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R.C.Wang & W . McKewan Ol 0704
Pittsburgh Research Laboratory, NIOSH, Pittsburgh, Pennsylvania

A model for the structure of round-strand wire ropes

Summary

The behaviour of wire ropes used in mine hoisting is not well understood. In an effort
to improve this understanding, the structure of round-strand wire ropes was analysed.
This report provndes a generalised mathematical model that completely describes the
geometry of the wires. It consists of two sets of vector equations and is valid for any
round-strand wire rope. One set of equations is used to trace the paths of wires that
have the form of a single helix. The other is used for the paths of double helical
wires. The specific model for a 33-mm 6x19 Seale, IWRC, right regular lay wire rope
was presented as an example. The paths and the geometric properties of the wires
which include the path length per lay of strand, the curvature, and the torsion were
determined from this model. In future work, the model could be used to conduct
stress analysis for the wires in the deformed rope at a given rope strain and also to
study the effect of wear and breaking of wires on strength loss for the various round-
strand wire ropes used in mine hoisting.

1. introduction

Wire ropes are used essentially for transmitting ‘tensile forces. The main
characteristics which make them so well suited to this function are fiexibility and
strength A list of the uses of wire rope is almost endless. In mine hoisting systems,
wire rope is used to trangport personnel, product and supphes between surface and
underground.

The Federal retirement criteria for wire ropes used in mine hoisting speufy the
allowable reductions of rope diameter and outside wire diameter and the location and
number of broken wires and are listed In the Code of Federal Regulations (CFR
1997). However, thelr effects on strength loss for ropes of different constructions
have not been properly considered. This will lead to removing wire ropes from
service at different stages where the actual loss of strength is either less or more
than what is anticipated. To remedy this deficiency, the knowledge of how the total
load is distributed among the wires in different rope constructions needs to be
acquired. In general, the load distribution is dependent not only on the cross-
sectional area of wires, but also on the specific arrangement of wires in a rope.

The wire stresses in an independent wire rope core (IWRC) were compared by
Costello (1990). It was found that, for 17,379 N (3,907 Ib) of load applied to the
IWRC, the normal stress was 310,264 kPa (45,000 psi) in the cantral wire of the
centre strand and 279,196 kPa (40,494 psi) in the central wire of the outside strand.
They were not only significantly different but also considerably higher than 247,591
kPa (35,910 psi), the nominal stress computed by taking the total load and dividing it.
by the total metallic area. It is, therefore, believed that the load distribution must be
considered for different rope constructions in order to prevent catastrophic failure of
ropes in service. To do this, an understanding of the wire geometry which affects the
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load distribution must be first acquired. Afthough mathematical models have been.
used to study wire geometry by many researchers in the past, these models can be
used only for single helical wires. Lee (1991) presented two sets of Cartesian co-
ordinate equations in matrix form for double helical wires but did not give detailed
derivation of the equations. One set of the equations was for regular lay ropes; and
the other was for Lang's lay ropes.

In this study, the rope structure was analysed and a generalised mathematical model
describing the wire geometry in any rope construction with rourd strands was
developed. The mode! contains a rotation ratio termed “relative rotation™ in this
report which characterises the relationship between the wire and the strand helices.
In the use of rope with the ends restrained from rotating, this relative rotation remains
constant and thus reduces the parameters in the models to the angle of wire rotation
only. The model is general enough that any combination of wire and strand lay
directions can be handled if the stated sign conventions for the angles of strand and
wire rotation and the relative rotation are followed.

2.  Description of rope structure
2.1 Structural elements

A wire rope is a structure composed of many individual wires. There are two major
structural elements in a typical wire ropae. One is the strand which is formed by
helically winding wires around a central wire or a strand core. Different shapes of
strand may be formed depending on the shape of the core. Only a wire rope made of
round strands was analysed in this report. The other major structural element is the
core around which the strands are helically wound. The core is made of natural
fibres, polypropylene, or steel that will provide proper support for the strands under
bending and loading in normal use. The most commonly used cores are fibre core
(FC), independent wire rope core (IWRC), and wire strand core (WSC).

Although the strand can be laid in any one of many specific geometric arangements
and composed of any number of wires, the rope also can have any number of
strands. The Wire Rope Users Manual (Wire Rope Technical Board, 1993) contains
more information on wire rope identification and construction. Most of the rope
produced today is pre-formed, meaning that the wires are permanently shaped into
the helical form they will assume in the rope. This manufacturing process eliminates
the tendency of the wires to unlay, usually hazardously, when they are unrestrained
or when the rope Is cut.

22 Classification of wires

it is assumed in this study that all wires have a circular cross section and remain
circular when they are stretched or bent. The centroidal axis which moves through
the centre of a wire is selected to represent the path of the wire and used to study its
geometric characteristics that are related to wire stress. The centroidal axis of the
central wire of a strand also represents the path of the strand.

Based on the structural elements in a wire rope as described above, there is at most
one straight wire in a straight rope. It is located in the centre of a WSC or an IWRC
rope. All the remaining wires can be classified geometrically into two groups. They
are either single helices or double helices. The outer wires in-a straight strand used
as the WSC have a single helical form because they are helically wound only once
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around a straight axis. When a strand is helically wound into a rope, the central wire
also has a single helical form. All the other wires have a double helical form because
they are wound twice, once around the strand axis and another around the rope axis.
However, they remain single helices relative to the central wire of the strand in which
they are wound. This relationship is important in the modelling of a double helical

wire.

2.3 Structural parameters

The following basic parameters specifying the helical structure are defined and the
symbols representing them in the mathematical modelling are shown in parentheses.

Strand helix axis (Z): The axis of the rope around which the strands are h. :zally
wound to form a rope, or around which the wires are helically wound to form the
centre strand of a rope. The positive direction of the axis is defined to be the
direction that the helix advances.

Wire helix axis (W). The centroidal axis of the helical wire around which other wires
are helically wound to form a strand. It is also the centroidal axis of a helical
strand. The positive direction of the axis is defined to be the direction that the
helix advances.

Radius of strand helix (r;): The perpendicular distance between the centroidal axis of
the strand and the strand helix axis.

Radius of wire helix (rw): = 3 perpendicular distance between the centroidal axis of
' the wire and the wire helix axis.

“Circular helix: The strand helix having a constant helical radius is a circular helix.
Similarly, the wire helix having a constant helical radius is also a circular helix.

.Angle of strand helix (a,). The angle of a strand helix at any point alor the
centroidal axis of the strand is the angle between the tangent vector at that
point, heading in the direction that the strand helix advances, and the plane
which is perpendicular to the strand helix axis and passes through that point.

Angle of wire helix (aw): The angle of a wire helix at any point along the centroidal
- axis of the wire is the angle between the tangent vector at that point, heading in
the direction that the wire helix advances, and the plane which is perpendicular

to the wire helix axis and passes through that point.

Hngle of strand rotation (8,). The angle at which the centroidal axis of a helical

- strand sweeps out in a plane perpendicular to the strand helix axis. The angle

-is defined to be positive in a right-handed co-ordinate system if a right lay rope

is formed and negative if a left lay rope is formed. The angle is expressed in
radians unless specified otherwise.

Angle of wire rotation (8.): The angle at which the centroidal axis of a helical wire

sweeps out in a plane perpendicular to the wire helix axis. The angle is defined

. to be positive in a right-handed co-ordinate system if a right-hand strand is

formed and negative if a left-hand strand is formed. The angle is expressed in
radians unless specified otherwise.

~ fJength of strand (L.): The distance measured parallel to the axis of the rope
" -around which the centroidal axis of a strand or wire makes one complete helical
“convolution. '
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Lay length (pitch) of wire (Ly): The distance measured parallel to the wire helix axis
around which the centroidal axis of a wire makes one complete helical

convolution.

Length of rope (S; or z): The length measured along the strand helix axis. It
represents the distance that a strand helix has advanced on the axis of the
rope.

Length of strand (Ss or w). The length measured along the wire helix axis. it
represents the distance that a wire helix has advanced on the centroidal axis of

the strand.
Length of wire (Sy): The path length measured along the centroidal axis of the wire.

3. Mathematical modeliing

3.1 Basic relationships

In circular helices, the centroidal axes of both the wire and the strand may be
considered to be lying on right circular cylinders. Because the surface of a cylinder
can be developed into a plane, some basic relationships between each of the
centroidal axes and the other parameters can be established by using the developed
views shown in Figure 1.

Strand helix

)

=T

/ /Comroidol Ss

L = |
l"_—f'e'_"l

Wire helix

Figure 1: Developed views of strand and wire helices
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The relationships between the length of rope and the angle of strand rotation and
between the length of strand and the angle of strand rotation can be obtained by
using the previously defined parameters and from the developed view of the strand
helix, which may be expressed as:

Sr=rebs t'an(at ) ‘ (1)
- r.O. ‘ 2
8= Sos(al) @)

The length of rope, S; in Equahon 1 becomes the lay length of the strand, Ls, when
8,=2x .
Similarly, the relationships between the length of strand and the angle of wire rotation

and bstween the length of wire and the angle of wire rotation also can be obtained by
using the developed view of the wire helix and are expressed below.

S:i=rwhw tan(aw ) (3)
= TwBw '
Sv= Saslas) » (4)

The length of strand, S,, in Equation 3 becomes the lay length of wire, Ly, when
Bu=2%.

“Since the length of strand obtained from the wire helix must be equal to that obtained

“from the strand helix for a given length of rope, a new term n is defined to be the ratio

“of the angle of wire rotation to the angle of strand rotation which can be obtained
‘from Equations 2 and 3.

g f .

n=%= L 5
9; Tw tan(aw )wS(a. ) )
Thls ratio is dependent on the angles of both helices when both hel:cal radii are fixed.
2 Is considered to be important in characterising the rope structure, specifically the
?Blaﬁonshlp between the wire and strand helices, and is termed as the “relative
Jfotation" in this report. The relative rotation will be positive for Lang's lay ropes and

negahve for regular lay ropes.

32 Co-ordinate systems

‘Because several geometric characteristics of helices related to load distribution and
3 stresses can be easily evaluated through vector analysis, vector equations
cribing these helices are used to model the different wires in a rope. To
inguish vectors from scaiars, boldface type is used for vectors in the equations.

~== three-dimensional, right-handed rectangular Cartesian co-ordinate systems are
icted to analyse the strand and wire helices.

19



OIPEEC Bulletin 81 - 2001

One is a global fixed system called, for convenience, the rope co-ordinate system
(Figure 2A). The co-ordinates are X, Y, and Z with the origin at the centre of the rope
and the Z-axis coinciding with the rope axis. The X-Y plane is perpendicular to the
rope axis and is the plane where the angle of strand rotation is measured. The X-.
axis is arbitrarily selected so that it intersects, in its positive direction, with the
centroidal axis of a strand. The X-axis is also used as the reference line from which
the angle of strand rotation, 8, is measured. The unit vectors directed along the
positive directions of X, Y, and Z are I, j and k respectively.

A ﬁ B W

|%,00) / Y1y, 0,0)
u

" Figure 2: Cc-ordinate systems for single helix. A, rope co-ordinate system; B, strand co-ordinate
system .

The other, a local co-ordinate system, is the strand co-ordinate system (Figure 2B).
Its co-ordinates are U, V, and W with the origin on the centroidal axis of a strand.
This local co-ordinate system maoves along the centroidal axis of the strand. The W-
axis is in the direction of the tangent vector to the centroidal axis of the strand. The
U-V plane is perpendicular to the centroidal axis of the strand and is the plane where
the angle of wire rotation, 8, is measured. The U-axis is parallel to the X-Y plane
and is also parallel to the line on the X-Y plane which specifies the angle of strand
rotation. The unit vectors directed along the positive directions of U, V, and W are f,
g. and h respectively.

3.3 Vector equations for single and double hellces

The model describing the centroidal axis of the central wire of a strand in the rope
using the rope co-ordinate system is a single helix model. The model describing the
centroidal axis of a wire in a strand using the strand co-ordinate system is also a
single helix model. Once these single helix models are formed, they will be used to
develop a double helix model describing the centroidal axis of a double helical wire in
either a regular lay or a Lang's lay rope in the rope co-ordinate system.
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"

Single helix model

When the rope co-ordinate system is placed at the centre of the wire rope and a
certain strand is specified to have an initial strand rotation angle of 0 at z=0, as
shown in Figure 2A, the vector equation of the helix for the centroidal axis of this

strand is:
R=xi+y, J+zk (6)

The subscript s indicates variables that are associated with a single helix. The
parametric equations of R for a circular strand helix are:

Xs =rg COS (6s) 7)
Y, =rs Sin(6s) (8)
Zs =505 tan (a; ) | 9)

The strand rotation angle, 8, in Equations 7, 8 and 9 is positive for a right lay rope

‘#nd negative for a left lay rope.

;éinaarly, when the strand co-ordinate system is initially placed on the centroidal axis

of a certain strand at 8, = 0, a certain wire is specified to have an initial angle of wire

fotation of 0 at w = 0, as shown in Figure 2B. The vector equation of the circular

halix for the centroidal axis of this wire is similar to Equation 6 in the rope co-ordinate
em and can be written as:

Q=uf+vg+wh (10)

parametric equations of Q for a circular wire helix in a strand are:

u=r, cos(6.) : (11)
v=r,sin{g.) (12)
W=ry 6w tan(aw ) (13)

rire rotation angle, 8y in Equations 11, 12, and 13 is positive if it forms a right-
strand and is negative if it forms a left-hand strand. Since the co-ordinate
n is moving along the centroidal axis of the strand, w simply represents the
ength along the centroidal axis that the system has travelled for a wire rotation
ofe,.
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Double helbx model

The double helix model can be developed by properly combining the vector R in the
rope co-ordinate system and a vector q on the U-V plane of the strand co-ordinate
system as shown in Figure 3.

U-axis

Figure 3: Co-ordinate system for double helix

It is assumed that, in the rope co-ordinate system, a position vector P with the head
of the vector located at (u,v,w) of the strand co-ordinate system traces the centroidal
axis of a double helical wire and has a general form:

P=xul+Y, l+z2.k (14)

where X, yw, and zy are the component functions. The subscript w indicates
variables that are associated a double helix.

The vector q in the strand co-ordinate system is a position vector which traces the
centroidal axis of a double helical wire on the U-V piane at a certain value of w in the
strand co-ordinate system. The vector equation for @ may be written as

q=uf+vg (15)

The w component is not needed in specifying the location of the centroidal axis of a
double helical wire because q is always on the U-V plane. The parametric equations
for u and v are identical to Equations 11 and 12.

Since the head of R is located exactly at the tail of q, the vector P can be readily
obtained through vector addition once the vector q in the strand co-ordinate system is

22
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projected to the rope co-ordinate system. Using the fact that the U-axis is parallel to
the X-Y plane and the line which specifies the angle of strand rotation (6,) and that
the U-V plane is perpendicular to the W-axis which has an angle of strand helix (as),
the individual projections of u and von the X, Y, and Z axes are:

X, =Ucos(g ) (16)
y, =usin(g,) (17)
z,=0 (18)
xe = —V sin(g, ) sin(g, ) | (19)
y, =V sin(a, ) cos(6, ) - (20)
z,= —vcos(q,) (21)

The vector q now can be expressed in the rope co-ordinate system as:
a=(x*x )+ (y, *y, )+ (z+z )k (22)

‘Because the vector P is the sum of R and q, the general form of the vector equation
for P now can be written as:

P=(xs*xutx )+ (y, +y,+y )i+(za+z+2, )k (23)

rintroducing the relative rotation, n (defined by Equation 5), into Equations 7, 8, 9,
: Q 47, 19 and 20, replacing u and v with Equations 11 and 12, and substituting them
equation 23, the following component functions for the double helix model in
mas of only wire rotation angle are obtained.

Xw =14 COS(8, /N) + 1, €OS(8,) COS(G, /) - 1, SiN(cz,) SIN{G, ) SiTdg, /1) (24)
Yo = 1,808, /n) * r, cOS(8,) SiNG, /) * r, Sia,) sin(6, ) cos(a, /n)  (25)

Zw =1 1an(a,) 6w /N - 1. cOS(q,) SiN(H,) (26)

gn for 8, is positive when it rotates anti-clockwise and negative when it rotates
fise. The lay type determines the sign for n as defined by Equation 5. The
went 2, is always positive and increases in the direction that the helix
ces.
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3.4 Example for a specific wire rope

The circular helix models presented above are applicable to any type of rope
construction as long as its strands are round, that is, the wires are laid in a circular
pattem. As an example, the structural parameters of a 33-mm 6x19 Seale, IWRC,
right regular lay wire rope are used to show how the model for a specific rope is

obtained.

The basic strand arrangement of a 6x19 Seale wire rope is shown in Figure 4. The
structurai parameters of different strands are presented in Table 1. The sfrand cross
sections perpendicular to the strand or wire helix axis are shown in Figures 5 through
7. The structural parameters of the single and double helical wires in each strand are
presented in Table 2. Some of the parameters such as the lay length of strand, the
lay length of wire, and the relative rotation were calculated based on the basic

relationships given by Equations 1, 3, and 5.

Y-COORDINATE, mm

-20 -10 o] 10 20
X-COORDINATE, mm

Figure 4: Strand arrangement of 33 mm 6x19 Seale, IWRC, right regular lay wire rope

Strand Form No. of Strand Helix parameters
strands radius (mm) fa (mm) o (rad) L, (mm)
IWRC:
St Straight 1 2271 NAp NAp NAp
s2 Single helix 6 2,016 4.287 1.2362 77.48
Seale: ) )
83 Single helix 6 5.110 11.413 1.2259 189.61

NAp Not applicable
Table 1: Structural parameters of strands in 33 mm 6x19 Seale wire rope
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Y- COORDINATE, mm
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Figure 5: Cross section of IWRC strand $1
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wire W21:
=4.287 °°s(1 5087 5087) (242)
= 7 +1.36 +
Y =4 28 sm( ) Ooos(e,,)sm( ) 1.285 sm(e,,,)c;os(1 5087) (25a)
zv=8.173 9, -0.447sin(p,,) (26a)
Wire W30:
x.=11.413 cos{g,) -(7¢)
y,=11.413 sin(g,) (8c)
z.=31.768 ¢, (9c)
Wire W31:
=11.413 2.168 -2.040si ’
Xo cos(2=)+ 2,168 cos(— I ) - 2040 (g, )sin(— L2 )+ (240)
=11.413 2.168 +
Yo sin(—=—558)* cos{gn)sin( =22 3855) 2.040 sin(g,) cos(—- 3855)
(25b)
Zw=-9.384¢,-0.733sin(g,,) (26b)
Wire W32:
=11.413 +3.867 9
cos(- 3855) oos(e.)ooS(_3 3855) -3.639 sin(g,) sin(——22—— 3. 3855)
(24c)
=11.413 +3.867 v +3.639 ”
Yw sm( ) cos(g, )sm( ) sin(gw) cos(——o— 3 3855)
(25c)

2, =-9.384 g, -1.307 sin(g..) (26¢)
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4, Model applications

The model for a specific wire rope can be easily obtained, as shown in the example,
and has many practical applications. It can be used to generate the wire paths and
to evaluate the geometric properties of the wires. The effect of deformation can be
determined by substituting the structural parameters of the deformed rope into the
original model. The model also has other applications such as predicting damage
pattems through extemnal and intemal wear, examining and improving the design of a
rope construction prior to manufacturing, and producing three-dimensional pictures of
the wires for analysis with a computer.

4.1 Generation of wire paths

As described earlier, the wires in wire ropes have three forms: straight, single helix or
double helix. The only straight wire in a rope is the centre wire in an independent
wire rope core. The wires around the centre wire forming the centre strand and the
centre wires in the outer strands of the core and in the surface strands have the
shape of a single helix. The wires forming the strand around the centre wire have
~ double-helical paths which are very complex in their configurations. Using the model

developed in this report, the wire paths can be easily generated by a computer. They
not only will reveal the shapes of the wire paths but also are useful in locating the
places where a wire will be rubbed by the other wires and in determining the interval
at which an outer wire will be exposed on the rope surface.

Typical paths of single helical wires generated by Equations 7a to 9a, 7b to 9b, and
7c to 9¢ for wires W11, W20 and W30, respectively, are shown in Figure 8. The
paths shown are in about one lay of strand S3. Typical paths of double helical wires
generated by Equations 24a to 26a, 24b to 26b and 24c¢ to 26¢ for wires W21, W31
and W32, respectively, are shown in Figures 9 through 11. The paths shown are in
about two lays of the strand formed by each wire. The reason for the major
difference between the shape of the W21 path and that of the W31 and W32 paths is
because strand S2 which contains wire W21 is a Lang's lay strand while strand S3
which contains W31 and W32 is a regular lay strand. The side views of all wire paths
show much sharper tums than the actual wire paths. This is because much larger
scales have been selected on the Y co-ordinate than those on the Z co-ordinate of
these figures so that more of their paths can be viewed.
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Figure 8: Paths of single helical wires W11, W20, w30
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Figure 9: Path of double helical wire W21
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Figure 11: Path of double helical wire W32
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4.2 Evaluation of geomaetric properties

In order to know how the tensile load is distributed among the wires in a rope and to
calculate wire stresses, several geometric properties of each wire must be evaluated
before and after the application of load. These properties are the path length, the
curvature and the torsion.

Path length per lay of strand

The equations for evaluation of the path length of single and double helical wires in
each lay of the strand can be derived from Equations 2 through 4 and are shown in
Equations 27 and 28.

Path length of single helical wires in each lay of strand:

- 2%r,
5 cos(a,) - @)

Path length of double helical wires in each lay of strand:

- 27,
Sv = oS sitas) (@)

Table 3 shows the path lengths per lay of strand for a 6x19 Seale rope as calculated
by these two equations. The table also shows the wire-to-rope length ratios by
comparing the wire paths to the strand lay lengths.

Wire Lay length of Lay length of Path length per Wire-to-rope
strand referred to strand L, (mm)  lay of strand (mm) length ratio

Straight:

W10 NAp NAp  NAp 1.000
Single helical: ‘

W11 L 33.02 34.40 1.042

W20 Lo 7748 82.03 1.059

W30 Lao 199.61 212.10 1.063
Double helical:

W21 Lao 77.48 83.04 1.072

W31 Lao 199.61 217.06 1.087

w32 Ly 199.61 227.50 1.140

NAp Not applicable
Table 3: Path length of wires per lay of strand
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~Curvature

A special moving frame of reference has been used in generation of the basic
equations for evaluation of the curvature and torsion of a curve in three-dimensional
space (Sokolnikoff & Redheffer, 1958 and Leithold, 1986). This frame is formed by a
three-dimensional, right-handed set of orthogonal unit vectors as shown in Figure 12.
The origin of the frame is located at the head of any position vector that may be R or
P of the models just developed. The three unit vectors ¢, n, and b are called the unit
tangent, the unit principal normal, and the unit bi-normal vectors respectively. The'
frame is sometimes referred to as the moving tri-hedral associated with the curve.

(Binonn:l vector)

/7 Wire
,I

4
{Tangent vector)

Figure 12: The moving tri-hedral

The curvature at a certain point of a curve is a measure of how quickly the curve
changes direction at that point. It is the reciprocal of the radius of the curve at that
point and expressed in the unit of 1/mm in this report. In a wire, a change of the
curvature is produced by bending moments that act on the wire cross section.
Curvature not only is related to the shearing stress but also has effect on the
distribution of the tensile stress on e cross section. Therefore, the deformation of
the rope structure in terms of the curvature change needs to be specified in order to
determine its effect on shearing and normal stresses.

The curvature vector is defined to be the first derivative of t in the moving tri-hedral,
as shown in Figure 12, with respect to arc length of a curve. It can be expressed as
xn, where k is a scalar multiplier. The curvature vector is in the same direction of the
principal normal vector. The magnitude of this vector is called the curvature of the
curve and is simply equal to k because the magnitude of n is unity. The curvature of
a straight line is always zero because the tangent vector is constant. The curvature
of the centroidal axis of either a single or a double helical wire, therefore, may be
specifically defined to be the magnitude of the rate of change of the unit tangent
vector with respect to arc length of the wire.

Basic formulae derived for evaluation of curvature are expressed in terms of the
position vector with arc length as the parameter, because arc length arises naturally
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from the shape of the curve (Sokolnikoff & Redheffer, 1958). To directly apply the
model developed in this paper, it is more convenient to use Equations 29 and 30 for
computation of the curvature (Stewart, 1991). The vectors R and P denoted with
single and double primes in the equations represent the first and second derivatives
respectively with respect to 6, or 8y, just as for real-valued functions. Similarly, the
vectors denoted with trinla primes to be used later, represent the third derivatives
with respect to 8; or 84. ...e symbol *| |", by which the vector is bounded, represents
the magnitude of the vector as is generally used in vector analysis. R was given by
Equation 6 and its component functions were given in Equations 7, 8 and 9. P was
given by Equation 14 and its component functions were given in Equations 24, 25
and 26.

Curvature of single helical wires:

|R’XR"|
Ko =t (29)
" RT
Curvature of double helical wires:
P x P"
Kw™ I ' (30)
P

Substituting the first and second derivatives of each vector into Equations 29 and 30
and performing the cross and dot product and other operations, the expanded forms
of these equations expressed in terms of the component functions are shown below.

Expanded curvature equation for single helical wires:

J(y,r. ZoY @ K= X2 H (), Yo X

(29a)
VeFv i+ rf

After substituting the functions into Equation 29a, it can be reduced to its simplest
form as shown in Equation 29b. This expression indicates that the curvature of a
single helical wire is independent of the angle of strand rotation and is constant for a

given helix angle.

.= COSZ (a.) (29b)
s

Expanded curvature equation for double helical wires:

Jy* Zu=Zu YW @ K= X2 (X Y = Y XS

(30a)
Voer vy P s or ] ]
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The curvatures were computed for both single and double helical wires in a 6x19
Seale wire rope. The results for single helical wires are shown in Table 4. The
results for double helical wires are shown in Table 5 with the absolute value of 6y
increasing from 0 to 360 degrees at increments of 15 degrees.

Wire Curvature (1/mm) Torsion (1/mm)
w11 0.0513 0.1753
w20 0.0252 0.0724
W30 0.0100 ' 0.0179

Table 4: Curvature and torsion of single helical wires

Angle of wire Curvature (1/mm}) Torsion (1/mm)
rotation (°) wa1 W3t w32 w21 W31 w32
0 0.0652 0.0202 0.0265 0.1249 -0.0198 -0.0268
15 0.0649 0.0201 0.0264 0.1256 -0.0200 -0.0273
30 0.0638 0.0197 0.0260 0.1277 -0.0207 -0.0288
45 0.0620 0.0190 0.0254 _ 0.1313 -0.0218 -0.0314
60 0.0593 0.0180 0.0244 0.1365 -0.0233 -0.0353
75 0.0559 0.0167" 0.0232 0.1435 -0.0254 -0.0407
90 0.0517 0.0151 0.0216 0.1528 -0.0281 -0.0479
105 0.0467 0.0132 0.0197 0.1653 -0.0319 -0.0580
120 0.0411 0.0110 0.0175 0.1829 -0.0377 -0.0723
135 0.0353 0.0086 0.0152 0.0286 -0.0485 -0.0933
150 0.0297 0.0060 0.0130 0.2460 -0.0757 -0.1234
165 0.0254 0.0033 0.0113 0.2914 -0.1897 -0.1586
180 0.0238 . 0.0016 0.0106 0.3157 -0.7359 -0.1768
195 0.0254 0.0033 0.0113 0.2914 -0.1897 -0.1586
210 0.0297 0.0060 0.0130 0.2480 -0.0757 -0.1234
225 0.0353 0.0086 0.0152 0.2086 -0.0485 -0.0933
240 0.0411 0.0110 0.0175 0.1829 -0.0377 -0.0723
255 0.0467 0.0132 0.0197 0.1653 -0.0319 -0.0580
270 0.0517 0.0151 0.0216 0.1528 -0.0281 -0.0479
285 0.0559 0.0167 0.0232 0.1435 -0.0254 -0.0407
300 0.0593 0.0180 0.0244 0.1365 -0.0233 -0.0353
315 0.0620 0.0190 0.0254 0.1313 -0.0218 -0.0314
330 0.0638 0.0197 0.0260 0.1277 -0.0207 -0.0288
345 0.0649 0.0201 0.0264 0.1256 -0.0200 -0.0273
360 0.0652 0.0202 0.0265 0.1249 -0.0198 -0.0268

Table 5: Curvature and torsion of double helical wires
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7 e

~The curvatures of the IWRC and S3 helical wires were plotted against the absolute
value of the angle of strand or wire rotation. Their relationships are shown in Figure
-43 for two periods. They indicate that:

(@

3
2

g

the curvature of single helical wires is independent of the angle of strand
rotation as expressed by Equation 29b;

the curvature of double helical wires is a periodical function of the angle of wire
rotation with a period of 360 degrees; and,

the curvature of double helical wires is at maximum when the wires are
farthermost from the rope centre and is at minimum when the wires are nearest
to the rope centre because the angle of wire rotation is measured from the
positive- U axis which points away from the rope centre as shown in Figure 3.
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#» 13: Curvature of IWRC and 83 wires
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Torslon

The torsion at a certain point of a curve measures the degree of twisting of a curve at
that point. The change of torsion in a wire is produced by twisting moments that act
on the wire cross section. Angular deformation between cross sections results in
shearing stresses.

The first derivative of b in the moving tri-hedral, as shown in anure 12, with respect
to arc length of a curve will yield a vector which is parallel to n and can be expressed
as -Tn. The scalar multiplier v is calied the torsion of the curve. It measures the rate
at which the centroidal axis of either a single or a double helical wire twists out of its
osculating plane, which is the plane containing the unit tangent and the unit principal
normal vectors. The torsion of a straight line is defined to be zero. If the curve is a
plane curve, the torsion is always zero because the osculating plane lS the plane of
the curve and the unit bi-normal vector is constant.

Basic formulae derived for computation of torsion are expressed in terms of the
position vector with arc length as the parameter (Sokolnikoff & Redheffer, 1958). To
directly apply the models developed in this paper, it is more convenient to use
Equations 31 and 32 for computation of the torsion (Stewart, 1991).

Torsion of single helical wires:

R'XR". R"
=== 1
“*TIR'xR'F (1)
Torsion of double helical wires:
P xP’- o~ :
T - (32)

[P xi

Substituting the derivatives of sach vector into the equations and performing the
cross and dot product and other operations, the expanded forms of these equations
expressed in terms of the component functions are shown below.

Expanded torsion equation for single helical wires:

._:X.O(Y(Z'l-zlly.g)+y.;(ZIcX'|"xlsZ's)+Z.Q(X'sy'.—yl.xll) | (31a)
(Y'.z'.—z’.Y'.)2"‘(Z'.X'.-X'-Z'.)z*'(X'-Y'.-Y'.X'-)z

After substituting the functions into Equation 31a, it can be reduced to its simplest
form as shown in Equation 31b. It indicates that the torsion of a single helical wire is
independent of the angle of strand rotation and is constant for a given helix angle.

_ Sin(a,) cos(a,) (31b)
Te

Ts
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Expanded torsion equation for double helical wires:

=X.w(nyZ'w_Z‘u Y-)+y.!(zlwx,w—x'wz'w)+z.w(x'w Y'*"yljx.w) (328)
(Ve Zw=Zu Y HZu X=X Zw P+ (X Y = Y X )

The torsions of both single and double helical wires in a 6x13 Seale wire rope were
computed. The results for single helical wires are shown in Table 4. The results for
double helical wires are shown in Table 5 with the absolute value of 8, increasing
from 0 to 360 degrees at increments of 15 degrees. The negative torsions for W31
and W32 represent the twisting of the centroidal axes of these wires in a left lay
strand, where the twisting Is opposite in direction to that in a right lay strand.

The torsions of the IWRC and S3 helical wires were plotted against the absolute
value of the angle of wire rotation. Their relationships are shown in Figure 14 for two
periods. They indicate that:

(a) the torsion of single helical wires is independent of the angle of strand rotation
as expressed by Equation 31b;

(b) the torsion of double helical wires is a periodical function of the angle of wire
rotation with a period of 360 degress; and,

(c) the torsion of double helical wires is at minimum when the wires are farthermost
from the rope centre and is at maximum when the wires are nearest to the rope
centre. : T '

It is also noted that the minimum torsion occurs at the locations where the curvature
is at maximum and the maximum torsion occurs at the locations where the curvature
is at minimum.
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4.3 wdel forthe .  'ormed rope

when a tensile load is applied to a wire rope, each individual wire will deform.
Because of the differences in the wire lengths and the helix angles of single and
double helical wires, the load will not be distributed among the wires simply based on
the cross-sectional areas. The effect of these wire deformations on the geometry of
the rope structure needs to be determined. The major change is axial elongation
along the centroidal axis of a wire. Accompanying the axial elongation is a lateral
contraction of the cross section. In addition, bending and twisting moments are
generated in the wire that cause the changes in the curvature and torsion of the wire.
The combination of all of these individual wire deformations result in the deformation
of the rope structure.

There will be a resultant twisting moment which will cause the rope to rotate if the
ends are not restrained. Therefore, the deformation of the rope structure will depend
on whether the rope is allowed to rotate or not. In mine hoisting, the cage or skip and
rope are prevented from rotating by the shaft guides. Some rope manufacturers also
produce rotation-resistant rope (Wire Rope Technical Board, 1993), which is made
. with layers of strands laid in opposite directions to produce counteracting torques. In
the use of rope with both ends restrained, the total number of strand lays and the
total number of wire lays in a rope are kept constant. Thus, the relative rotation, n,
included in the models for double helical wires, remains constant as the rope
structure deforms under load. A system of equations can be established for
determining the structural parameters of the deformed rope at a given rope strain,
thus obtaining the model for the deformed rope. The geometric properties of each
deformed wire can be evaluated the same way as shown in this report for the
undeformed rope.

5. Conclusions

The model developed in this report fully describes the geometry of the structure of
wire ropes of any round-strand construction. It is expressed by vector equations in a
three-dimensional, right-handed rectangular Cartesian co-ordinate system and is
general enough that any combination of wire and strand lay directions can be
handled, being careful only to observe the stated sign conventions for the angles of
strand and wire rotation and the relative rotation in the component functions.

The wire paths are defined for the first time by using a developed model, which not
only reveal the shapes of the various wires but also are useful for predicting damage
pattems through extemal and intemai wear. The geometric properties of each wire
can be easily evaluated by using this model. An analysis for a 33-mm 6x19 Seale
IWRC, right regular lay wire rope was made to illustrate the usefulness of the model.
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