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ABSTRACT Fully convolutional neural networks (FCNs) have been shown to achieve the state-of-the-
art performance on the task of classifying time series sequences. We propose the augmentation of fully
convolutional networks with long short term memory recurrent neural network (LSTM RNN) sub-modules
for time series classification. Our proposed models significantly enhance the performance of fully convo-
lutional networks with a nominal increase in model size and require minimal preprocessing of the data set.
The proposed long short term memory fully convolutional network (LSTM-FCN) achieves the state-of-the-
art performance compared with others. We also explore the usage of attention mechanism to improve time
series classification with the attention long short term memory fully convolutional network (ALSTM-FCN).
The attention mechanism allows one to visualize the decision process of the LSTM cell. Furthermore, we
propose refinement as a method to enhance the performance of trained models. An overall analysis of the
performance of our model is provided and compared with other techniques.

INDEX TERMS Convolutional neural network, long short term memory recurrent neural network, time
series classification.

I. INTRODUCTION
Over the past decade, there has been an increased interest in
time series classification. Time series data is ubiquitous [1],
existing in weather readings [2], financial recordings [3],
industrial observations [4], and psychological signals [5], [6].
Several approaches, including feature-based [7], ensem-
bles [8]–[10], and deep learning [11], [12], have been utilized
to classify time series. Deep learning has been successfully
utilized in various applications that require time series data,
especially in control systems [13], [14]. In this paper, two
deep learning models to classify time series datasets are
proposed, both of which outperform existing state-of-the-art
models and do not require heavy preprocessing.

A plethora of research has been done using feature-based
approaches or methods to extract a set of features that rep-
resent time series patterns. Bag-of-Words (BoW) [15], Bag-
of-features (TSBF) [16], Bag-of-SFA-Symbols (BOSS) [17],
BOSSVS [18], and Word ExtrAction for time Series cLas-
sification (WEASEL) [19] have obtained promising results
in the field. Bag-of-words quantizes the extracted features
and feeds the BoW into a classifier. TSBF extracts multiple
subsequences of random local information, which a super-
vised learner condenses into a cookbook used to predict time
series labels. BOSS introduces a combination of a distance

based classifier and histograms. The histograms represent
substructures of a time series that are created using a sym-
bolic Fourier approximation. BOSSVS extends this method
by proposing a vector space model to reduce time complex-
ity while maintaining performance. WEASEL converts time
series into feature vectors using a sliding window. Machine
learning algorithms utilize these feature vectors to detect and
classify the time series. All these classifiers require heavy
feature extraction and feature engineering. Using multiple
of these feature-based algorithms as an ensemble algorithm
yields better results.

Ensemble algorithms also yield state-of-the-art perfor-
mance with time series classification problems. Three of the
most successful ensemble algorithms that integrate various
features of a time series are Proportional Elastic Ensem-
ble (PROP) [20], a model that integrates 11 time series
classifiers using a weighted ensemble method, shapelet
ensemble (SE) [8], a model that applies a heterogeneous
ensemble onto transformed shapelets, and a flat collective of
transform based ensembles (COTE) [8], a model that fuses
35 various classifiers into a single classifier.

Recently, deep neural networks have been employed
for time series classification tasks. Multi-scale convolu-
tional neural network (MCNN) [12], fully convolutional
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network (FCN) [11], and residual network (ResNet) [11] are
deep learning approaches that take advantage of convolu-
tional neural networks (CNN) for end-to-end classification
of univariate time series. MCNN uses down-sampling, skip
sampling and sliding window to preprocess the data. The
performance of the MCNN classifier is highly dependent on
the preprocessing applied to the dataset and the tuning of a
large set of hyperparameters of that model. On the other hand,
FCN and ResNet do not require any heavy preprocessing on
the data or feature engineering.

In this paper, we improve the performance of FCN by
augmenting the FCN module with either a Long Short
Term Recurrent Neural Network (LSTM RNN) sub-module,
called LSTM-FCN, or a LSTM RNN with attention, called
ALSTM-FCN. In addition, the Attention LSTM can also
be used detect regions of the input sequence that contribute
to the class label through the context vector of the Atten-
tion LSTM cells. Results indicate the new proposed models,
LSTM-FCN and ALSTM-FCN, dramatically improve per-
formance on the University of California Riverside (UCR)
Benchmark datasets [21]. LSTM-FCN and ALSTM-FCN
produce better results than several state-of-the-art algorithms
on a majority of the UCR Benchmark datasets.

This paper proposes two deep learning models for end-
to-end time series classification. The proposed models do
not require heavy preprocessing on the data or feature engi-
neering. Both the models are tested on all 85 UCR time
series benchmarks and outperform most of the state-of-the-
art models. The remainder of the paper is organized as fol-
lows. Section II reviews the background work. Section III
presents the architecture of the proposed models. Section IV
analyzes and discusses the experiments performed. Finally,
conclusions are drawn in Section V.

II. BACKGROUND WORKS
A. TEMPORAL CONVOLUTIONS
The input to a Temporal Convolutional Network is generally
a time series signal. As stated in Lea et al. [22], let Xt ∈ RF0

be the input feature vector of length F0 for time step t for 0 <
t ≤ T . Note that the time T may vary for each sequence, and
we denote the number of time steps in each layer as Tl . The
true action label for each frame is given by yt ∈ {1, . . . ,C},
where C is the number of classes.

Consider L convolutional layers. We apply a set of 1D
filters on each of these layers that capture how the input
signals evolve over the course of an action. According to
Lea et al. [22], the filters for each layer are parameterized
by tensor W (l)

∈ RFl×d×Fl−1 and biases b(l) ∈ RFl , where
l ∈ {1, . . . ,L} is the layer index and d is the filter duration.
For the l-th layer, the i-th component of the (unnormalized)
activation Ê(l)

t ∈ RFl is a function of the incoming (normal-
ized) activation matrix E (l−1)

∈ RFl−1×Tl−1 from the previous
layer

Ê(l)
i,t = f

(
b(l)i +

d∑
t ′=1

〈
W (l)
i,t ′,.,E

(l−1)
.,t+d−t ′

〉)
(1)

for each time t where f (·) is a Rectified Linear Unit.

We use Temporal Convolutional Networks as a feature
extraction module in a Fully Convolutional Network (FCN)
branch. A basic convolution block consists of a convolution
layer, followed by batch normalization [23], followed by an
activation function, which can be either a Rectified Linear
Unit or a Parametric Rectified Linear Unit [24].

B. RECURRENT NEURAL NETWORKS
Recurrent Neural Networks, often shortened to RNNs, are a
class of neural networks which exhibit temporal behaviour
due to directed connections between units of an individual
layer. As reported by Pascanu et al. [25], recurrent neural
networks maintain a hidden vector h, which is updated at time
step t as follows:

ht = tanh(Wht−1 + Ixt ), (2)

tanh is the hyperbolic tangent function, W is the recurrent
weight matrix and I is a projection matrix. The hidden state h
is used to make a prediction

yt = softmax(Wht−1), (3)

softmax provides a normalized probability distribution over
the possible classes, σ is the logistic sigmoid function and
W is a weight matrix. By using h as the input to another RNN,
we can stack RNNs, creating deeper architectures

hlt = σ (Whlt−1 + Ihl−1t ). (4)

C. LONG SHORT-TERM MEMORY RNNs
Long short-term memory recurrent neural networks are an
improvement over the general recurrent neural networks,
which possess a vanishing gradient problem. As stated in
Hochreiter and Schmidhuber [26], LSTM RNNs address the
vanishing gradient problem commonly found in ordinary
recurrent neural networks by incorporating gating functions
into their state dynamics. At each time step, an LSTM main-
tains a hidden vector h and a memory vector m responsible
for controlling state updates and outputs. More concretely,
Graves et al. [27] define the computation at time step t as
follows :

gu = σ (Wuht−1 + Iuxt )

gf = σ (Wf ht−1 + If xt )

go = σ (Woht−1 + Ioxt )

gc = tanh(Wcht−1 + Icxt )

mt = gf �mt−1 + gu � gc

ht = tanh(go �mt ) (5)

where σ is the logistic sigmoid function, � represents
elementwise multiplication, Wu,Wf ,Wo,Wc are recurrent
weight matrices and Iu, If , Io, Ic are projection matrices.

While LSTMs possess the ability to learn temporal depen-
dencies in sequences, they have difficulty with long term
dependencies in long sequences. The attention mechanism
proposed by Bahdanau et al. [28] can help the LSTM RNN
learn these dependencies.
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FIGURE 1. The LSTM-FCN architecture. LSTM cells can be replaced by Attention LSTM cells to construct the ALSTM-FCN
architecture.

D. ATTENTION MECHANISM
The attention mechanism is a technique often used in neural
translation of text, where a context vectorC is conditioned on
the target sequence y. As discussed in Bahdanau et al. [28],
the context vector ci depends on a sequence of annotations
(h1, ..., hTx ) to which an encoder maps the input sequence.
Each annotation hi contains information about the whole
input sequence with a strong focus on the parts surrounding
the i-th word of the input sequence.

The context vector ci is then computed as a weighted sum
of these annotations hi:

ci =
Tx∑
j=1

αijhj. (6)

The weight αij of each annotation hj is computed by :

αij =
exp(eij)∑Tx
k=1 exp(eik )

(7)

where eij = a(si−1, hj) is an alignment model, which scores
howwell the input around position j and the output at position
imatch. The score is based on the RNN hidden state siâĹ′1 and
the j-th annotation hj of the input sentence.

Bahdanau et al. [28] parametrize the alignment model a as
a feedforward neural network which is jointly trained with
all the other components of the model. The alignment model
directly computes a soft alignment, which allows the gradient
of the cost function to be backpropagated.

III. LSTM FULLY CONVOLUTIONAL NETWORK
A. NETWORK ARCHITECTURE
Temporal convolutions have proven to be an effective learn-
ing model for time series classification problems [11]. Fully
Convolutional Networks, comprised of temporal convolu-
tions, are typically used as feature extractors. Global average

pooling [29] is used to reduce the number of parameters in
the model prior to classification. In the proposed models, the
fully convolutional block is augmented by an LSTM block
followed by dropout [30], as shown in Figure 1.

The fully convolutional block consists of three stacked
temporal convolutional blocks with filter sizes of 128, 256,
and 128 respectively. Each convolutional block is iden-
tical to the convolution block in the CNN architecture
proposed by Wang et al. [11]. Each block consists of
a temporal convolutional layer, which is accompanied by
batch normalization [23] (momentum of 0.99, epsilon of
0.001) and followed by a ReLU activation function. Finally,
global average pooling is applied after the final convolution
block.

Simultaneously, the time series input is conveyed into a
dimension shuffle layer (explained more in Section III-B).
The transformed time series from the dimension shuffle is
then passed into the LSTM block. The LSTM block, com-
prising of either a general LSTM layer or an Attention LSTM
layer, is followed by a dropout. The output of the global
pooling layer and the LSTMblock is concatenated and passed
onto a softmax classification layer.

B. NETWORK INPUT
The fully convolutional block and LSTM block perceive the
same time series input in two different views. The fully
convolutional block views the time series as a univariate time
series with multiple time steps. If there is a time series of
length N , the fully convolutional block will receive the data
in N time steps.
In contrast, the LSTM block in the proposed architecture

receives the input time series as a multivariate time series
with a single time step. This is accomplished by the dimen-
sion shuffle layer, which transposes the temporal dimension
of the time series. A univariate time series of length N ,
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FIGURE 2. Visualization of context vector on CBF dataset.

Algorithm 1 Refinement
1: for i < K do
2: modelweights← initial_modelweights
3: Train(model, initial_lr, batchsize)
4: initial_modelweights← modelweights
5: i← i+ 1
6: initial_lr ← updateLearningRate(initial_lr, i)
7: batchsize← updateBatchsize(batchsize, i)

after transformation, will be viewed as a multivariate time
series (having N variables) with a single time step. With-
out the dimension shuffle, the performance of the LSTM
block is significantly reduced due to the rapid overfitting
of small short-sequence UCR datasets and a failure to learn
long term dependencies in the larger long-sequence UCR
datasets.

In addition, dimension shuffle improves the efficiency of
this model by requiring an order of magnitude less time to
train. When a dataset of N time steps and M variables use a
LSTM without dimension shuffling, the LSTM will require
N time steps to process a batch of M variables. In contrast,
applying the dimension shuffle to the input will allow the
LSTM model to process a batch of N variables in M time
steps. This suggests that as long as the number of variables
M is significantly smaller than the number of time steps N,
dimension shuffle will greatly improve the speed of training.
As each of the UCR datasets is univariate, the LSTM compo-
nent of this model will require only 1 time step to process a
batch of N variables.

To illustrate this, a total of 18 hours is required on
a single GTX 1080 Ti to train an LSTM-FCN for each
of the 85 UCR datasets, and 19 hours for ALSTM-FCN.

Without the dimension shuffle, it would take more than
100 hours to train the respective models on all 85 UCR
datasets.

C. REFINEMENT OF MODELS
Transfer learning is a technique wherein the knowledge
gained from training a model on a dataset can be reused
when training the model on another dataset, such that the
domain of the new dataset has some similarity with the
prior domain [31]. Similarly, we propose refinement, which
can be can be described as transfer learning on the same
dataset.

The training procedure can thus be split into two distinct
phases. In the initial phase, the optimal hyperparameters for
the model are selected for a given dataset. The model is
then trained on the given dataset with these hyperparameter
settings. In the second step, we apply refinement to this initial
model.

The procedure of transfer learning is iterated over in the
refinement phase, using the original dataset. Each repetition
is initialized using the model weight of the previous iteration.
At each iteration the learning rate is halved. Furthermore, the
batch size is halved once every alternate iteration. This is done
until the initial learning rate is 1e−4 and batch size is 32.
The procedure is repeated K times, where K is an arbitrary
constant, generally set as 5.
Refinement is a procedure which successively attempts to

improve the performance of a pre-trained model. As dis-
cussed by Huang et al. [32], multiple local minima lie along
the optimization path of amodel. Once amodel has converged
to some local minima during its initial training phase, it can
be re-trained using a larger learning rate to escape the previ-
ous minima and hopefully land upon a better local minima.
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TABLE 1. Performance comparison of proposed models with the rest.

Re-training while simultaneously reducing the learning rate
and batch size allows for a more refined search to the best
local optima.

FIGURE 3. Critical difference diagram of the arithmetic means of
the ranks.

IV. EXPERIMENTS
The proposed models have been tested on all 85 UCR
time series datasets [21]. The FCN block was kept constant
throughout all experiments. The optimal number of LSTM
cells was found by hyperparameter search over a range of
8 cells to 128 cells. The number of training epochs was
generally kept constant at 2000 epochs, but was increased
for datasets where the algorithm required a longer time to
converge. Initial batch size of 128 was used, and halved
for each successive iteration of the refinement algorithm.
A high dropout rate of 80% was used after the LSTM or
Attention LSTM layer to combat overfitting. Class imbal-
ance was handled via a class weighing scheme inspired by
King and Zeng [33]. All models were trained using the
Keras [34] library with the TensorFlow [35] backend.

All models were trained via the Adam optimizer [36], with
an initial learning rate of 1e−3 and a final learning rate
of 1e−4. All convolution kernels were initialized with the
initialization proposed by He et al. [37]. The learning rate
was reduced by a factor of 1/ 3√2 every 100 epochs of no
improvement in the validation score, until the final learning
rate was reached. No additional preprocessing was done on
the UCR datasets as they have close to zero mean and unit
variance. All models were refined. Scores stated in Table 1
refer to the scores obtained by models prior to and after
refinement.1

A. EVALUATION METRICS
In this paper, the proposed model was evaluated using accu-
racy, rank based statistics, and the mean per class error as
stated by Wang et al. [11].
The rank-based evaluations used are the arithmetic rank,

geometric rank, and the Wilcoxon signed rank test. The arith-
metic rank is the arithmetic mean of the rank of dataset. The
geometric rank is the geometric mean of the rank of each
dataset. The Wilcoxson signed rank test is used to compare
the median rank of the proposed model and the existing
state-of-the-art models. The null hypothesis and alternative
hypothesis are as follows:

Ho : Medianproposed model = Medianstate−of−the−art model

1The codes and weights of each models are available at https://
github.com/houshd/LSTM-FCNhttps://github.com/houshd/LSTM-FCN
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TABLE 2. Wilcoxon signed rank test comparison of each model.

Ha : Medianproposed model 6= Medianstate−of−the−art model

Mean Per Class Error (MPCE) is defined as the arithmetic
mean of the per class error (PCE),

PCEk =
1− accuracy

number of unique classes

MPCE =
1
K

∑
PCEK .

B. RESULTS
Figure 2 is an example of the visual representation of the
Attention LSTM cell on the ‘‘CBF’’ dataset. The points in
the figure where the sequences are ‘‘squeezed’’ together are
points at which all the classes have the same weight. These
are the points in the time series at which the Attention LSTM
can correctly identify the class. This is further supported by
visual inspection of the actual time series. The squeeze points
are points where each of the classes can be distinguished from
each other, as shown in Figure 2.

The performance of the proposed models on the UCR
datasets are summarized in Table 1. The colored cells are cells
that outperform the state-of-the-art model for that dataset.
Both proposed models, the ALSTM-FCN model and the
LSTM-FCN model, with both phases, without refinement
(Phase 1) and with refinement (Phase 2), outperforms the
state-of-the-art models in at least 43 datasets. The average
arithmetic rank in Figure 3 indicates the superiority of our
proposed models over the existing state-of-the-art models.
This is further validated using the Wilcoxon signed rank test,
where the p-value of each of the proposed models are less
than 0.05 when compared to existing state-of-the-art models,
Table 2.

The Wilcoxon Signed Test also provides evidence that
refinement maintains or improves the overall accuracy on
each of the proposed models. The MPCE of the LSTM-FCN
and ALSTM-FCNmodels was found to reduce by 0.0035 and
0.0007 respectivelywhen refinementwas applied.Refinement
improves the accuracy of the LSTM-FCNmodels on a greater
number of datasets as compared to the ALSTM-FCNmodels.
We postulate that this discrepancy is due to the fact that the

2Green cells designate instances where our performance matches or
exceeds state-of-the-art results. * denotes model with best performance.

TABLE 3. Summary of advantages of the proposed models.

LSTM-FCN model contains fewer total parameters than the
ALSTM-FCN model. This indicates a lower rate of over-
fitting on the UCR datasets. As a consequence, refinement
is more effective on the LSTM-FCN models for the UCR
datasets.

A significant drawback of refinement is that it requires
more training time due to the added computational com-
plexity of re-training the model using smaller batch sizes.
The disadvantages of refinement are mitigated when using
the ALSTM-FCN within Phase 1. At the end of Phase 1,
the ALSTM-FCN model outperforms the Phase 1 LSTM-
FCN model. One of the major advantage of using the Atten-
tion LSTM cell is it provides a visual representation of the
attention vector. The Attention LSTM also benefits from
refinement, but the effect is less significant as compared to
the general LSTM model. A summary of the performance
of each model type on certain characteristics is provided
on Table 3.

V. CONCLUSION & FUTURE WORK
With the proposedmodels, we achieve a notable improvement
on the current state-of-the-art for time series classification
using deep neural networks. Our baseline models, with and
without refinement, are trainable end-to-end with nominal
preprocessing and are able to achieve significantly improved
performance. LSTM-FCNs are able to augment FCN mod-
els, appreciably increasing their performance with a nominal
increase in the number of parameters. ALSTM-FCNs enable
one to visually inspect the decision process of the LSTM
RNN and provide a strong baseline on their own. Refinement
can be applied as a general procedure to a model to further
elevate its performance. The strong increase in performance
in comparison to the FCN models shows that LSTM RNNs
can beneficially supplement the performance of FCN mod-
ules for time series classification. An overall analysis of the
performance of our model is provided and compared to other
techniques.
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Due to the generality of the input to this model, it has wide
ranging applicability on several sequence modelling tasks
such as text analysis, music recognition and voice detection.
Furthermore, due to its small size and efficiency, it can be
easily deployed to real time systems or embedded systems.
Additional research is to be done on understanding why the
Attention LSTM cell is unsuccessful in matching the perfor-
mance of the general LSTM cell on some of the datasets.
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