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The forgotten denominator, pillar loading 

K.A.Heasley 
National Institute of Occupational Safety and Health, Pittsburg, Pa., USA 

ABSTRACT: In the last few decades, a considerable amount of effort was directed at accurately determining 
the coal/pillar strength to use for safely designing coal mines. The outcome of this early work was the well 
known Obert-Duvall, Holland-Gaddy, Bieniawski, and Salamon-Munro equations for coal pillar strength. All 
of these equations were developed for, and were calibrated with, pillars in a large room-and-pillar area such 
that the loading could be determined using the "tributary-area" theory. In order to account for the abutment 
loads associated with full-extraction mining, the empirical methods have typically adopted · a simple 
conceptualization of the abutment load through use of an "abutment angle." Short of a complete numerical or 
analytical analysis of the coal seam and surrounding strata, very little work has been directed toward refining 
the empirical analysis of pillar loading. It appears that the vast majority of the research has been directed at 
determining the pillar strength, the numerator of the safety factor equation, when the denominator of the 
safety factor equation, the pillar loading, plays an equally important role in pillar design. This paper will 
address the deficft of pillar loading research by exploring the accuracy of the empirical abutment · load 
calculations using insight provided by an elastic overburden model, a laminated overburden model and field 
observations. Ultimately, it is determined that a constant abutment angle probably over-predicts the abutrnent 
load as the mining depth increases. 

INTRODUCTION 

In the last few decades, a considerable amount of 
effort has been directed at accurately determining the 
coal pillar strength to use for safely designing coal 
mines. Some of the first scientific research in this 
area consisted of determining the relationship 
between coal strength and the shape and size of 
laboratory and field specimens (Gaddy I 956, 
Holland 1964, Obert & Duvall 1967, Bieniawski 
1968, Wagner 1974, Hustrulid 1976). These 
experimentally-derived relationships between coal 
strength, and specimen shape and size were then 
used to develop formulas for estimating pillar 
strength in the field. A further refinement of this 
empirical technique for determining pillar strength 
was to use a statistical analysis of pillar performance 
in the field in order to enhance the parameters of the 
experimentally-determined size and shape equation 
or to provide a factor of safety for practical 
application of the equation (Holland 1964, Salamon 
& Munro 1967, Bieniawski 1983). The outcome of 
this early work was the well-known Obert-Duvall, 
Holland-Gaddy, Bieniawski, and Salamon-Munro 
equations for coal pillar strength. These empirical 
equations have been validated through many years of 
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actual use and encapsulate considerable knowledge 
of coal pillar behavior into a simple practical form 
(Mark & Iannacchione I 992). All of these equations 
were developed for, and were calibrated with, pillars 
in a large room-and-pillar area such that the loading 
could be · determined using the "tributary-area" 
theory. 

As longwall mining became more prevalent, the 
classic pillar design equations (Mark & 
Iannacchione I 992) were extended to designing 
pillars for gateroads. In order to account for the 
abutment loads associated with full-extraction 
mining, the empirical methods have typically 
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adopt~d a simple conceptualization of the abutment 
load through the use of an "abutment angle". In this 
concept, the abutment load is the weight of the 
wedge of overburden material defined by the 
abutment angle (~) and a vertical line at the edge of 
the panel (see Figure I, after Mark 1992). Also, in 
response to the gateroad pillar design problem, a 
new and more complex concept of pillar behavior 
based on a confined core surrounded by a crushed or 
yielded coal zone was developed and advocated 

· (Wilson 1973, Barron & Pen 1992, Salamon 1992). 
In the original confined core design method, the 
abutment loads were calculated using the abutment 
angle technique. More recently, the complete 
deformation of the rock mass-coal system has been 
analyzed for determining the pillar behavior and 

· 1oading conditions (Salamon 1992, Hasenfus & Su 
1992, Park 1992). 

Short of a complete numerical or analytical 
analysis of the coal seam and surrounding strata, 
very .little work has been directed toward refining the 
empirical abutment angle analysis of pillar loading. 
It appears that the vast majority of the research has 
been directed at determining the pillar strength, the 
numerator of the safety factor equation, when the 
denominator of the safety factor equation, the pillar 
loading, plays an equally important role in pillar 
design. Recently, some field measurements in 
Australia (Colwelr et al. 1999) and observations in 
the United States (Mark & Chase 1997) have 
indicated that the constant abutment angle concept 
for pillar loading may need some refinement. This 
paper will · address the deficit of pillar loading 
research by exploring the accuracy of the empirical 
abutment load calculations using insight provided by 
an elastic overburden model, a laminated overburden 
model and field observations. 

ABUTMENT LOADING - DISTRIBUTION 

It is informative to investigate abutment loading and 
the differences in abutment loading calculations used 
by various empirical pillar design and analytical 
modeling techniques. First, let's examine the 
empirical Analysis of Longwall Pillar Stability 
(ALPS) method (Mark 1990) which is widely used 
to help design pillars in longwall gateroads. For the 
ALPS method, Mark (1990) tabulated numerous 
field measurements of abutment loads where he 
found · that the me·asured distribution of induced 
abutment stress ( crr) follows the equation: 

3L 
--'-(D -x) 2 
(D -L)1 ' , 

(1) 
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where: x = the distance from the center of the panel, 
L = the half width of the panel, 
L, = the total side abutment load, 
D, = the maximum horizontal extent of the 
abutment stress from the panel edge. 
(x > L and x < D,) 

The maximum horizontal extent of the abutment 
stress was also determined from field measurements 
(Peng & Chiang 1984, Mark 1990) to be equal to (in 
metric units): 

D, = L + 9.3 /0.3048 H (2) 

where: H = the depth of overburden (see Figure 2, 
after Mark 1992). 

(Equations I and 2 were modified. from Mark's 
original formula by shifting the x origin from the 
edge of the panel to the center of the panel to be 
consistent with the following derivations for the 
homogeneous and laminated overburden models. 
Also, the units were converted to metric units.) 

j------ ~= L + 9.3 ~ --------< 
f-- Pillar A --+ Pillar B -+- Barrier pillar. --j 

Figure 2. Distribution of the side abutment 
load (after Mark, 1992). 

Next, consider the analytical abutment stress 
predicted at the edge of a two-dimensional slot in an 
infinite, homogeneous, isotropic, elastic model ( ah) 
as given by (Salamon 1964): 

a(x)= xq 
h /x2-L2 

(for x > L ) (3) 

where the virgin in situ stress (q) can be written as: 

q=yH (4) 

with: y = the overburden density. 



This equation provides the stress distribution at the 
edge of a theoretical longwall panel where: (l) the 
coal seam and overburden are all one elastic 
material, (2) the width of the panel is negligible in 
comparison to the depth, and (3) the thickness of the 
seam is negligible in comparison to the width of the 
panel. It is interesting to note that equation 3 is 

independent of material properties, and because of 
the assumptions in the derivation, the seam thickness 
does not appear in the equation. 

Finally, consider the analytical abutment stress 
predicted at the edge of a two-dimensional slot in the 
laminated overburden model (cr1) with 
"homogeneous stratifications" as represented by 
LAMODEL (Heasley 1998). 

~ -1 ZE, (x - L) 

cr/x) =qL~II'i:Me El.M (5) 

where: E, = the elastic modulus of the seam, 
E = the elastic modulus of the overburden, 
M = the extraction thickness, 
(forx> L) 

and the lamination constant, A., is defined as: 

A, = (6) 

where: t = the lamination thickness, 
v = the Poisson's Ratio of the overburden. 

'In order to plot and compare the -abutment stresses 
computed from equations 1, 3 and 5, some "typical" 
valiies were assumed for the geometric and rock 
mass parameters: a panel width of 200 m (L = 100 
m), an overburden depth (H) of 160 m (q = 4 MPa), 
an extract.ion thickness (M) of 2 m, an elastic 
modulus of the rock mass (E) of20 GPa, a Poisson's 
Ratio (v) of the rock mass of 0.25, a lamination 
thickness (t) of 15 m, and no gob load (L, = qL). 
Using these values for the parameters, the abutment 
stresses at the edge of a simulated panel for the 
empirical ALPS formula ( equation 1 ), the 
homogeneous elastic overburden formula (equation 
3), and the laminated overburden formula (equation 
5) are plotted in Figure 3. (It should be noted that 
equations 1 and 5 calculate induced stresses, and that 
equation 3 calculates the total stress. Therefore, in 
the plots, the virgin overburden stress ( q) has been 
added to the results from equations 1 and 5 to 
provide a direct comparison with the total abutment 
stress values from equation 3.) 

In Figure 3, it can be seen that the homogeneous 
elastic abutment stress has a relatively sharp, infinite 
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Figure 3. Comparison of the longwall abutment 
stress computed from the homogeneous elastic model, 
the laminated model and the empirical formula. 

peak at the edge of the panel and approaches virgin 
vertical stress asymptotically with increasing 
distance . from the panel. In contrast, the abutment 
stress in the laminated overburden is finite at the 
panel edge and asymptotically approaches the virgin 
overburden stress (q) less rapidly. Neither of these 
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Figure 4.. Plot of the laminated abutment stress 
fitted to the empirical formula. 

mathematical models (using the assumed 
parameters) comes very 
close to matching the empirical abutment stress 
curve which is much flatter. 

However, if ·the abutment stress level in the 
laminated model and the stress level obtained from 
the empirical formula are equated at the edge of the 
seam (x=L): 

cr(L)=qL 
I 

3L 
--' =cr(L) 
D -L f 

s 

(7) 

Then, by expanding "A,, L,, and D,, and solving for the 
lamination thickness (t), the value oft which ensures 
this equality can be determined as: 



EH 
t = 20.29~ j_M (8) 

For a typical seam modulus (E.) of 2 GPa in the 
laminated model, equation 8 provides a fitted 
lamination thickness of 157 m. The plot of the 
abutment stress curve for the laminated overburden 
model with a fitted lamination thickness of 157 mis 
shown together with the empirically determined 
abutment stress in Figure 4. The degree of 
agreement between the two curves is very good, ?ut 
the lamination thickness of 157 m needed to provide 
this degree of fit is unrealistic. . 

Additional insight about abutment loading can be 
gairied by taking a even closer look at the abutment 
load distribution (the shape of the curves) as 
represented by the · empirical ~ormula (~quation 1) 
and the laminated model (equation 5). First, assume 
that the total overburden load is carried on the 
abutments (there is no gob load), then: 

L, = qL = yHL (9) 

and if equation I is expanded using equation 2 
andonly the stress at the edge of the panel is 
considered, the peak abutment load is: 

cr/ L) = (0.5843) y ..jH L (IO) 

This equation shows that the empirically-determined 
peak abutment stress at the edge of the p~el is 
directly prqportional to the overburden de~s1ty ~y) 
and the panel half-width (L). These relationships_. 
seem intuitively logical. Equation 10 also shows 

. that the magnitude of the empirical abutment s~e~s 
is proportional to the square root of~e depth. ~1s 1s 
an interesting result. However, 1f one considers 

· equation 2 which shows. that the ext~nt of the 
empirical abutment stress 1s also proportional to the 
square root of the depth, then the combination of 
these two relationships would give the logical result 
that the total abutment load is directly proportional 
to the depth. 

If equation 5 for the laminated overburden model 
is similarly expanded using equation 6, and only the 
stress at the edge of the panel is considered, then the 
following relationship results: 

(2.632)yHL 
E,~ 

EMt 
(11) 

In equation 11, the peak abutment stress at the edge 
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of the panel for the laminated model is also directly 
proportional to the overburden density (y) and the 
panel half-width (L) as was the peak abutmen! stress 
for the empirical formula. However, equation 11 
shows that the peak stress for the laminated model is 
directly proportional to the depth (H) as opposed to 
being proportional to the square root of the depth, as 
was the case for the empirical formula. Equation 11 
also sho.ws that the peak abutment stress for the 
laminated model is directly proportional to the 
square root of the seam modulus (E,) and inversely 
proportional to the square root of the overburden 
modulus (E), extraction thickness (M) and 
lamination thickness (t). These last relationships all 
seem reasonable considering that elastic plate theory 
was used to ·derive the laminated model. However, 
if these relationships are reasonable, why are the 
relationships not sufficiently evident in the empirical 
data to have been incorporated into equation 1? 

The effect of depth needs to be more closely 
examined. In previous work, it was determined that 
for optimum subsidence prediction . with the 
laminated model, the lamination thickness should 
increase with depth (Yang 1992, Salamon I 989). 

To formalize this relationship, Yang proposed an 
inherent overburden constant, w. 

(I) (12) 

In later work with subsidence prediction using the 
laminated model, the same trend toward increasing 
lamination thickness with increasing depth was also 
found (Heasley & Barton I 998). Similarly, when 
modeling stresses with the laminated model, it was 
found that the optimum lamination thickne~s is 
proportional to the area-of-interest, such that thmner 
laminations were best for modeling the small scale 
inter-seam pillar stresses, but thicker laminations 
were optimum for modeling wide area longwall 
abutment stresses (Heasley 1998). 

If the value of w is indeed a constant for the given 
strata, then equation 12 implies that the lamination 
thickness should be directly proportional to the • 
depth (rearranging equation I 2): 

t = 
H /3 (1 -v2) 

(13) 

If equation 13 is then substituted back into equation 
11 : 

cr1(L) = 2y.JHLco~ EE~ (14) 



This equation now shows that the peak abutment 
stress for the laminated model is proportional to the 
square root of the depth (H), similar to the peak 
abutment stress for the empirical ALPS formula as 
shown in equation 10. 

Equation 14 still indicates that the peak abutment 
stress for the laminated model is directly 
proportional to the square root of the seam -modulus 
(E.) and inversely proportional to the square root of 
the overburden modulus (E) and the extraction 
thickness (M). For most coal measure rocks, the 
ratio of the seam modulus to the overall overburden 
modulus will probably remain fairly constant 
between different mines and not greatly affect the 
relative value of the peak abutment stress. 
Conversely, the extraction thickness (M) distinctly 
varies between different mines and it_is shown to be 
inversely proportional to the peak abutment stress 
for the laminated model. This means that thicker 
seams will have lower peak abutment stresses and 
tend to spread the abutment ·1oad over a larger 
distance from the panel. This result (derived from 
the laminated model) suggests that the seam 
thickness is an important factor to consider in 
determining the distribution of the abutment stress at 
the edge of an extraction panel. 

ABUTMENT LOADING - MAGNITUDE 

In addition to the load distribution, the other factor 
to determine regarding the abutment load is the 
magnitude. In ALPS, a simple geometric . 
conceptualization utilizing an abutment angle (13) is 
used (see Figure 1). The magnitude of the side 
abutment load (L,)'is calculated· as the weight of the 
overburden within a wedge defined by this abutment 
angle and a vertical line from the edge of the panel. 
For a supercritical panel the formula is: 

L = H2 (tan 13) (y/2) 
' 

and for a subcritical panel the formula is: 

where: P = the panel width 

A panel is subcritical when: 

H 1. ->--­
p 2 (tan 13) 

(15) 

(16) 

(17) 
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With the recommended value of 13 = 21 ° (Mark 
1992), the transition from supercritical to subcritical 
occurs at a depth-to-width ratio (HIP) of about 1.3. 

In order to investigate the change in the magnitude 
of abutment loading with depth, the equations for the 
side abutment load can be normalized by dividing 
through by half the total load (L.) over the longwall 
panel in order to calculate a percentage load 

yHP 

2 
(18) 

Then, the side abutment load equations can be 
further normalized by writing them as a function of 
the ratio of panel depth to panel width (HIP). For 
the supercritical case ( equation 15), the result is:_ 

L 
' : (tanl3) (19) 

For the subcritical case (equation 16), the 
normalization result is: 

L,, = l _ 
[ 

1 
l L, . : 4( tanl3) 

(20) 

These last two equations show that the percentage of 
the total panel cover load that results in the side 

. abutment load is linear with relation to the depth-to­
width ratio up to the . transition point from 
supercritical to subcritical. After the transition, the 
percentage of side abutment load for subcritical 
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Figure 5. A comparison of the percentage 
magnitude of the abutment load between the ALPS 
method and the laminated overburden model. 



panels asymptotically approaches 100% as the 
depth-to-width ratio increases. The relationship 
between the percentage of total panel load that goes 
into the side abutment load and the panel depth-to­
width ratio is shown in Figure 5. The ALPS method 
essentially implies that, for a given panel width, the 
gob load is constant for a seam deeper than a depth­
to-width ratio (HIP) of about 1.3. Therefore, the gob 
load in a 200 m wide panel at a depth of 240 m 
would be identical to the gob load in a 200 m wide 
panel at a depth of 600 m. This relationship does not 
seem intuitively reasonable and conflicts with the 
behavior implied by the homogeneous-elastic and 
the laminated models as will be shown below. 

With . the homogeneous elastic or the laminated 
overburden model, the magnitude of the abutment 
load is determined by a complex interaction between 
the displacement of the overburden, and the 
compaction and support provided by the gob 
material. However, some intuition into the depth­
related response of the abutment load can ·be gained 
by closely examining the analytical displacement 
functions for tl}e overburden and the gob. 

If there is no support provided by the gob, the 
convergence of the seam in the panel for the 
homogeneous elastic. model (s") can be determined 
as (Jaeger & Cook 1979): 

sh(x) = 4(1 - v 2
) y:: /(L 2 - xi) (21) 

This equation states that the convergence of the seam 
in the panel is proportional to the depth (H) and to 
the distance from the edge of the panel (L2 - x2

), and 
inversely prqportional to the overburden modulus 
(E). 

For the laminated overburden model, the formula 
for the convergence of the seam in the open panel 
(s1) is very similar (Heasley 1998): 

s (x) = /12(1-vi) yH(L2 - x2) (22) 
I t E 

This equation states that the convergence of the seam 
in the panel is proportional to the depth (H) and to 
the square of the distance from the edge of the panel 
(L2 - x2), and inversely proportional to the 
overburden modulus (E) and lamination thickness 
(t). If w is a constant as in equation 12; and 
therefore, the realistic lamination thickness is a 
function of the depth as in equation 13, then 
equation 22 can be written as: 

s
1
(x) = 

2
~Y (L 2 -x 2

) (23) 
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In this equation, the convergence in the panel is now 
only proportional to the square of the distance from 
the edge of the panel (L 2 

- x2
) and to the overburden 

constants w and y, and inversely proportional to the 
overburden modulus (E). Thus, once w is 
considered to be a constant, the convergence across a 
panel in a given geology is also constant, regardless 
of the depth. 

In general, gob material is considered to be strain­
hardening such that the stiffness of the material 
increases with increasing strain. Basically, the 
granular/blocky gob material becomes stiffer as it is 
compacted and the void ratio . decreases (Zipf 1992a, 
b). This exact.response was docwnented by Pappas 
and Mark (-1993) and incorporated into the 
MULSIM (Zipf 1992a, b) and the LAMOD_EL 
(Heasley 1998) programs using the following 
formula, where. the gob stress ( og) is ·related to the 
gob str~in (e) by the equation: 

0 = r~J lJ Efn/) c 1J 
g E - E 

f I 

(24) 

where: E; is the initial ta_ngent _modulus a(zero stress, 
Er is the final tangent modulus at the ultimate 
stress ( ou), and . . . 

. n is the gob height factor (after Zipf 1992a b). 

A schematic of the stress-strain curve for the 
material defined by equation 24 is given in Figure 6. 

If the overburden displacement is considered to -be 
linearly proportional to the depth (as with the 
homogeneous elastic overburden, equation 21 ,. and 
the laminated overburden,equation 22) and the gob 
material is strain-hardening, then the .gob should 
support an increasing percentage of load as the panel 
gets deeper. Therefore the percentage of the 
abutment load should decrease with depth (see curve 
2 in Figure 5). If, on the other hand, the overburden 
displacement is constant with depth (as in equation 
23 where the lamination thickness is proportional to 
the depth), then the change in the gob load will be 

Strain-Hardening 

KEY 
Ei Initial modulus 
Et Final modulus 
Ou Ultimate stress 

Figure 6. A schematic of the stress-strain 
relationship for the strain-hardening gob material. 



proportional to the ratio between the gob modulus at 
the equilibrium stress and the modulus of the coal as 
in the third curve in Figure 5. For this third curve, 
the equilibrium gob modulus and the modulus of the 
coal are fairly equal; therefore the percentage of 
abutment load is fairly constant with changing 
depth. (For the LAMODEL plots in Figure 5, the 
input parameters were: a panel width of 200 m (L = 
100), an extraction thickness (M) of 2 m, an elastic 
modulus of the rock mass (E) of20 GPa, a Poisson's 
Ratio (v) of the rock mass of 0.25, a constant 
lamination thickness (t) of 5.5 m or a constant w of 
7.0, an initial tangent modulus (E;) of 0.69 MPa, a 
final tangent modulus CEr) of 1.65 GPa, an ultimate 
stress (cru) of 27.6 MPa, and a gob height factor (n) 
of 1. For the various depth-to-width ratios, the depth 
was varied between 80 and 640 m.) 

Within realistic limits for the equilibrium gob 
modulus, the third curve in Figure 5 could easily 
bend a little either down or up. However, it would 
have to be a very "soft" gob for the abutment load 
calculated using either the homogeneous elastic 
model or the laminated model to behave similarly to 
the behavior of the abutment load as calculated by 

_ the ALPS method in the first curve. This result 
derived from the analytical models, that the 
percentage of the overburden load carried on the 
abutments should _be constant or even decrease with 
depth, suggests that the constant abutment angle 
used by the ALPS method over predicts the amount 
of the abutment load as the depth increases. A 
possible correction would be to decrease the ALPS's 
abutment as the overburden increases. 

This actual trend was recently observed in 
Australian Iongwall panels (Colwell et al. I 999), 
where the ·apparent abutment angle was back 
calculated from field measurements and found to be 
much smaller than the ALPS default (2 I 0 ) for the 
deeper panels. In fact, it was noted that: "the 
abutment angles calculated for the two deepest 
mines, ... , are the smallest of any in the database," 
5.9° and 8.5°. A smaller abutment angle at depth 
would also help explain a conundrum with the 
"Analysis of Retreat Mining PiJlar Stability" 
(ARMPS) method which also uses a constant 
abutment angle for calculating the pillar load (Mark 
& Chase 1997). In the ARMPS database, 70% of 
the case histories deeper than 300 m are successful 
with a Stability Factor less than I .0. 

CONCLUSIONS 

Based on an analysis of the abutment stress implied 
by the empirically-derived ALPS method, the 
abutment stress derived from the homogeneous 
elastic model and the abutment stress derived from 
the laminated overburden model, a number of 
interesting results can be emphasized. First, using 
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realistic parameters, the abutment load distribution 
used in the ALPS method is not very close to the 
load distributions determined from either the 
homogeneous elastic model or the laminated model. 
The abutment load distribution from the laminated 
model can be adjusted to fit the empirical abutment 
load distribution, but the parameter values needed to 
provide this degree of fit are unrealistic. Second, the 
laminated model analysis did suggest that the seam 
thickness, which is not included in the ALPS 
abutment load determination, may be an important 
factor to consider in determining the distribution of 
the abutment stress at the edge of an extraction 
panel. Finally, in comparing the response of the 
total magnitude of the abutment load to changes _in 
depth -as computed by the ALPS method, the 
homogeneous elastic model and the laminated 
model, it appears that the constant abutment' angle 
used by the ALPS method probably over predicts the 
amount of the abutment" load as the depth increases. 
This result suggests that some type of systematic 
decrease in the abutment angle with increasing depth 
may be more realistic. 
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