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Body segment parameters such as segment mass, center of mass, and radius of gyration are used as inputs
in static and dynamic ergonomic and biomechanical models used to predict joint and muscle forces, and
to assess risks of musculoskeletal injury. Previous work has predicted body segment parameters (BSPs) in
the general population using age and obesity levels as statistical predictors (Merrill et al., 2017).

Keywords: Estimated errors in the prediction of BSPs can be as large as 40%, depending on age, and the prediction
ggs ind method employed (Durkin and Dowling, 2003). Thus, more accurate and representative segment param-
A(r)ltli,rg::fr;lentr;)( eter inputs are required for attempting to predict modeling outputs such as joint contact forces, muscle

forces, and injury risk in individuals. This study aims to provide statistical models for predicting torso,
thigh, shank, upper arm, and forearm segment parameters in working adults using whole body dual
energy x-ray absorptiometry (DXA) scan data along with a set of anthropometric measurements. The sta-
tistical models were developed on a training data set, and independently validated on a separate test data
set. The predicted BSPs in validation data were, on average, within 5% of the actual in vivo DXA-based
BSPs, while previously developed predictions (de Leva, 1996) had average errors of up to 60%, indicating
that the new models greatly increase the accuracy in predicting segment parameters. These final devel-
oped models can be used for calculating representative BSPs in individuals for use in modeling applica-
tions dependent on these parameters.

Body segment parameters

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Body segment parameters (BSPs), which include the length, seg-
ment mass, center of mass (COM), and radius of gyration (Rg) of
body parts, are used in human factors and ergonomics, as well as
biomechanical modeling applications. These applications include
the design of tools, protective clothing, equipment, and worksta-
tions (Chaffin et al., 2006) based on segment size and ranges of
motion, while static models such as the 3D Static Strength Predic-
tion Model are dependent on segment position, length, mass, and
COM inputs (Chaffin and Muzaffer, 1991). Inverse dynamics mod-
els use these segment position, length, and mass inputs, in addition
to the segment inertial properties and dynamic data in order to

* Corresponding author at: Department of Bioengineering, 301 Schenley Place,
4420 Bayard St., Pittsburgh, PA 15213, USA.
E-mail address: zfm1@pitt.edu (Z. Merrill).

https://doi.org/10.1016/j.jbiomech.2019.109349
0021-9290/© 2019 Elsevier Ltd. All rights reserved.

determine joint contact forces and moments, along with the
related injury risk in individuals during a specified task.

Previously developed approaches used to estimate BSPs are dis-
cussed in detail in Merrill et al (2019), including the limitations of
these methodologies. For brevity purposes, only a summary is pro-
vided here. These BSP estimation approaches include regression
equations from cadaver data (Chandler et al., 1975; Dempster,
1955), imaging techniques (de Leva, 1996), geometric modeling
of the body (Pavol et al., 2002), inverse dynamics analyses
(Hansen et al.,, 2014), static force plate analyses (Chen et al,,
2011; Damavandi et al., 2009) and photographic analysis (Jensen,
1978; Sanders et al., 2015). Methods have also been developed uti-
lizing individual anthropometric measurements in order to predict
whole body COM position (Erdmann and Kowalczyk, 2015), as well
as BSPs of all major body parts (Hatze, 1980).

The accuracy of the estimated BSPs can significantly impact the
validity of biomechanical tools needing these sets of anthropomet-
ric data. For example, inverse dynamics models related to lifting
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and associated injury risk have been shown to be sensitive to
errors in estimated COM position, joint rotation center location,
length, and segment mass values (de Looze et al., 1992a; de
Looze et al., 1992b; Desjardins et al., 1998). Other dynamic analy-
ses, such as those used for knee and hip kinematic calculations
during gait, depend on the set of BSP data used, both in normal
and overweight adults, with differences as large as 60% (Pearsall
and Costigan, 1999; Rao et al., 2006). These large differences can
negatively impact the ability to predict injury risk, and reflect the
need for accurate segment parameter inputs representative of
the populations of interest or individuals being studied (Chaffin
and Muzaffer, 1991; Marras et al., 1993). Comparisons of predicted
parameters can indeed vary by up to 40% due to effects of age, and
the specific prediction method used (Durkin and Dowling, 2003).
Because predictive methods separately study different population
segments, such as normal weight young adults (de Leva, 1996) or
older adults (Hughes et al., 2004; Kuczmarski et al., 2000; Pavol
et al., 2002), they do not account for the wide ranges of age and
body mass index (BMI) in the larger population.

Our previous work has quantified associations of age and BMI
with BSPs in American adults (Merrill et al., 2017; Merrill et al.,
2019). These associations were statistically and practically signifi-
cant, and thus justify the need for BSP predictive data sets that
reflect the effects of age and obesity. In the current study, the goal
is to develop and validate multiple regression predictive models to
accurately estimate BSPs by adding individual-level predictors.
Thus, we exploited these known age, BMI, and BSP relationships
with the inclusion of individual anthropometric measurements.
The statistical models were developed and independently vali-

Table 1

dated on a population of American adult workers covering wide
age and obesity ranges, and the developed models can be used
for calculating representative BSPs in individuals.

2. Methods

The study was approved by the University of Pittsburgh Institu-
tional Review Board. A total of 280 working adults participated.
Recruitment was stratified by age group, BMI group and gender
in an attempt to represent all sections of the working population.
More specifically, working men and women were recruited in
approximately equal numbers in four BMI categories (normal
weight: 18.5 < BMI < 25.0, overweight: 25.0 < BMI < 30.0, obese:
30.0 < BMI < 40.0, and morbidly obese BMI > 40.0 kg m~2) across
three age groups (21 < age < 40), middle (40 < age <55), and old
(55 < age < 70), such that each of the twenty four gender, age,
and BMI subgroups contained approximately the same number of
participants.

After obtaining written informed consent, height and mass
were measured in order to confirm eligibility based on BMI was
confirmed and female participants of child bearing age took a preg-
nancy test, with a negative result being required for continued par-
ticipation. Next, approximately 78 anthropometric measurements
were collected (Table 1). The segment circumferences were col-
lected with a cloth tape measure, while the segment lengths,
widths, and depths were collected with a straight arm anthro-
pometer. Joint width values were collected using a curved arm
anthropometer. All of the arm and leg measurements were col-
lected for both body sides. A whole body DXA scan (Hologic QDR

Anthropometric measurements collected for use as predictive terms in the BSP models. All arm and leg measurements were performed on left and right sides.

Anthropometric variable

Definition

Waist circumference

Hip circumference

Upper thigh circumference
Mid-thigh circumference
Lower thigh circumference
Knee circumference

Calf circumference

Ankle circumference
Upper arm circumference
Elbow circumference
Lower arm circumference
Wrist circumference

Hand thickness

Elbow width

Wrist width

Knee width

Ankle width

Upper arm length

Lower arm length

Thigh length

Shank length

Inter-ASIS distance
Shoulder level trunk width
Breast level trunk width
Mid-breast level trunk width
L3-L4 level trunk width
Shoulder level trunk depth
Breast level trunk depth
Mid-breast level trunk depth
L3-L4 level trunk depth
Shoulder level axis depth
Breast level axis depth
Mid-breast level axis depth
L3-L4 level axis depth

C7 height

Shoulder height

ASIS height

Hip height

Circumference at the umbilicus

Around largest part of the hip

Around proximal thigh

Around point midway between proximal border of patella and inguinal crease
Around thigh1 cm above proximal border of patella

Around medial and lateral femoral epicondyles

Around largest part of calf

Around medial and lateral malleoli

Around midpoint between acromion and olecranon processes
Around medial and lateral humeral epicondyles

Around midpoint between lateral humeral epicondyle and ulnar styloid process
Around radial and ulnar styloid processes

Thickness at center of palm

Distance between medial and lateral humeral epicondyles
Between radial and ulnar styloid processes

Between medial and lateral epicondyles

Between medial and lateral malleoli

Lateral humeral epicondyle to acromion

Ulnar styloid process to lateral humeral epicondyle

Greater trochanter to knee joint center

Knee joint center to lateral malleolus

Between left and right ASIS

Width at shoulder joint center level

Width at nipple level

Width at level midway between nipple and L3-L4

Width at L3-L4 level

Depth at shoulder joint center level

Depth at nipple level

Depth at level midway between nipple and L3-L4

Depth at L3-L4 level

Depth from the shoulder joint center/greater trochanter plane to the back at shoulder joint center level

Depth from the shoulder joint center/greater trochanter plane to the back at nipple level

Depth from the shoulder joint center/greater trochanter plane to the back at level midway between nipple level and L3-L4
Depth from the shoulder joint center/greater trochanter plane to the back at L3-L4

Distance from ground to C7

Distance from ground to shoulder joint center

Distance from ground to ASIS

Distance from ground to greater trochanter
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Fig. 1. Example of a whole body DXA scan prior to division into the segments of
interest. The differences in bone, fat, and lean tissue can be visualized based on the
individual pixel brightness.

1000/W, Bedford, MA, USA) of each participant was then per-
formed using the same methods used and described in prior stud-
ies (Chambers et al.,, 2010), with the participant lying supine
(Fig. 1).

The processing consisted of each scan being split into each
major body segment of interest (torso, left and right upper arm,
forearm, thigh, and shank), defined using bony landmarks and
anatomically defined planes (Chambers et al., 2010), as shown in
Fig. 2. Each segment was then split into 3.9 cm tall slices, perpen-
dicular to the long axes of the bones for the arms and legs, and hor-

o :
(c) (d)

izontal for the torso, in a similar method to that described by
Ganley and Powers (2004). Pixel densities had assumed values of
2.5-3.0 g cm > for bone, 0.9 g cm 3 for fat, and 1.08 g cm > for lean
tissue (Ganley and Powers, 2004). The segment mass, COM and Rg
were then calculated from the known slice heights and masses
using a custom MATLAB script (Mathworks, Natick, MA, USA).
Details regarding the specific parameter calculations from the slice
masses are included in Ganley and Powers (2004) and Merrill et al.
(2019).

For brevity purposes, all reported data for the forearm, upper
arm, thigh, and shank were analyzed on the participants’ self-
reported dominant side. Segment mass was expressed as percent
of the total body mass. COM locations were reported as percent
of the segment length from the proximal (superior for the torso)
segment border, where a higher value indicates that the COM is
located further in the distal (inferior for the torso) direction. The
R¢ values were also expressed as percent of the segment length,
with the Rg location being measured from the calculated COM.

2.1. Statistical analysis

All statistical analyses were stratified due to significant gender
differences and complex interactions of gender with age and BMI
findings, previously reported by our group (Merrill et al., 2019).
For example, males and females demonstrated similar torso BSP
parameter trends with varying age and BMI, in contrast to opposite
trends in thigh COM location as a function of BMI (Merrill et al.,
2019). All fifteen segment parameters of interest (mass, COM,
and Rg for the torso, thigh, shank, upper arm, and forearm) were
checked for normality, then log transformed as necessary before
any further analysis. The full data set of 280 participants was ran-
domly split into two subgroups: the training set, which contained
200 participants, and the testing set, which contained the remain-
ing 80. A multiple regression analysis was performed on the torso,
thigh, shank, upper arm, and forearm segment parameters in the
training subset with a backward elimination strategy for variable
selection and stratified by gender. The initial models contained
age, BMI, age and BMI interaction terms, waist, hip, and neck cir-
cumferences, and all relevant physical measures taken of the body
segment of interest. In each step of the analysis, the predictor with
the largest p-value was removed, and the analysis was repeated.
The process was repeated until the p < 0.10 for all remaining pre-
dictors. All analyses were performed in JMP Pro 12 (SAS Institute,
Cary, NC, USA).

While not direct measurement of all segments, the waist, hip,
and neck circumferences were included to all initial models due
to their relationship with overall body shape and mass distribu-
tion, specifically their ability to define central adiposity, which
when included with BMI, can help describe the relative distribu-

Fig. 2. Segmental boundaries of interest: (a) forearm, (b) upper arm, (c) torso, (d) thigh, (e) shank. During the scan analysis process, each of these segments is separated into a
series of 3 pixel (3.9 cm) tall slices, so that the BSPs can be calculated as described by Ganley and Powers (2004) using the known slice mass and height.



4 Z. Merrill et al./Journal of Biomechanics 96 (2019) 109349

tion of mass throughout the torso and appendages within differing
degrees of obesity. For example, individuals with more central adi-
posity will have higher waist and/or hip circumferences than indi-
viduals with less central adiposity, meaning that at given BMI,
individuals with larger circumferences will have less total and nor-
malized limb mass, along with COM and Rg values more represen-
tative of those seen in less obese individuals.

Once the models were finalized, they were used for prediction
in the independent validation data set, so that the predicted and
actual segment (in-vivo DXA-based) parameters could be com-
pared using the absolute percent error, as well as the root mean
square error (RMSE). The total variability explained by the models
when applied to the testing set (R?), along with the improvements
of these models (AR?) over previously established models using
only age and BMI terms (Merrill et al., 2019) were also reported.
Additionally, the actual testing set values were compared to a com-
monly used segment parameter prediction method (de Leva, 1996)
using the same metrics.

3. Results
3.1. Overview

The final study sample consisted of 280 working adults (148
female) ages 21-70 (mean: 44.9 + 13.4 years). A number of predic-
tors simultaneously remained significant in models for women and
men (Tables 2-6), with all but one (upper arm Rg) of the models
showing improvement over a previously established method
(Merrill et al., 2019) which used only age, BMI, and interaction
terms (Table 7). While not all of the models employed the addi-
tional anthropometric measures, the majority retained age, BMI,
or their interaction terms. The majority of the average prediction
errors and normalized RMSE values were within 5% of the actual
DXA-based values, while the parameter predictions based on the
de Leva (1996) regressions demonstrated higher errors, in some
cases up to 60% of the actual measured values (Table 8).

3.2. Torso

The initial torso models included the following variables as
potential predictors of the torso BSPs (COM, mass and Rg): age,
BMI, their squared and interaction terms in addition to waist,
hip, and neck circumference, torso widths, depths, and axis depths
(Table 1), and the inter-ASIS distance. The final models, following
the stepwise process, identified a number of age- and BMI- related
terms among the statistically significant factors, but also various
anthropometric predictors (Table 2). When including all identified
predictors, the final model explained an average 51% and 74% of
the variability in the torso BSPs in female and male participants
in the training set, respectively. Including the anthropometric fac-
tors explained an additional 13 to 50% of the variability in the torso
BSPs above and beyond that explained by the age- and BMI- related
terms alone (Table 7). Most importantly, when the final regression
models were used to predict the torso BSPs in the test data set, the
normalized RMSE values were less than 5%, and the percent predic-
tion errors (relative to the actual in-vivo DXA-based BSPs) were 3%
or less. In contrast, the percent prediction errors of the delLeva
method ranged between 6% (Torso mass) to 34% (Torso Rg)
(Table 8).

3.3. Thigh

The thigh models initially included neck, waist, hip, knee, and
three thigh circumferences, taken at the upper, middle, and lower
thigh levels (Table 1), as well as knee width and thigh length.

Table 2

Torso center of mass, mass, and radius of gyration multiple regression model estimated coefficients for the final models following the backwards elimination process.

Depth Level

Age?*BMI? Circumference Width Level

Age*BMI  Age*BMI?  Age®*BMI

BMI?

Intercept Age Age? BMI

TORSO

Inter-ASIS

Mid breast L3/L4

Shoulder Breast
—0.149

Mid breast L3/L4

—0.145 0.213

Shoulder Breast

Hip

-0.119 -

Neck

0.105
0.099
-0.336 0.266

0.445

0.102

—0.0445 3.09E-04 -0.203 1.56E-03 - 4.64E-05

COM M 57.325

-0.143

0.0567 -0.105
-0.127 -

2.52E-06

1.66E-04
—4.16E-03 —3.11E-03 5.02E-05

—2.11E-03 -0.614 9.03E-03 -

0.0458

F 62.442
M 120.217
F 37.495
M 39.743
F 33.183

1.050

—-0.536
—-0.295

-0.103 0.167

0.261

-5.333 0.0842

-3.831

M

0.767

0.261

-1.274 9.10E-03 -

—0.0497

—0.0946

0.0261

—-1.09E-04 -

—1.22E-04

—0.347 4.72E-03 5.66E-03 —7.65E-05 -

—0.546 5.38E-03 0.0177

-0.417 3.28E-03

-0.0967 -

-0.0712 -

—0.0483

0.0821
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Table 3

Thigh center of mass, mass, and radius of gyration multiple regression model estimated coefficients for the final models following the backwards elimination process.

THIGH Intercept Age  Age? BMI  BMI? Age*BMI Age*BMI> Age®*BMI  Age?*BMI? Circumference
Neck Waist Hip Upper  Mid Lower Knee
thigh  thigh  thigh
COM M 58572 —-0.438 5.32E-03 -0.264 - 0.0145 - —1.76E-04 - -0.107 - - - - 0.227 -
F 51351 -0.172 2.08E-03 - 1.24E-03 - - - - 0.111 - —0.0947 —-0.0894 - 0.186 -
M M11882 - —1.63E-04 - - - - - - —0.136 —0.0248 - 0.120 - - -
F 32272 -1.346 0.0148 —1.955 0.0262 0.0865 —1.29E-03 —-9.63E-04 1.45E-05 -0.129 - - 0.116 0.115 - 0.0927
Rg M 24421 - - - - - - - - 0.05 - —0.0194 —-0.0331 —-0.0374 - 0.129
F 29.22 —0.196 0.00213 -0.129 - 0.0061 - —6.63E-05 - - - - - -0.056 - 0.0972
Table 4
Shank center of mass, mass, and radius of gyration multiple regression model estimated coefficients for the final models following the backwards elimination process.
SHANK Intercept Age Age? BMI  BMI? Age*BMI Age*BMI? Age>*BMI Age?*BMI?> Shank  Circumference
Length Waist  Hip Knee Calf Ankle Ankle
Width
COM M 39.703 - - - - - - - - - - —0.0341 - - - 0.603
F 46.963 - —1.87E-03 —-0.553 6.75E-03 - - 1.20E-04 —1.78E-06 —-0.110 - - —0.238 0.121 0.480 -
M M 3.663 - —8.45E-05 —0.168 1.00E-03 - - - 8.81E-08 - - -0.0127 - 0.146 - -
F 3.333 —0.0234 - —0.217 1.32E-03 7.27E-04 - - - - - —9.64E-03 - 0.153 0.0508 -
Rg M 32393 - —2.19E-03 -0.281 4.82E-03 - - 1.32E-04 —1.87E-06 0.0372 -0.0132 - 0.0905 -0.183 - 0.170
F 26.146 - - - 4.59E-04 - - - - - -0.0111 - 0.0406 -0.150 0.196 -
Table 5

Upper arm center of mass, mass, and radius of gyration multiple regression model estimated coefficients for the final models following the backwards elimination process.

UPPER  Intercept Age Age? BMI BMI? Age*BMI  Age*BMI? Age**BMI  Age?*BMI?> Upper Circumference
ARM arm Length Waist Hip Elbow Upper Arm
COM M 58.27 -0.229 2.50E-03 - - - - - - - - - - -0.124
F 46.182 - - - - - - - - - -0.0575 - 0337 -
M M -6.28 0.365 —4.02E-03 0.249 - -0.0121 - - 1.33E-04 - -0.0176 - 0.153 -
F 2432 —0.0243 1.07E-04 -0.0346 - 7.55E-04 - - - 0.0376 9.97E-03 -0.027 0.0411 0.0527
Rg M 20.405 - - -0.122 - - - - - - 0.0268 - 0.208 -
F 35.337 —0.385 4.60E-03 -0.418 3.14E-03 0.0120 - —1.43E-04 - - - - - -

Almost all of the models retained at least one of the age or BMI
terms, and all included at least one of the thigh circumference
measurements. For thigh COM, upper and lower thigh circumfer-
ences were both significant predictors, and both genders had a
>20% increase (AR?) in proportion of explained variability (Table 3).
Both genders also had similar AR? for R¢ predictions; however, the
model for females retained almost all of the age, BMI, and interac-
tion terms, while the male model was solely based on circumfer-
ence measurements.

When applied to the test data set, the thigh COM and R; models
had normalized RMSE values below 5%, while the mass RMSE was
much higher, at 11.6% (Table 8). The thigh R mean error was com-
parable to the torso prediction errors, at about 1.1%; however, the
COM and mass predictions were slightly higher, at 3.8 and 7.0%,
respectively. All three of the actual thigh parameters had errors
of 16-38% when predicted with the deLeva methods (Table 8).

3.4. Shank

The shank prediction models started with neck, waist, hip, knee,
calf, and ankle circumferences, as well as knee and ankle widths,
and shank length. With the exception of shank COM in males, all
of the other parameter predictions included at least one BMI term
and calf circumference. In both genders, hip and calf circumfer-
ences were included in the final mass models, while waist, knee,
and calf circumferences were used in the Rg models.

All of the models other than COM in males showed R? increases
of over 0.2 (Table 4), with final R? values over 0.85 for mass in both

genders (Table 7). The predictive power of the anthropometric
model for shank COM in males showed a negligible R? increase
of 0.004 over the previous model using only age and BMI terms.
The model only included hip circumference and ankle width, but
none of the age terms, or any of the other terms generally associ-
ated with obesity, such as BMI or waist or hip circumferences.
When applied to the test data set, the COM and R predictions
were especially accurate, with RMSE under 2.5%, and average
errors of all three shank parameters under 5% (Table 8). Predictions
by deLeva models had greater error, especially for Rg predictions,
with average of over 60%.

3.5. Upper arm

In addition to the age and BMI terms, the upper arm models
started with waist, hip, neck, upper arm, and elbow circumfer-
ences, and elbow width. The final model for predicting mass in
females had an R? of about 0.5 (Table 5); however, all of the other
models had R? of under 0.25. Even though the variance explained
by the models approximately doubled for Rg in males and COM
in females, the overall values still remained under 15%. The models
for mass and R; in males, and mass and COM in females all
included waist and elbow circumferences.

The final model for predicting R¢ in females is notable because
it did not improve over the previous model, which included all of
the age, BMI, quadratic, and interaction terms. None of the anthro-
pometric terms were significant in the final model, and the final R?
ended up slightly less than the previous model because the non-



Table 6

Forearm center of mass, mass, and radius of gyration multiple regression model estimated coefficients for the final models following the backwards elimination process.

Circumference

Forearm Length

BMI BMI? Age*BMI  Age*BMI? Age**BMI  Age?*BMI?

Age?

Age

Intercept

FOREARM

Wrist

Forearm

Elbow

Waist

Hip

0.521

—-0.203
-0.221

-0.168

6.88E—-05

3.03E-03
8.05E-03
-0.010

41.396 —0.0259 1.11E-03 -

M

CoOM

0.0897

0.169

0.690
0.307

~0.0994
~0.144

0.0430
0.0243

0.0460

-0.377
—-0.0145
—8.44E-03

—8.26E-03
—-3.91E-03

0.0160

0.0214

—7.82E-06

5.66E—04

—2.59E-04
6.09E—-04

0.0177
—0.0441

3.35E-04
1.40E-03

—-0.529

0.735
—-0.0913
—0.0409

-0.03

—9.58E-03
4.48E-04

—-0.0397

0.748

-11.193
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significant age, BMI, and interaction terms were removed during
the backward elimination process. While the total variance
explained by the model was under 20% for Rg for both genders,
the RMSE was under 4% when applied to the test data set, with
an average error of less than 3% (Table 8). The upper arm COM pre-
diction also had RMSE of less than 5%, while the mass prediction
had a higher RMSE of about 10%. The errors of deLeva predictions
were again higher, ranging from approximately 17% for COM loca-
tion, to almost 40% for Rg.

3.6. Forearm

The initial model for the forearm included the age and BMI
terms along with waist, hip, neck, forearm, elbow, and wrist cir-
cumferences, wrist and elbow widths, and forearm length. All of
the final models included at least one of the age or BMI terms,
and all except for mass in females included wrist circumference
(Table 6). While the mass predictions had the highest R? values,
they also had larger prediction errors in the test data set, with nor-
malized RMSE of about 9%, and average errors over 7% (Table 8).
COM and Rg predictions were more accurate when applied to the
test data set, with RMSE under 2.5%, and average errors under
2%. The delLeva parameter predictions forearm mass prediction
error was slightly higher than the anthropometric model errors,
at a little over 11%; however, the average error in Rg calculation
was nearly 60%.

4. Discussion

The new prediction models including individual anthropomet-
ric measures in addition to age and BMI terms have increased
the accuracy over previous methods which only considered gender
(de Leva, 1996), while also having the advantage of simplified
requirements for measurement collection compared to other
methods dependent on individual body shape (Erdmann and
Kowalczyk, 2015; Hatze, 1980). These improvements in accuracy
are particularly notable in the torso and thigh segments. The
results show that the inclusion of the neck, waist, and hip circum-
ferences are important to include along with BMI for all segment
parameter predictions because they provide further insight into
how mass is generally distributed throughout the body.

4.1. Torso

The torso parameter predictions in females, particularly COM
and Rg, were found dependent not only on age and BMI factors,
but also on a number of torso width and depth measurements.
While all of the final R? values for the female torso predictions
are above 0.5, the increases are especially notable for mass and
COM predictions (Table 7), indicating that changes in these param-
eters are highly dependent on the torso geometry of the individual.
In contrast to females, the majority of the variation in BSP param-
eters is explained by age and BMI factors, with anthropometric
measurements playing a smaller role in parameter prediction.
One finding worth noting among the body measurement effects
is that for all three of the male torso BSP variables, shoulder level
depth was a highly significant factor (p <0.01), suggesting that
the volume of the top of the torso, independent of tissue composi-
tion (lean or adipose), plays an important role in predicting these
parameters.

4.2. Thigh

In females, the models for thigh COM and Rg retained most of
the age and BMI predictors as being significant, suggesting that
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Table 7

R? values for the final multiple regression models, compared to the values (R3) from the regression models from Merrill (2019), which only account for the associations of the BSPs
with age and BMI. The improvements in variation explained by the new models compared to the previously established regressions (AR?) are provided to demonstrate the

improvement between the sets of models.

Female Torso Torso Torso  Thigh Thigh Thigh  Shank Shank Shank Arm Arm Arm  Forearm Forearm Forearm
COM Mass Rg COM Mass Rg COM Mass Rg COM Mass Rg COM Mass Rg

R? 0.509 0.633 0.677 0.358 0.663 0.242  0.505 0.861 0.441 0.099 0.503 0.181 0.375 0.672 0.320

R} 0.279 0.138 0.563 0.122 0.163 0.049 0304 0.174 0.122  0.046  0.197 0.184 0.249 0.272 0.108

AR? 0.230 0.495 0.114 0.236 0.500 0.193  0.201 0.687 0319 0.053 0.306 —0.003 0.126 0.400 0.212

Male Torso Torso Torso  Thigh Thigh Thigh  Shank Shank Shank  Arm Arm Arm  Forearm Forearm Forearm
COM Mass Rg COM Mass Rg COM Mass Rg COM Mass Rg COM Mass Rg

R? 0.635 0.660 0.739 0.387 0.558 0.570 0.209 0.853 0.622 0.131 0.218 0.133 0338 0.446 0.400

R} 0.506 0.453 0.573 0.107 0.440 0.292  0.205 0.502 0.253 0.114 0.180 0.062 0.174 0.352 0.245

AR? 0.129 0.207 0.166  0.280 0.118 0278 0.004 0.351 0369 0.017 0.038 0.071 0.164 0.094 0.155

Table 8

Root mean square error (RMSE) for the model predictions expressed as a percentage of the actual measured values in the test data set, and their comparison to those of de Leva
(1996). The RMSE functions as a measure of predictive ability of the final models, while the percentage differences serve to demonstrate the relative differences in the BSP terms,

as they would be applied to biomechanical models.

Torso Thigh Shank Arm Forearm

COM Mass Rg COM Mass Rg Mass Rg COM Mass Rg COM Mass Rg
RMSE 1.675 5.241 1.596 4.812 10.951 1.665 2.408 5.681 1.468 4.623 10.032 3.374 2.122 9.030 1.432
Diff (predicted) 1.34 4.35 1.25 3.01 6.17 1.23 4.46 1.15 3.63 7.48 2.68 1.57 6.81 0.88
Diff (deLeva) 19.65 6.36 33.94 16.85 27.09 38.78 15.02 62.81 16.83 26.22 39.67 9.84 11.60 59.82

while individual thigh anthropometry explains most of the varia-
tion in thigh mass (AR?=0.49), age and obesity status explain
the distribution of mass within the thigh. In males, most of the
age and BMI factors are significant in COM prediction, while thigh
mass and Rg predictions are almost entirely dependent on circum-
ference measurements. The thigh Rg prediction in males is entirely
dependent on circumference measurements (neck, hip, knee, and
upper and mid-thigh), and does not include any of the initial age
or BMI predictors, indicating that this parameter is only dependent
on the shape of the individual, and independent of age or obesity
status.

4.3. Shank

With the exception of shank COM prediction in males, all of the
prediction models included calf circumference. The calf circumfer-
ence measurement is notable because it is defined as the largest
measurement around the calf, as opposed to other measurements,
which are defined relative to anatomical landmarks. The calf cir-
cumference is a highly significant predictor (p <0.001) for shank
mass in both genders because it is proportional to the maximum
cross section of the shank, instead of being in a predefined location.
Similarly to the thigh Rg in males, the COM value in males is also
only predicted by anthropometric measurements, meaning that
this value is also independent of age and obesity status.

4.4. Upper arm and forearm

Including individual anthropometric measurements in the pre-
diction of the upper extremity’s BSPs variables had varying and
complex effects. For example, while the female upper arm COM
prediction model was dependent only on individual geometry, in
males, this BSP variable was dependent both on age and individual
anthropometry data. The forearm BSP predictions were highly
dependent on individual anthropometric measures, in addition to
age and BMI terms, in both males and females.

Overall, nearly all of the observed statistical models benefitted
from including individual anthropometric measurements. In addi-
tion to observing the effects of age and BMI, data points such as

waist and hip circumference provide additional measures of obe-
sity, and whole body mass distribution. By using separate ran-
domly selected training and test data sets, this study was able to
develop and validate anthropometry based prediction models for
the segment parameters of interest. The independent validation
is imperative in such settings to assess true model performance,
and not an overly optimistic metric attainable due to over fitting.
These anthropometric models were able to predict the parameters
more precisely than previous modeling methods (de Leva, 1996).

5. Conclusion

In summary, the findings of the present study provide statistical
tools that allow the prediction of BSPs using simple individual
characteristics such as age, BMI and body measurements. The final
models presented have shown large improvements over the de
Leva (1996) and Merrill et al (2019) models, particularly in the
torso and thigh segments. It is important to note that the previous
work using this same data set (Merrill et al., 2019) examined the
relationships of age and BMI with these segment parameters, how-
ever the final models were not predictive in nature, and not
intended to be used as such. By comparison, the results of this
study are intended to be used to predict BSPs for individuals.

Compared to the method explained by Erdmann and Kowalczyk
(2015), this method consists of fewer torso measurements to pre-
dict the torso BSPs, whereas as Erdmann and Kowalczyk divided
the torso into several functional segments, accomplishing their
goal of providing a more detailed tissue distribution description.
When comparing these results to those of Hatze (1980), these final
models and predictive abilities are again far simpler, both mathe-
matically and in practice for data collection and parameter
prediction.

Limitations of this study involve the study population, which
consisted only of healthy American working aged adults with full
time jobs. Factors such as activity levels and overall fitness were
not considered, and would likely impact body mass distribution.
While ethnicity was not taken into account in the statistical anal-
ysis, the participants recruited reflected the diversity of the Amer-
ican working population, and the wuse of the multiple
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anthropometric measurements accounted for differences in whole
body and segment shaped in a more detailed manner than includ-
ing ethnicity as a single predictor.

Because the DXA scans were collected only in the frontal plane,
with the participants lying supine, some degree of weight shifting
may have occurred, which would not be present during standing.
Additionally, the specific segment definition used for the torso
was chosen for its applicability to inverse dynamics calculations
and individual variability (Merrill et al.,, 2018), and may not be
directly comparable to other methods of trunk segment parameter
calculations. While only frontal plane data were employed, previ-
ous work comparing parameters in obese and non-obese adults
has noted errors of less than 0.1% of the segment length when esti-
mating sagittal plane Rg values using frontal plane values (Fang
et al., 2017).

For the purpose of brevity, only the dominant side arm and leg
segment parameters were analyzed. Only observing the dominant
side has the most relevance for performing many occupational
tasks and sports activities, and symmetry may be assumed for
other tasks.

Finally, our sample size may not be as large as it appears at the
first glance, considering the large numbers of independent vari-
ables that we considered in the models. We could have examined
more complex models had we recruited an even larger number of
participants. Thus, the prediction equations we were able to for-
mulate and improvements elicited should be considered prelimi-
nary, needing further refinement and validation. Despite the
limitations, we feel the many strengths of our study outweigh
them in investigating the complex associations between anthropo-
metrics and body segment parameters, and exploiting the same for
more accurate prediction of the latter.
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