IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 16, 2019, accepted May 5, 2019, date of publication May 14, 2019, date of current version June 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2916828

Insights Into LSTM Fully Convolutional Networks
for Time Series Classification

FAZLE KARIM', (Graduate Student Member, IEEE), SOMSHUBRA MAJUMDAR 2,
AND HOUSHANG DARABI 1, (Senior Member, IEEE)

! Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
2Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA

Corresponding author: Houshang Darabi (hdarabi @uic.edu)

The Research Open Access Publishing (ROAAP) Fund of the University of Illinois at Chicago financially supported towards the open
access publishing fee for this article.

ABSTRACT Long short-term memory fully convolutional neural networks (LSTM-FCNs) and Attention
LSTM-FCN (ALSTM-FCN) have shown to achieve the state-of-the-art performance on the task of clas-
sifying time series signals on the old University of California-Riverside (UCR) time series repository.
However, there has been no study on why LSTM-FCN and ALSTM-FCN perform well. In this paper,
we perform a series of ablation tests (3627 experiments) on the LSTM-FCN and ALSTM-FCN to provide
a better understanding of the model and each of its sub-modules. The results from the ablation tests
on the ALSTM-FCN and LSTM-FCN show that the LSTM and the FCN blocks perform better when
applied in a conjoined manner. Two z-normalizing techniques, z-normalizing each sample independently and
z-normalizing the whole dataset, are compared using a Wilcoxson signed-rank test to show a statistical
difference in performance. In addition, we provide an understanding of the impact dimension shuffle that
has on LSTM-FCN by comparing its performance with LSTM-FCN when no dimension shuffle is applied.
Finally, we demonstrate the performance of the LSTM-FCN when the LSTM block is replaced by a gated
recurrent unit (GRU), basic neural network (RNN), and dense block.

INDEX TERMS Convolutional neural network, long short term memory recurrent neural network, time

series classification.

I. INTRODUCTION

Time series classification has recently received a lot of atten-
tion over the past three decades [1]-[4]. Such data is widely
available everywhere and collected with various sensors [5].
A variety of real world sensors capture time series informa-
tion such as weather readings [6], stock market data [7], and
EEG / ECG [8], [9].Time series classification is a supervised
learning task that classifies a series of data points that are
commonly collected in equal intervals and depicted in a
sequential order [10]. Typically, the input to a time series
classification problem is a time series signal, X € RTxF,
such that X; € R’ is the input feature vector of length F
at time step 7, where 0 < ¢ < T. The maximum length
of each time series, 7, may vary [11]. The output of a time
series classification problem, ¥ € {l1,..., C}, is a discrete
class/category label that represents the input time series sig-
nals. The total number of classes, C, is dependent on the time
series classification problem. The main challenges faced in

The associate editor coordinating the review of this manuscript and
approving it for publication was Xi Peng.

time series classification are how to efficiently (speed and
space) [12] and effectively (accurately) [13] classify a time
series.

Some of the earliest work that applies data mining tech-
niques for time series classification dates back to the early
1990s when authors would apply various algorithms onto
single artificial datasets [14], [15]. Since the initial decade
of research in this field, Chen et al. [16] have graciously
helped the community by collecting and making 85 time
series datasets from various domains available online to the
public for research purposes. This has lead to rapid progress
in the field of time series classification and yielded a signif-
icant body of work. Recently, Dau et al. [17] have updated
the repository with 43 datasets with time series datasets.
These datasets have a significantly higher number of samples,
several of which have long time dependencies or incorpo-
rates variable sequence lengths, which makes the task of
sequence classification far more exigent. Most of the new
datasets also have a significantly larger test set and a few
have variable time series lengths to represent real-world
scenarios [1].

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

67718

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5635-4893
https://orcid.org/0000-0001-7881-6542

F. Karim et al.: Insights Into LSTM Fully Convolutional Networks for Time Series Classification

IEEE Access

Several researchers have used the old archive benchmark
datasets to propose feature-based models [18]-[22], ensem-
bles [23], [24] and deep learning models [25]-[27] to accu-
rately classify the time series data. One of the current state-of-
the-art models that classify the time series datasets from the
repository developed by Chen et al. [16] are the Long Short
Term Memory Fully Convolutional Network (LSTM-FCN)
and the Attention LSTM-FCN proposed by Karim et al. [27].
LSTM-FCN and ALSTM-FCN are deep learning models,
a Fully Convolutional Network (FCN) module augmented
with a Long Term Short Term Recurrent Neural Network
(LSTM) that classify time series datasets. LSTM-FCN and
ALSTM-FCN have received a lot of attention from the time
series classification community due to their advantage over
other models. In terms of classification accuracy, both the
models outperform several traditional time series classifica-
tion models, while requiring minimal pre-processing of the
data. A significant advantage of utilizing these models is
their ability to compute features on their own, eliminating
the requirement for significant domain expertise and man-
ual feature extraction. Furthermore, both these models can
easily scale with a larger amount of time series data, which
is generated daily by automated processes. Finally, LSTM-
FCN has already been deployed in real world scenarios. One
such application is to efficiently classify pet dog sounds
using resource constrained sensors [28]. The original models,
LSTM-FCN and ALSTM-FCN, lacked the explanation of
each sub-module. In this paper, we provide detailed ablation
tests to explain the sub-modules of the models.

The remainder of the paper is organized as follows.
Section III presents the parameters used in developing
the models and discusses the experiments performed.
Section IV compares two z-normalization schemes. Subse-
quently, Section V provides a detailed ablation test on the
deep learning models, LSTM-FCN and ALSTM. Finally,
Section VI concludes the paper.

Il. BACKGROUND REVIEW

A. TEMPORAL CONVOLUTIONS NETWORKS

Temporal convolution network is a type of artificial neural
network whose input is generally a time series signal, X,
where X; € RF is the input feature vector of length F for
time step ¢ for 0 < ¢+ < T. T may vary for each time series
sequence [11].

In a temporal convolution network, 1D filters are applied
on each convolutional layer, L, that discovers the evolution of
the input signal over the course of an action. Lea et al. [11]
discusses each filter of each layer are parameterized by tensor
WO e RFxdxFi-1 gnd biases b € RF!, wherel € {1, ..., L}
is the layer index and d is the filter duration. The i-th element
of the activation Eﬁ” € Rf7 of the I-th layer is a function of the
activation matrix E/=D e RFi=1xTi-1 of the previous layer,
such that, d

= (1)) o
t'=1

for each time ¢ where f(-) is a Rectified Linear Unit.

VOLUME 7, 2019

Typically, a convolutional layer is followed by batch nor-
malization [29]. Subsequently, this is trailed by an activation
function (a Rectified Linear Unit or a Parametric Rectified
Linear Unit [30]).

B. RECURRENT NEURAL NETWORKS

Recurrent Neural Networks (RNN) are a type of artificial
neural network that demonstrates stateful temporal behavior
given a time sequence. Pascanu et al. [31] proposed an RNN
to preserve a hidden vector h as a state that is updated at time
step 7,

h, = tanh(Wh,_; + Ix,), 2)

where tanh is the hyperbolic tangent function, x; is the input
vector at time step 7, W is the recurrent weight matrix and I
is the projection matrix. The prediction, y;, is computed such
that,

y: = softmax(Wh;_1), 3)

where h is a hidden state, W is a weight matrix and softmax
operation normalizes the output of the model to a valid proba-
bility distribution and the logistic sigmoid function is shown
as o. Deep RNNs can be formed by stacking the output of
one RNN as the input to another, such that the hidden state,
h/~! of a RNN layer /—1, is an input to the hidden state, h’
of another RNN layer /. In other words,

h! = o(Wh!_, +1h!™). 4)

RNNs are prone to be affected by vanishing gradients.
This issue is addressed using a Long short-term memory
(LSTM) or a Gated Recurrent Unit (GRU).

C. LONG SHORT-TERM MEMORY RNNs

To solve the vanishing gradient problem, LSTM RNNss utilize
gating functions in their state dynamics [32]. Each LSTM cell
contains a hidden vector, h, and a memory vector, m. At each
time step, the memory vector regulates the state updates and
outputs, such that the following computation is performed
computed as follows (first depicted by Graves et al. [33]):

g’ =o(W'h,_; +1"x))

g =o(Wh_1+¥Fx)

g’ = o(Wh;—| +1Ix)

g‘ = tanh(W°h,_; + I°x;)
m=g¢gom_ +g'og

h; = tanh(g’ © m,) (5

where g, g/ , g°, g° are the activation vectors of the input, for-
get, output and cell state gates respectively, W¥, W, we, we
are the recurrent weight matrices, I“, V.I°I¢ portrays the
projection matrices, o is the logistic sigmoid function, ©® is an
elementwise multiplication, and 4, is the hidden state vector
of the rth time step.

67719

IEEE Access

F. Karim et al.: Insights Into LSTM Fully Convolutional Networks for Time Series Classification

D. GATED RECURRENT UNIT

Cho et al. [34] proposed a modification to the LSTM RNN
that also solves the vanishing gradient problem using an
update and reset gate. Due to the simpler gating structure of
the model, reduced number of gates and thereby parameters,
it is considered to be an efficient alternative to the LSTM
RNN.

2t = 0g(Wyx¢ + Uzhe 1) (6)
ry = 0g(Wex¢ + Urhe) @)
ht = (1 —2z)) Ohe—

+2t © op(WhxXt + Up(re © ht—1)) ®

where x; is the input vector at time step ¢, z; is the update gate
vector, r; is the reset gate vector, /; is the hidden state and
output vector, W, and W, are the trainable weight matrices
for the update and reset gate respectively, U, and U, are the
trainable recurrent weight matrices for the update and reset
gate respectively, oy is the logistic sigmoid function, oy, is the
hyperbolic tangent function and © is the Hadamard product
of the two inputs.

E. FULLY CONNECTED (DENSE) LAYER

A fully connected layer can be described as a dense matrix
multiplication of the input vector with a trainable weight
matrix, and optionally, the addition of a trainable bias vector
to the output. The output of each layer can be represented by:

output = a(Wx + b) O]

where W is a weight matrix, b is a bias vector, and a is a
non-linear activation function. Common activation functions
are the Rectified Linear Unit (ReLU), the logistic sigmoid
function, or a hyperbolic tangent function.

Ill. EXPERIMENTS

The LSTM-FCN and ALSTM-FCN models are trained on
various released UCR benchmark datasets. The benchmark
datasets include a train and test set which is used for model
training and validation. We utilize the same structure of the
models as the original models [27] and perform grid search
to find the optimal number of LSTM cells from the set
consisting of 8, 64 or 128 cells. All models are trained for
2000 epochs. The batch size of 128 is kept consistent for all
datasets. All LSTM or Attention LSTM layers are followed
by dropout layer with a probability of 80 percent to prevent
overfitting. Class imbalance is handled via a class weighing
scheme inspired by King and Zeng [35]. All models are
trained using the Keras library [36] with Tensorflow [37] as
the backend and are made available publically.’

All models are trained via gradient descent using the Adam
optimizer [38]. The initial learning rate was set to le-3 and is
reduced to a minimum of le-4. We reduced the learning rate
by a factor of 1/+/2, whenever the training loss of 100 con-
secutive epochs do not improve. The model weights are

IThe codes and weights of each model are made available at
https://github.com/houshd/LSTM-FCN-Ablation

67720

TABLE 1. Performance comparison of LSTM-FCN and ALSTM-FCN with the
baseline models. Green cells designate instances where our performance
matches or exceeds state-of-the-art results. Bold values denote model
with the best performance.

Name Baseline [1] LSTM-FCN ALSTM-FCN LSTM-FCN ALSTM-FCN

Data Data Sample Sample
Normalized Normalized Normalized Normalized
ACSFI 0.6400 0.9300 0.9100 0.9200 0.9200
AllGestWiX 0.7171 0.7214 0.7200 0.7071 0.7086
AllGestWiY 0.7300 0.7786 0.7914 0.7929 0.7829
AllGestWiZ 0.6514 0.7400 0.7357 0.6800 0.6914
BME 0.9800 1.0000 0.8333 0.9933 0.8600
Chinatown 0.9565 0.9855 0.9855 0.9826 0.9797
Crop 0.7117 0.7652 0.7638 0.7425 0.7389
DodgLpDay 0.5875 0.6375 0.4875 0.6125 0.5875
DodgLpGm 0.9275 [0.8913 0.7754 0.8986 0.8261
DodgLpWnd 0.9855 0.9855 0.9710 0.9783 0.9275
EOGHzSgn 0.5028 0.6547 0.6878 0.6409 0.6133
EOGVtSgn 04751 0.5387 0.5138 0.5028 0.4696
EthLevel 0.2820 0.7660 0.7380 0.7660 0.7480
FrzRegTr 0.9070 0.9986 0.9989 0.9989 0.9989
FrzSmiTr 0.7533 0.8295 0.8747 0.8025 0.8407
Fungi 0.8387 1.0000 0.9946 0.9892 0.9839
GestMidAirD1 0.6385 0.7462 0.7154 0.7308 0.7231
GestMidAirD2 0.6077 0.6923 0.6385 0.7077 0.6923
GestMidAirD3 0.3769 0.4538 0.4462 0.4538 0.3846
GestPebZ1 0.8256 0.9419 0.9244 0.9419 0.9128
GestPebZ2 0.7785 0.8987 0.8354 0.8544 0.8861
GunPtAgeSp 0.9652 1.0000 1.0000 0.9968 1.0000
GunPointMVsF 0.9968 1.0000 1.0000 1.0000 1.0000
GunPointOVsY 0.9651 1.0000 1.0000 0.9968 0.9968
HouseTwenty 0.9412 0.9664 0.9496 0.9832 0.9832
InsEPGRegTr 0.8715 1.0000 1.0000 0.9960 1.0000
InsEPGSmITr 0.7349 1.0000 1.0000 0.9478 0.9438
MelbPed 0.8482 0.9747 0.9755 0.9147 0.9135
MxShpRegTr 0.9089 0.9748 0.9720 0.9711 0.9678
MxShpSmiTr 0.8355 0.9365 0.9274 0.9390 0.9225
PickGestWiZ 0.6600 0.9000 0.9000 0.7600 0.7000
PigAryPress 0.1058 0.7885 0.7596 0.4231 0.3942
PigArtPress 0.2452 0.9808 0.9904 1.0000 1.0000
PigCVP 0.1587 0.9231 0.9279 0.8702 0.8702
PLAID 0.8399 [0.4842 0.5047 0.9088 0.8994
PowerCons 0.9333 1.0000 0.9500 0.9944 0.9167
Rock 0.8400 [0.8000 0.8000 0.9200 0.8600
SgHdGendCh2 0.8450 0.9400 0.8567 0.9200 0.8567
SgHdMovCh2 0.6378 0.7044 0.5622 0.5422 0.5556
SgHdSubCh2 0.8000 0.9222 0.6533 0.8800 0.7911
ShkGestWiZ 0.8600 0.9800 0.9800 0.9000 0.8800
SmthSub 0.9467 1.0000 1.0000 0.9867 0.9867
UMD 0.9931 1.0000 0.9931 0.9792 0.9722
MPCE - ‘ 0.0172 0.0242 0.0191 0.0242
Count 1 | 30 14 12 6

updated only through the training loss. The accuracies we
report are based on the best models we find. The methodology
we follow is common in various deep learning applications
[39]-[43]. In addition, we utilize the initialization proposed
by He et al. [40] for all convolutional layers. The input data
is z-normalized and the datasets with variable length time
series are padded with zeros at the end to match the longest
time series in that dataset. All models are evaluated using
classification accuracy and mean-per-class-error (MPCE),
which is defined as the average error of each class for all the
datasets and mathematically represented as following:

1 — accuracy

PCE, =
* T umber of unique classes

N
1
MPCE = v I;PCEk.

IV. DATASET ABLATION TEST

Table 1 represents the accuracies obtained by applying
LSTM-FCN and ALSTM-FCN on the 43 new UCR bench-
mark datasets based on two z-normalization schemes when
normalizing the datasets prior to training. These 43 UCR
benchmark datasets are the only datasets in the repository
that are not padded, normalized or pre-processed in any way.
The dataset mean and standard deviation is calculated as

VOLUME 7, 2019

https://github.com/houshd/LSTM-FCN

F. Karim et al.: Insights Into LSTM Fully Convolutional Networks for Time Series Classification

IEEE Access

Dataset UMD : Sequence ID = 1 (class = 1)

Dataset UMD : Sequence ID = 1 (class = 1)

Dataset UMD : Sequence ID = 1 (class = 1)

100 100 100
o1s ors ors
050 0s0 0s0
9 o 9 o g o
s 000 s 000 2 0.00
025 025 05
050 050 -0s0
075 075 015
o 0 o © e @ w0 w0 w0 o

@ & w0 120 10 2

Convolution Layer 1 Filter ID 2 (class = 1)

Convolution Layer 2 Filter ID 2 (class = 1)

Convolution Layer 3 Filter ID 2 (class = 1)

oo
100 400 050
H H § oo
% o % 20 H
os0
100 o 100

o 2 W e & w0 120 10 o 2 @

ConviD
BN+ReLU
ConviD

o w120 10 o 2 P
Timesteps

N
BN+RelLU
ConviD
BN+ReLU

a
(02}

& o
Timesteps

FIGURE 1. Ablation test-visual representation of the input signal after transformation through randomly selected filters

from each convolutional layer.

the mean and standard deviation of only the train set, and
then applied to both train and tests, whereas the sample mean
and standard deviation was calculated for each individual
sample separately. When using LSTM-FCN and ALSTM-
FCN, our results indicate that when the whole dataset is
z-normalized, it performs better on 34 datasets (LSTM-FCN)
and 30 datasets (ALSTM-FCN) than when each sample is
z-normalized separately. In addition, a Wilcoxon signed-
rank test [44] was performed to compare this, yielding a
p-value of 4.57¢-07. We chose the significance level (alpha)
of 0.05 for all statistical tests. Since the p-value is less
than the Dunn-Sidak [45] corrected significance level (alpha)
of 0.025, we conclude that z-normalizing the whole dataset
performs differently than when z-normalizing each sample.
We recommend z-normalizing the whole dataset iff one
knows that the train set can sufficiently represent the global
population of the dataset. In other words, if no a priori infor-
mation or domain knowledge is known about the train set,
it is safer to z-normalize each sample separately, as explained
by Dau et al. [1]. They provide an example explaining why
it is safer to z-normalize each sample separately using the
dataset GunPoint, where a video is converted into a time
series. If another video is taken where “‘the camera is zoomed
in or out, or the actors stood a little closer to the cam-
era, or that the female actor decided to wear new shoes with a
high heel” [1], the converted time series will be different. The
train set will not have this distribution as the validation or test
set, and the prediction made by this classifier will be off.
In this scenario, it would be best to z-normalize each sample
separately. On the other hand, if a domain expert knows the
train set contains a wide range of samples that represent the
different types and amplitudes of time series, z-normalizing
via the dataset mean and standard deviation would be wiser
when using LSTM-FCN and ALSTM-FCN as classifiers.

VOLUME 7, 2019

V. MODEL ABLATION TESTS
We perform an ablation study on our model to provide an
understanding of the impact of each layer of our model and
show how significantly they affect the performance measure.
The LSTM-FCN and ALSTM-FCN models are applied to
61 datasets from the UCR repository, such that each dataset
is sample z-normalized. Each dataset chosen were datasets
that outperform the SOTA non-ensemble classifiers, BOSS
[20] and WEASEL [46]. We apply BOSS and WEASEL
on all UCR datasets based on code and default parameters
provided by the author online. It should be noted, this paper is
not comparing results with BOSS and WEASEL. BOSS and
WEASEL is only used to select datasets that would provide a
better understanding of LSTM-FCN and ALSTM-FCN when
it performs well.

In addition, the significance level (alpha) of 0.05 is selected
for all statistical tests. The null hypothesis and alternative
hypothesis of all Wilcoxon signed-rank test are as follows:

H, : Medianproposed model = Mediancompared model
H, : Medianproposed model 7 Mediancompared model -

An essential point of discussion concerning the working
of the LSTM-FCN and ALSTM-FCN model is the choice of
utilizing an LSTM Recurrent module in conjunction with the
FCN block. In the following ablation tests, we study the per-
formance of the individual components which constitute the
LSTM-FCN and ALSTM-FCN models, their performance
compared to a linear baseline, as well as the empirical and
statistical analysis on the performance of the individual com-
ponents and the final model.

A. FULLY CONVOLUTIONAL BLOCK
LSTM-FCN and ALSTM-FCN comprise of a fully convolu-
tional block and an LSTM/Attention LSTM block. The FCN

67721

IEEE Access

F. Karim et al.: Insights Into LSTM Fully Convolutional Networks for Time Series Classification

block has three stacked temporal convolutional blocks with
the number of filters defined as 128, 256, and 128. Figure 1
depicts a visual representation of a single sample from the
UMD dataset after transformation via a random filter selected
from each of the convolutional blocks.

As can be noticed, a randomly selected filter from the
first CNN block is applying a form of noise reduction that
is learned via gradient descent, whereas two subsequent ran-
domly selected filters from the later layers are transforming
the data to be far more inconsistent. Based on our analysis of
a few filters on various datasets, we conclude that the CNN
filters in all layers act as feature extractors and transform the
data into separable classes. The model learns the parameters
of these transformations on its own via stochastic gradient
descent. If a dataset sample requires the removal of noise, it is
learned by a few filters of the first CNN layer. It is challenging
to postulate what type of transformation is occurring in each
filter, as the model transforms the data differently for each
of the datasets, on the basis of random initialization of the
convolution kernels and order of stochastic gradient descent
updates. However, the filter parameters are learned such that
their objective is to transform the data into separable classes.

In order to empirically demonstrate that the LSTM-FCN
and ALSTM-FCN models are learning to separate the classes
better, we examine the features from the FCN block by
applying them to a tuned linear SVM classifier. The results
are summarized in Table 2. The linear SVM classifier that
is applied on the features extracted from the FCN block is
better in 41 datasets (LSTM-FCN model) and 45 datasets
(ALSTM-FCN model) as compared to when the tuned linear
SVM classifier is applied on to the raw signal. Based on this
knowledge, we conclude that the FCN block is transforming
the data into separable classes.

B. LSTM/ALSTM RECURRENT BLOCK

Due to the dimensional shuffle that is applied before the
LSTM block, the features extracted by LSTM block by itself
do not contribute significantly to the overall performance.
When these features are applied onto a tuned linear SVM
classifier, the classifier is better in only 19 datasets (for the
LSTM block) and 4 datasets (for the ALSTM block) as
compared to when the tuned linear SVM classifier is applied
to the raw input dataset. The above indicates that the LSTM,
by itself, is not separating the data into linear separable
classes.

C. LSTM/ALSTM CONCATENATED WITH FCN BLOCK

Nevertheless, when the features of the LSTM block/ALSTM
block are concatenated with the CNN features, we obtain
a more robust set of features that can better separate the
classes of the dataset. The above insight is statistically val-
idated by applying the concatenated features to a single layer
perceptron classifier which accepts the extracted features as
input (due to the fact that the data is transformed into separa-
ble classes). The training scheme of all perceptron models
is kept consistent with how we train all LSTM-FCN and

67722

TABLE 2. Ablation test - linear SYM performance comparison of
LSTM/ALSTM Block, FCN Block with the raw signals. Green cells and
orange cells designate instances where the linear SYM model on the
block exceeds the linear SVM on raw signals. Bold values denotes the
block with the best performance using the linear SVM classifier. Count*
represents the number of bold values in that column.

Dataset Raw FCN LST™M Raw FCN ALSTM
Block Block Block Block
Car 0.83 0.42 0.78 0.83 0.23 0.22
ChlConc 0.57 0.53 0.61 0.57 0.53 0.53
Compt 0.52 0.50 0.54 0.52 0.77 0.50
Cricket_X 0.27 0.36 0.33 0.27 0.45 0.12
Cricket_Z 0.28 0.51 0.54 0.28 0.67 0.09
DiaSzRed 0.94 0.31 0.93 0.94 [0.31 0.30
DsPhOutAgGp 0.80 0.78 0.81 0.80 0.82 0.64
DsPhxOCor 0.53 0.81 0.48 0.53 0.63 0.63
DsPhxTW 0.76 0.74 0.77 0.76 0.79 0.53
Earthquakes 0.57 0.82 0.71 0.57 0.82 0.78
FaceAll 0.68 0.92 0.77 0.68 0.95 0.18
FordB 0.49 0.88 0.56 0.49 0.49 0.50
Ham 0.70 0.51 0.66 0.70 0.51 0.51
Haptics 0.44 0.19 0.41 0.44 0.19 0.21
ItyPwrDmd 0.96 0.97 0.97 0.96 0.96 0.50
LgKchApp 0.39 0.52 0.40 0.39 0.68 0.33
Lighting7 0.64 0.77 0.59 0.64 0.68 0.26
Mallat 0.88 0.12 0.54 0.88 [0.12 0.12
MedImg 0.56 0.77 0.56 0.56 0.76 0.51
MidPhxOtAgGrp 0.80 0.75 0.80 0.80 [0.76 0.27
MidPhxOtCor 0.53 0.82 0.55 0.53 0.65 0.65
MidPhxTW 0.64 0.60 0.65 0.64 0.61 0.21
NonECG_Thorl 0.91 0.19 0.85 0.91 0.22 0.02
NonECG_Th2 0.92 0.17 0.20 0.92 0.22 0.02
OSULeaf 0.42 0.48 0.41 0.42 0.50 0.18
PhgOtCor 0.66 0.82 0.66 0.66 | 0.61 0.61
PrxPhxOtAgeGp 0.85 0.84 0.84 0.85 | 0.84 0.49
PrxPhxOtCor 0.79 0.68 0.75 0.79 0.91 0.68
PrxPhxTW 0.79 0.81 0.65 0.79 0.83 0.45
ScreenType 0.38 0.33 0.37 0.38 0.51 0.33
SonyAIBO 0.66 0.95 0.64 0.66 0.99 0.43
SonyAIBOII 0.81 0.90 0.82 0.81 0.88 0.44
SwdLeaf 0.79 0.97 0.81 0.79 0.98 0.05
Symbols 0.79 0.92 0.82 0.79 0.81 0.17
ToeSegl 0.56 0.97 0.56 0.56 0.86 0.55
TwoLeadECG 0.89 0.99 0.64 0.89 1.00 0.50
ACSF1 0.59 0.92 0.33 0.59 0.88 0.10
AllGestWiX 0.27 0.67 0.30 0.27 0.66 0.10
AllGestWiY 0.35 0.74 0.30 0.35 0.73 0.11
AllGestWiZ 0.30 0.65 0.24 0.30 0.65 0.10
Chinatown 0.97 0.98 0.91 0.97 0.98 0.72
Crop 0.69 0.72 0.45 0.69 0.72 0.34
EOGHzSgn 0.43 0.53 0.24 0.43 0.55 0.08
EOGVtSgn 0.35 0.42 0.29 0.35 0.35 0.08
EthLevel 0.75 0.75 0.25 0.75 [0.71 0.25
FrzRegTr 0.98 1.00 0.80 0.98 1.00 0.50
GestPebZ1 0.72 0.85 0.69 0.72 0.87 0.22
GunPointMVsF 0.98 1.00 0.89 0.98 1.00 0.53
GunPointOVsY 0.88 0.97 0.86 0.88 0.97 0.48
InsEPGRegTr 0.64 1.00 0.59 0.64 1.00 0.47
MelbPed 0.84 0.91 0.75 0.84 0.90 0.15
MxShpRegTr 0.81 0.95 0.80 0.81 0.96 0.17
MxShpSmITr 0.80 0.91 0.81 0.80 0.92 0.13
PickGestWiZ 0.60 0.70 0.50 0.60 0.68 0.10
PigAryPress 0.06 0.35 0.02 0.06 0.37 0.02
PowerCons 0.93 0.89 0.83 0.93 ‘ 0.87 0.50
SgHdGendCh2 0.88 0.82 0.81 0.88 | 0.77 0.35
SgHdMovCh2 0.48 0.51 0.35 0.48 0.51 0.17
ShkGestWiZ 0.62 0.86 0.36 0.62 0.86 0.10
SmthSub 0.67 0.97 0.61 0.67 0.96 0.33
UMD 0.98 0.97 0.71 0.98 0.99 0.22
Count 15 38 7 15 | 46 3

ALSTM-FCN models, as detailed in Section III. Results,
shown in Table 3, show that the features from of the
LSTM/ALSTM block coupled with the features from the
FCN block improve the model performance.

For the ALSTM-FCN model, the ALSTM features joined
with the FCN features outperform the features from the
ALSTM block or the FCN block on 49 datasets, yielding to
a p-value of 1.34e-08 when a Wilcoxon Signed-rank test [44]
is applied. Similarly, the LSTM features joined with the FCN
features in the model LSTM-FCN outperform the features
from the LSTM block or the FCN block on 54 datasets, yield-
ing to a p-value of 1.22e-08. The Dunn-Sidak [45] corrected
significant alpha value is 0.02.

VOLUME 7, 2019

F. Karim et al.: Insights Into LSTM Fully Convolutional Networks for Time Series Classification

IEEE Access

TABLE 3. Ablation test - MLP performance comparison of LSTM/ALSTM
Block, FCN Block, LSTM/ALSTM-FCN Block and the raw signals. Green
cells and orange cells designate instances where the MLP model on the
block exceeds the MLP on raw signals. Bold values denotes the block
with the best performance using the MLP classifier. Count* represents the
number of bold values in that column.

Dataset Raw FCN LSTM LSTM- Raw FCN ALSTM | ALSTM-
Block Block FCN Block Block FCN
Car 0.83 042 0.78 0.95 0.83 0.23 0.22 0.92
ChIConc 0.57 0.53 0.61 0.80 0.57 0.53 0.53 0.79
Compt 0.52 0.50 0.54 0.84 0.52 0.77 0.50 0.84
Cricket_X 0.27 0.36 0.33 0.78 0.27 0.45 0.12 0.78
Cricket_Z 0.28 0.51 0.54 0.82 0.28 0.67 0.09 0.79
DiaSzRed 0.94 0.31 0.93 0.94 0.94 0.31 0.30 0.94
DsPhOutAgGp 0.80 0.78 0.81 0.83 0.80 0.82 0.64 0.83
DsPhxOCor 0.53 0.81 0.48 0.81 0.53 0.63 0.63 0.81
DsPhxTW 0.76 0.74 0.77 0.79 0.76 0.79 0.53 0.79
Earthquakes 0.57 0.82 0.71 0.80 0.57 0.82 0.78 0.80
FaceAll 0.68 0.92 0.77 0.92 0.68 0.95 0.18 0.93
FordB 0.49 0.88 0.56 0.89 0.49 0.49 0.50 0.88
Ham 0.70 0.51 0.66 0.73 0.70 051 0.51 0.72
Haptics 0.44 0.19 0.41 0.49 0.44 0.19 0.21 0.50
ItyPwrDmd 0.96 0.97 0.97 0.96 0.96 0.96 0.50 0.96
LgKchApp 0.39 0.52 0.40 0.89 0.39 0.68 0.33 0.91
Lighting7 0.64 0.77 0.59 0.79 0.64 0.68 0.26 0.77
Mallat 0.88 0.12 0.54 0.97 0.88 0.12 0.12 0.97
MedImg 0.56 0.77 0.56 0.79 0.56 0.76 0.51 0.77
MidPhxOtAgGrp 0.80 0.75 0.80 0.75 0.80 0.76 0.27 0.76
MidPhxOtCor 0.53 0.82 0.55 0.83 0.53 0.65 0.65 0.83
MidPhxTW 0.64 0.60 0.65 0.61 0.64 0.61 0.21 0.61
NonECG_Thorl 091 0.19 0.85 0.96 0.91 0.22 0.02 0.96
NonECG_Th2 0.92 0.17 0.20 0.96 0.92 0.22 0.02 0.95
OSULeaf 0.42 0.48 0.41 0.98 0.42 0.50 0.18 0.99
PhgOtCor 0.66 0.82 0.66 0.83 0.66 0.61 0.61 0.83
PrxPhxOtAgeGp 0.85 0.84 0.84 0.87 0.85 0.84 0.49 0.86
PrxPhxOtCor 0.79 0.68 0.75 0.91 0.79 0.91 0.68 0.92
PrxPhxTW 0.79 0.81 0.65 0.82 0.79 0.83 045 0.82
ScreenType 0.38 0.33 0.37 0.62 0.38 0.51 033 0.64
SonyAIBO 0.66 0.95 0.64 0.96 0.66 0.99 0.43 0.97
SonyAIBOII 0.81 0.90 0.82 0.97 0.81 0.88 0.44 0.98
SwdLeaf 0.79 0.97 0.81 0.98 0.79 0.98 0.05 0.97
Symbols 0.79 0.92 0.82 0.98 0.79 0.81 0.17 0.97
ToeSegl 0.56 0.97 0.56 0.98 0.56 0.86 0.55 0.99
TwoLeadECG 0.89 0.99 0.64 1.00 0.89 1.00 0.50 1.00
ACSFI1 0.40 0.91 0.36 0.91 0.40 0.89 0.10 0.90
AllGestWiX 0.24 0.66 0.30 0.71 0.24 0.65 0.10 0.71
AllGestWiY 0.32 0.72 0.29 0.79 0.32 0.73 0.10 0.77
AllGestWiZ 0.26 0.63 0.25 0.68 0.25 0.64 0.10 0.68
Chinatown 0.96 0.98 0.94 0.98 0.96 0.98 0.72 0.98
Crop 0.63 0.72 0.42 0.74 0.63 0.71 0.34 0.74
EOGHzSgn 0.30 0.54 0.27 0.62 0.30 0.55 0.08 0.60
EOGV1tSgn 0.32 0.36 0.28 0.49 0.31 0.35 0.08 0.45
EthLevel 0.46 0.62 0.25 0.68 0.53 0.65 0.25 0.73
FrzRegTr 0.82 1.00 0.78 1.00 0.80 1.00 0.50 1.00
GestPebZ1 0.73 0.81 0.70 0.94 0.71 0.84 0.18 0.91
GunPointMVsF 0.85 1.00 0.88 1.00 0.84 1.00 0.53 1.00
GunPointOVsY 0.88 0.97 0.84 1.00 0.85 0.97 0.48 0.99
InsEPGRegTr 0.65 0.98 0.62 1.00 0.65 0.98 0.47 1.00
MelbPed 0.79 0.91 0.74 0.91 0.78 0.90 0.13 0.91
MxShpRegTr 0.80 0.95 0.80 0.97 0.81 0.96 0.24 0.97
MxShpSmITr 0.75 0.92 0.80 0.94 0.75 0.92 0.19 0.92
PickGestWiZ 0.52 0.70 0.52 0.70 0.52 0.58 0.10 0.64
PigAryPress 0.05 0.39 0.01 0.42 0.05 0.38 0.02 0.38
PowerCons 0.89 0.87 0.82 0.93 0.89 0.88 0.50 0.91
SgHdGendCh2 0.75 0.81 0.80 0.92 0.76 0.79 0.65 0.86
SgHdMovCh2 0.38 0.46 0.34 0.54 0.38 0.48 0.17 0.56
ShkGestWiZ 0.44 0.86 0.30 0.90 0.44 0.88 0.10 0.88
SmthSub 0.69 0.97 0.57 0.99 0.70 0.95 0.33 0.98
UMD 0.88 0.94 0.73 0.97 0.88 0.98 0.22 0.97

Count 2 4 2 57 3 10 0 51

It is evident that when applying the LSTM block (with
dimension shuffle) and the FCN block parallelly, the blocks
augment each other, and force each other to detect a set
of features which when combined, yield an overall better
performing model. In other words, the LSTM block attached
with the FCN block statistically helps improve the overall
performance of the model providing informative features that
in conjunction with the FCN features, are useful in separating
the classes further.

D. DIMENSION SHUFFLE vs NO DIMENSION SHUFFLE

Another ablation test performed is to check the impact dimen-
sion shuffle has on the overall behavior of the model. The
dimension shuffle transposes the input univariate time series
of N time steps and 1 variable into a multivariate time
series of N variables and 1 time step. In other words, when

VOLUME 7, 2019

dimension shuffle is applied to the input before the LSTM
block, the LSTM block will process only 1 time step with N
variables.

In this ablation test, LSTM-FCN with dimension shuffle
is compared to LSTM-FCN without dimension shuffle on all
128 UCR datasets using a cell size of 8, 64, 128 (yielding
to a total of 128 x 3 = 384 experiments). LSTM-FCN
with dimension shuffle outperforms LSTM-FCN without
dimension shuffle on 258 experiments, ties in 27 experi-
ments, and performs worse in 99 experiments. For the experi-
ments when LSTM-FCN with dimension shuffle outperforms
LSTM-FCN without dimension shuffle, the accuracy
improved on average by 6.00%. Conversely, for the exper-
iments when LSTM-FCN with dimension shuffle performs
worse than LSTM-FCN without dimension shuffle, the accu-
racy is worse by an average of 5.26%. A Wilcoxson signed-
rank test results in a p-value of 3.69FE — 17, indicating a
statistical difference in performance where LSTM-FCN with
dimension shuffle performs better. This result is contrary
to what most people would hypothesize. LSTM-FCN with-
out dimension shuffle overfits the UCR datasets in more
instances than LSTM-FCN with dimension shuffle. This is
because the LSTM block without dimension shuffle by itself
performs extremely well. The FCN block and LSTM block
without the dimension shuffle does not benefit each other.

Another critical fact to note is that the LSTM-FCN with
dimension shuffle processes the univariate time series in
one time step. The gating mechanisms of the LSTM-FCN
is only being applied on a single time step. This attributes
to why LSTM with dimension shuffle by itself performs
poorly. However, as noticed in Section V-C, when applying
the LSTM block with dimension shuffle and the FCN block
parallelly, the blocks augment each other, while improving its
overall performance. To the best of our knowledge, we believe
the LSTM block with a dimension shuffle acts as a regularizer
to the FCN block, forcing the FCN block to improve its
performance.

E. REPLACING LSTM WITH GRU, RNN, AND A DENSE
LAYER

Since the usage of the LSTM block when applying dimension
shuffle to the input is atypical, we replace the LSTM block
with a GRU block (8, 64, 128 cells), basic RNN block (8,
64, 128 cells), and a Dense block with a sigmoid activa-
tion function (8, 64, 128 units) on all 128 datasets (total
of 384 experiments on each model).The intuition behind
selecting an RNN block and a GRU block is that these blocks
have similar properties to an LSTM block, and differ only
in their capacity to learn long term temporal dependencies.
Furthermore, a dense layer is selected to compare against the
atypical usage of the LSTM block, so that we may analyze
whether the complex interaction within the recurrent gates
of the LSTM can be simplified into a single fully connected
layer. We chose the sigmoid activation function for the Dense
block, instead of the standard Rectifying Linear Unit (ReLU)
activation, as we wish to compare the effectiveness of the

67723

IEEE Access

F. Karim et al.: Insights Into LSTM Fully Convolutional Networks for Time Series Classification

TABLE 4. Ablation test - Wilcoxson signed-rank test comparing LSTM-FCN
with GRU-FCN, RNN-FCN, and Dense-FCN. The values in parenthesis
depicts the number of wins, ties, and losses the row index has with the
header. Red cell depicts when the test fails to reject the null hypothesis.

GRU-FCN
6.33E-16 (243/38/103)

RNN-FCN
1.34E-17 (247/41/96)
1.05E-02 (185/53/146)

Dense-FCN
2.81E-10 (231/35/118)
1.57E-01 (160/49/175)
7.55E-05 (135/49/200)

LSTM-FCN
GRU-FCN
RNN-FCN

gating effect exhibited by the 3 gates of the LSTM. The
majority of the gates of the LSTM use the sigmoid activation
function. Therefore, we construct the Dense block to also use
the same. The input to the GRU block, RNN block, and Dense
block had a dimension shuffle applied onto it. Replacing the
LSTM block of LSTM-FCN with a GRU block was first pro-
posed by Elsayed et al. [47]. Table 4 summarizes a Wilcoxson
signed-rank test when LSTM-FCN with dimension shuffle is
compared to GRU-FCN, RNN-FCN, and Dense-FCN.

The Wilcoxson signed-rank test depicts LSTM-FCN with
dimension shuffle to statistically outperform GRU-FCN,
RNN-FCN, Dense-FCN. Surprisingly, the model to per-
form most similar to LSTM-FCN with dimension shuf-
fle is Dense-FCN. LSTM-FCN outperforms Dense-FCN
in 231 experiments, ties in 35 experiments and performs
worse in 118 experiments.

An interesting observation is that GRU-FCN does not sta-
tistically outperform Dense-FCN. Based on our 384 exper-
iments, GRU-FCN outpeforms Dense-FCN in 160 exper-
iments, ties in 49 experiments, while performing worse
in 175 experiments. As a disclaimer, we performed each of
these experiments only once, therefore there may be some
deviation when run multiple times due to the inherent vari-
ance of training using random initialization. However, due to
the sample size of 384, we believe the variance will not be
significant to result in a different conclusion.

VI. CONCLUSION & FUTURE WORK

In this paper, we provide a better understanding of
LSTM-FCN, ALSTM-FCN and their sub-modules through
a series of ablation tests (3627 experiments). We show that
z-normalizing the whole dataset yields to results different
than z-normalizing each sample. For the model LSTM-FCN
and ALSTM-FCN, we recommend z-normalizing the whole
dataset only in situations when it is known that the training set
is a good representation of the global population. Moreover,
our ablation tests show that the LSTM/ALSTM block and
the FCN block yields to a better performing model when
applied in a conjoined manner. Further, the performance
of LSTM-FCN is enhanced only when dimension shuffle
is applied before the LSTM block. Finally, in this paper,
we substitute the LSTM block with either a GRU block,
a RNN block or a Dense block to observe the effect of such a
substitution. Our results indicate LSTM-FCN to outperform
GRU-FCN, RNN-FCN and Dense-FCN.

An exciting area for future work is to investigate why
LSTM-FCN and ALSTM-FCN underperform in a few UCR
datasets and to ascertain whether the models can be made
more robust to the various types of time series data.

67724

Furthermore, integrating the models in both low-power sys-
tems and wearables for on-device classification is of great
interest. Finally, further inroads can be made in streaming
time series classification by the utilization of these models.In
the future, researchers that want to implement deep learning
models for time series classification need to focus on gener-
alization of the model on unseen sequences, and reduce over-
fitting as the UCR repository contain small real world data
sets.

ACKNOWLEDGMENT

The authors would like to thank all the researchers that
helped create and clean the data available in the updated UCR
Time Series Classification Archive. They would also like to
show their gratitude to the administrators of the UCR Time
Series Classification Archive, Dau et al. Sustained research
in this domain would be much more challenging without their
efforts.

Further, the authors would like to acknowledge the
Research Open Access Publishing (ROAAP) Fund of the
University of Illinois at Chicago for financial support towards
the open access publishing fee for this article.

(Fazle Karim and Somshubra Majumdar contributed
equally to this work.)

REFERENCES

[1] H. A. Dau et al. (2018). ““The UCR time series archive.” [Online]. Avail-
able: https://arxiv.org/abs/1810.07758

[2] A. Sharabiani, H. Darabi, A. Rezaei, S. Harford, H. Johnson, and F. Karim,

“Efficient classification of long time series by 3-d dynamic time warping,”

IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 10, pp. 2688-2703,

Oct. 2017.

A. Sharabiani, F. Karim, A. Sharabiani, M. Atanasov, and H. Darabi,

“An enhanced Bayesian network model for prediction of students’ aca-

demic performance in engineering programs,” in Proc. IEEE Global Eng.

Educ. Conf. (EDUCON), Apr. 2014, pp. 832-837.

[4] F. Karim, S. Majumdar, H. Darabi, and S. Harford. (2018). “Multi-
variate LSTM-FCNs for time series classification.” [Online]. Available:
https://arxiv.org/abs/1801.04503

[5] L. Wei and E. Keogh, “Semi-supervised time series classification,” in
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2006,
pp. 748-753.

[6] J. W. Taylor, P. E. McSharry, and R. Buizza, “Wind power density fore-
casting using ensemble predictions and time series models,” I[EEE Trans.
Sustain. Energy, vol. 24, no. 3, pp. 775-782, Sep. 2009.

[7]1 R.S.Tsay, Analysis of Financial Time Series, vol. 543. Hoboken, NJ, USA:

Wiley, 2005.

K. Sternickel, “‘Automatic pattern recognition in ECG time series,” Com-

put. Methods Programs Biomed., vol. 68, no. 2, pp. 109-115, 2002.

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing

for nonlinearity in time series: The method of surrogate data,” Phys. D,

Nonlinear Phenomena, vol. 58, nos. 1-4, pp. 77-94, 1992.

[10] E. A. Maharaj, P. D’Urso, and J. Caiado, Time Series Clustering and
Classification. Boca Raton, FL, USA: CRC Press, 2019.

[11] C. Lea, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolutional
networks: A unified approach to action segmentation,” in Computer Vision
(Lecture Notes in Computer Science). Amsterdam, The Netherlands:
Springer, 2016, pp. 47-54.

[12] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana, ‘‘Fast
time series classification using numerosity reduction,” in Proc. 23rd Int.
Conf. Mach. Learn., 2006, pp. 1033-1040.

[13] B.J. Jain and D. Schultz, “Asymmetric learning vector quantization for
efficient nearest neighbor classification in dynamic time warping spaces,”
Pattern Recognit., vol. 76, pp. 349-366, Apr. 2018.

[14] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in
sequence databases,” in Proc. Int. Conf. Found. Data Org. Algorithms.
Berlin, Germany: Springer, 1993, pp. 69-84.

3

[l

[8

—

9

—

VOLUME 7, 2019

F. Karim et al.: Insights Into LSTM Fully Convolutional Networks for Time Series Classification

IEEE Access

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]
[36]
[37]
[38]

[39]

[40]

E. Keogh and S. Kasetty, “On the need for time series data mining
benchmarks: A survey and empirical demonstration,” Data Mining Knowl.
Discovery, vol. 7, no. 4, pp. 349-371, Oct. 2003.

Y. Chen et al. (Jul. 2015). The UCR Time Series Classification Archive.
[Online]. Available: https://www.cs.ucr.edu/~eamonn/time_series_data/
H. A. Dau et al. (Oct. 2018). The UCR Time Series Classification
Archive. [Online]. Available: https://www.cs.ucr.edu/~eamonn/time_series
_data_2018/

J. Lin, E. Keogh, L. Wei, and S. Lonardi, ‘““Experiencing SAX: A novel
symbolic representation of time series,” Data Mining Knowl. Discovery,
vol. 15, no. 2, pp. 107-144, Apr. 2007.

M. G. Baydogan, G. Runger, and E. Tuv, “A bag-of-features framework
to classify time series,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 11, pp. 2796-2802, Nov. 2013.

P. Schifer, “The BOSS is concerned with time series classification in
the presence of noise,” Data Mining Knowl. Discovery, vol. 29, no. 6,
pp. 1505-1530, Sep. 2014.

P. Schifer, “Scalable time series classification,” Data Mining Knowl.
Discovery, vol. 30, no. 5, pp. 1273-1298, 2016.

P. Schifer and U. Leser. (2017). “Fast and accurate time series clas-
sification with WEASEL.” [Online]. Available: https://arxiv.org/abs/
1701.07681

J. Lines and A. Bagnall, “Time series classification with ensembles of
elastic distance measures,” Data Mining Knowl. Discovery, vol. 29, no. 3,
pp. 565-592, Jun. 2014.

A. Bagnall, J. Lines, J. Hills, and A. Bostrom, ‘“Time-series classification
with COTE: The collective of transformation-based ensembles,” IEEE
Trans. Knowl. Data Eng., vol. 27, no. 9, pp. 2522-2535, Sep. 2015.

Z. Cui, W. Chen, and Y. Chen. (2016). “Multi-scale convolutional neural
networks for time series classification.” [Online]. Available: https://arxiv.
org/abs/1603.06995

Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), May 2017, pp. 1578-1585.

F. Karim, S. Majumdar, H. Darabi, and S. Chen, “LSTM fully convo-
lutional networks for time series classification,” IEEE Access, vol. 6,
pp. 1662-1669, 2017.

Y. Kim, J. Sa, Y. Chung, D. Park, and S. Lee, ‘“Resource-efficient pet dog
sound events classification using LSTM-FCN based on time-series data,”
Sensors, vol. 18, no. 11, p. 4019, 2018.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. 32nd Int. Conf. Int.
Conf. Mach. Learn., 2015, pp. 448-456.

L. Trottier, P. Giguere, and B. Chaib-Draa. (May 2016). ‘“‘Parametric
exponential linear unit for deep convolutional neural networks.” [Online].
Auvailable: https://arxiv.org/abs/1605.09332

R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. (2013). “How to con-
struct deep recurrent neural networks.” [Online]. Available: https:/arxiv.
org/abs/1312.6026

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

A. Graves et al., Supervised Sequence Labelling with Recurrent Neural
Networks, vol. 385. Springer, 2012.

K. Cho et al. (2014). “Learning phrase representations using RNN
encoder-decoder for statistical machine translation.” [Online]. Available:
https://arxiv.org/abs/1406.1078

G. King and L. Zeng, “Logistic regression in rare events data,” Political
Anal., vol. 9, no. 2, pp. 137-163, May 2001.

F. Chollet et al. (2015). Keras. [Online]. Available: https://github.com/
fchollet/keras

M. Abadi et al.. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. [Online]. Available: https://www.tensorflow.org/
D. P. Kingma and J. Ba. (2014). “Adam: A method for stochastic optimiza-
tion.” [Online]. Available: https://arxiv.org/abs/1412.6980

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Adv. Neu-
ral Inf. Process. Syst., F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran Associates, 2012,
pp. 1097-1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in Proc.
IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1026-1034.

VOLUME 7, 2019

[41] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818-2826.

[42] C. Szegedy, S. loffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proc. AAAI vol. 4,2017, p. 12.

[43] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7132-7141.

[44] F. Wilcoxon and R. A. Wilcox, Some Rapid Approximate Statistical Pro-
cedures. Wayne, NJ, USA: Lederle Laboratories, 1964.

[45] H. Abdi, “The Bonferonni and Siddk corrections for multiple compar-
isons,” Encyclopedia of Measurement and Statistics, vol. 3, 1st ed. New-
bury Park, CA, USA: SAGE, 2007, pp. 103-107.

[46] P. Schifer and U. Leser. (2017). “Fast and accurate time series clas-
sification with WEASEL.” [Online]. Available: https://arxiv.org/abs/
1701.07681

[47] N.Elsayed, A. S. Maida, and M. Bayoumi. (2018). “Deep gated recurrent
and convolutional network hybrid model for univariate time series classi-
fication.” [Online]. Available: https://arxiv.org/abs/1812.07683

FAZLE KARIM received the B.Sc. degree in indus-
trial engineering from the University of Illinois
at Urbana—Champaign, in 2012, and the M.Sc.
degree in industrial engineering from the Uni-
versity of Illinois at Chicago, in 2016, where he
is currently pursuing the Ph.D. degree with the
Mechanical and Industrial Engineering Depart-
ment.

He is also a Researcher with the Prominent Lab-
oratory, the university’s foremost research facility
in process mining. His current research interests include education data
mining, health care data mining, time series analysis, and adversarial attacks.

SOMSHUBRA MAJUMDAR received the B.S.
degree in computer engineering from the Univer-
sity of Mumbai, in 2016. He is currently pursu-
ing the M.S. degree in computer science from
the University of Illinois at Chicago. He is also
an aspiring artificial intelligence Researcher with
the University of Mumbai. His current research
interests include the domain of image classifica-
tion and segmentation using convolutional neural
networks, time series classification using recurrent
neural networks, and machine learning.

HOUSHANG DARABI (S’98-A’00-M’10-
SM’14) received the Ph.D. degree in industrial
and systems engineering from Rutgers University,
New Brunswick, NJ, USA, in 2000.

He is currently an Associate Professor with the
Department of Mechanical and Industrial Engi-
neering, University of Illinois at Chicago (UIC),
and also an Associate Professor with the Depart-
ment of Computer Science, UIC. He has been a
contributing author of two books in the areas of
scalable enterprise systems and reconfigurable discrete event systems. His
research has been supported by several federal and private agencies, such
as the National Science Foundation, the National Institute of Standard and
Technology, the Department of Energy, and Motorola. He has extensively
published on various automation and project management subjects, including
wireless sensory networks for location sensing, planning and management
of projects with tasks requiring multi-mode resources, and workflow mod-
eling and management. He has published in different prestigious journals
and conference proceedings, such as the IEEE TRANSACTIONS oN RoBorics
AND AutoMaTiON, the TEEE TRANSACTIONS ON AUTOMATION SCIENCE AND
ENGINEERING, and the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS,
and Information Sciences. His current research interests include the applica-
tion of data mining, process mining, and optimization in design and analysis
of manufacturing, business, project management, and workflow management
systems.

67725

	INTRODUCTION
	BACKGROUND REVIEW
	TEMPORAL CONVOLUTIONS NETWORKS
	RECURRENT NEURAL NETWORKS
	LONG SHORT-TERM MEMORY RNNs
	GATED RECURRENT UNIT
	FULLY CONNECTED (DENSE) LAYER

	EXPERIMENTS
	DATASET ABLATION TEST
	MODEL ABLATION TESTS
	FULLY CONVOLUTIONAL BLOCK
	LSTM/ALSTM RECURRENT BLOCK
	LSTM/ALSTM CONCATENATED WITH FCN BLOCK
	DIMENSION SHUFFLE vs NO DIMENSION SHUFFLE
	REPLACING LSTM WITH GRU, RNN, AND A DENSE LAYER

	CONCLUSION & FUTURE WORK
	REFERENCES
	Biographies
	FAZLE KARIM
	SOMSHUBRA MAJUMDAR
	HOUSHANG DARABI

