2) prior to the LSTM branch to reduce the
amount of memory consumed when using the MALSTM-FCN
model, because the models were too large to fit on a single
GTX 1080 Ti processor otherwise. Both of the proposed models,
MLSTM-FCN and MALSTM-FCN, outperform the state-of-the-art
models (SOTA) on 28 and 27 out of the 35 datasets of this
experiment respectively. ‘‘Activity’’ is one of the few datasets
where the proposed models did not outperform the SOTA model.
We postulate that the low performance is due to the large stride
of the convolution prior to the LSTM branch, which led to a loss
of valuable information.

MLSTM-FCN and MALSTM-FCN have an average arithmetic
rank of 3.29 and 3.17 respectively, and a geometric rank of
2.58 and 2.42 respectively. Fig. 3 depicts the superiority of the
proposed models over the top existing models through a critical
difference diagram (that applies a Nemenyi test (Nemenyi, 1962)
of the average arithmetic ranks.

We perform a Wilcoxon signed-rank test to compare all mod-
els that were tested on all 35 datasets, as shown in Table 3.

1 The codes and weights of all models are available at https://github.com/
houshd/MLSTM-FCN.

A Dunn–Sidak correction (Šidák, 1967) is applied to control the
familywise error rate, resulting in the adjusted significance of
0.0028. We statistically conclude that the proposed models have
a performance score higher than the remaining model as the
p-values are below 0.28 percent. The Wilcoxon signed-rank test
also demonstrates the performance of MLSTM-FCN and MALSTM-
FCN to be the same. Both MLSTM-FCN and MALSTM-FCN per-
form significantly better than LSTM-FCN and ALSTM-FCN. This
indicates the squeeze-and-excitation block enhances performance
significantly on multivariate time series classification through
modeling the inter-dependencies between the variables.

4.4. Ablation tests

An ablation study is conducted to determine the effect of
dimension shuffle on the input to the LSTM block of the proposed
models. We compare the MLSTM-FCN with and without dimen-
sion shuffle on all 35 datasets, keeping the number of LSTM cells
the same as obtained via grid search for the original models. All
other parameters are kept constant. MLSTM-FCN without dimen-
sion shuffle took approximately 32 h to process all the datasets on
a GTX 1080 Ti GPU. In comparison, MLSTM-FCN with dimension
shuffle required 13 h to process all the datasets.

The purpose of this study is to determine the impact of the
dimension shuffle operation on classification accuracy. Due to
the dimension shuffle operation, the time required for training
and evaluation of models is significantly reduced in several cases
where the number of variables is less than the number of time
steps. A Wilcoxon signed-rank test obtains a p-value of 0.136,
indicating that we cannot successfully reject the null-hypothesis
of the test. This demonstrates the performance of a model when
the dimension shuffle operation is applied is statistically the same
as when not applied. MLSTM-FCN with dimension shuffle has
an MPCE of 4.21. In contrast, an MLSTM-FCN without dimension
shuffle obtained a higher MPCE of 4.86. Table 4 summarizes

https://github.com/houshd/MLSTM-FCN
https://github.com/houshd/MLSTM-FCN
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Table A.5
Definition of all variables.
Variable Definition First Introduced

ht Hidden vector at time step t 2.1
I Projection matrix 2.1
l Layer 2.1
σ Sigmoid function 2.1
t Time step 2.1
tanh Hyperbolic tangent function 2.1
W Weight matrix 2.1
xt Input vector at time step t 2.1
yt Prediction at time step t 2.1
⊙ Elementwise multiplication 2.2
c Cell gate 2.2
f Forget gate 2.2
g Activation function 2.2
h Hidden vector 2.2
m Memory vector 2.2
o Output gate 2.2
u Input gate 2.2
a Alignment 2.3
αij Weight 2.3
bi Annotation 2.3
eij Energy of element 2.3
i Output position 2.3
j Input position 2.3
Tx Maximum length of input sequence x 2.3
V context vector 2.3
vi context vector 2.3
ν RNN hidden state 2.3
∗ Convolution operation 2.4
Fsq(uc ) Channel-wise multiplication between the feature map and the scale 2.4
Ftr Computational unit for any transformation 2.4
Fex Parameterized as a neural network 2.4
sc Channel-wise global average over the temporal dimension T 2.4
H Spatial dimension 2.4
r Reduction ratio 2.4
T Temporal dimension 2.4
U Outputs of Ftr 2.4
vsc 2D spatial kernel on channel c 2.4
W Spatial dimension 2.4
W1 Learnable parameters of Fex 2.4
W2 Learnable parameters of Fex 2.4
X Image of shape HxWxC 2.4
x̃c Output of the block rescaled 2.4
z Channel wise statistic 2.4
zc cth element of z 2.4
δ ReLU activation function 2.4
σ Sigmoid activation function 2.4
Gs Number of output feature maps for stage s 3.1
M Number of variables processed per time step 3.1
P Total number of additional parameters 3.1
Q Maximum number of time steps amongst all variables 3.1
Rs Repeated block number for stage s 3.1
S Number of stages 3.1
s Stage 3.1
Ci Contribution of each class 4
d Number of input units to the weight tensor 4
Gwi loss scaling weight for the ith class 4
N number of samples in the dataset 4
NCi number of samples that belong to class Ci 4
U uniform distribution 4
K dataset 4.1
MPCE mean per class error 4.1
N number of datasets 4.1
PCEk per class error for dataset k 4.1

how dimension shuffle affects MLSTM-FCN. In other words, the
dimension shuffle operation reduces the processing time by 59
percent while maintaining the same classification accuracy.

5. Conclusion & future work

The two proposed models attain state-of-the-art results in
most of the datasets tested, 28 out of 35 datasets. Each of the
proposed models requires minimal preprocessing and feature ex-
traction. Furthermore, the addition of the squeeze-and-excitation

block improves the performance of LSTM-FCN and ALSTM-FCN
significantly. We provide a comparison of our proposed models
to other existing state-of-the-art algorithms.

The proposed models will be beneficial in various multivariate
time series classification tasks, such as activity recognition, or ac-
tion recognition. The proposed models can quickly be deployed in
real-time systems and embedded systems because the proposed
models are small and efficient. Further research is being done to
better understand why the squeeze-and-excitation block does not



F. Karim, S. Majumdar, H. Darabi et al. / Neural Networks 116 (2019) 237–245 245

match the performance of the general LSTM-FCN or ALSTM-FCN
models on a couple of datasets.

Appendix. Variable definitions

See Table A.5.
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