
0. I. P. E. E. C. 

Bulletin . 
Bericht 
Bollettino 



SIEGE SOCIAL: c/o Laboratolre Central des Ponts et Chausees 
Soul. Lefebvre, F 75732 PARIS, 

{official registered address for legal purposes only) 

SECRETARIAT: Wire Rope Technology Aachen, Grunenthaler StraBe 40a, 
D - 52072 Aachen, Germany 

{address for correspondence) 

COMITE DIRECTEUR 

President 
Vice-President 
Membres 

Membres Co-optes 

Secretalre 
Tresorler 

D. SAYENGA 
G.OPLATKA 
R. CIUFFI 
C.R. CHAPLIN 
J.-P. GOURMELON 
J. HANKUS 
H.M. HUBER 
G.A. KOPANAKIS 
I.M.L RIDGE 
J.-M. TERAIEZ 
R. VERREET 
K.-H. WEHKING 
T.BABEU 
V. MALINOVSKY 

USA 
ZORICH ­
FIRENZE 
READING 
NANTES 
KATOWICE 
BRUGG 
ZURICH 
READING 
GRENOBLE 
AACHEN 
STUITGART 
TIMISOARA 
ODESSA 

Commlssalre aux comptes 

R. VERREET 
G.A. KOPANAKIS 
N.KELLER 

AACHEN 
ZURICH 
ROMAN SHORN 

Redaction Bulletin I.M.L RIDGE READING 

OIPEEC WORKING GROUPS 

Working Group 1 

WorkJng Group 2 

WorkJng Group 3 

WorkJng Group 4 

Experimental endurance stucfies 
Prof. R. Ciuffi - Firenze 

Wire rope publication data base 
Olpl.-lng. Roland Verreet-Aachen 

Degradation mechanisms 
~.-1~ ~ A. Kopanalds - Zurich 

--~:-~ -~ .~CPCNantes 
;its;J;:X -., ,~~~~:·:__ --

WorkJng Group 5 



0. I. P. E. E. C. 

Bulletin 
Bericht 
Bollettino 

June 2001 

ORGANISATION INTERNATIONALE POUR L 'ETUDE OE L 'ENDURANCE DES CABLES 
INTERNATIONAL ORGANISATION FOR THE STUDY OF THE ENDURANCE OF ROPES 
INTERNATIONALE ORGANISATION ZUM STUDIUM DER BETREIBSFESTIGKEIT VON SEILEN 
ORGANIZZAZIONE INTERNATIONALE PER LO STUDIO DELLA FATICA DELLE FUNI 

REDACTION: READING ROPE RESEARCH • READING UNIVERSITY 

Department of Engineering - PO Box 225 - Reading RG6 6A Y - UK 

fax number: (+44) 118 931 3327 



OIPEEC Bulletin 81 • 2001 . 

OIPEEC Bulletin 81 

Copyright C OIPEEC, 2001 

Published by : Reading Rope Research 

Department of Engineering The University of Reading RG6 6A Y, UK 

June 2001 

Printed by : College of Estate Management 

Whiteknights, Reading 

ISSN 1018 - 8819 



OIPEEC Buftetln 81 • 2001 

INDEX - INDICE - INHAL T 

Editorial . 

News from OIPEEC 

Management Committee Meeting 

Announcement of OIPEEC Round Table Meeting 

Abstracts for OIPEEC Round Table Conference Papers 

Technical Papers: 

page 

4 

5 

5 
6 

OON0703 7 

Wang, R.C. & McKewan, W.M. ODN 07CM 15 
A model for the structure of round-strand wire ropes 

Rebel, G., Chaplin, C.R. & Borello, M. ODN 0705 43 
Depth limitations in the use of triangular strand ropes for mine 
hoisting · 

Verreet, R. OON 0706 63 
Steel wire ropes with variable lay lengths for mining applications 

Review of Rope Publications 00N 0707 71 

Instructions for Authors 79 



OIPEEC Bulletin 81 - 2001 

R.C. Wang & W.M. McKewan · ODN 0704 
Pittsburgh Research Laboratory, NIOSH, Pittsburgh, Pennsylvania 

A model for the structure of round-strand wire ropes 

Summary 

The behaviour of wire ropes used in mine hoisting is not well understood. In an effort 
to improve this understanding, the structure of round-strand wire ropes was analyseq. 
This report provides a generalised mathematical model that completely describes the 
geometry of the wires. It consists of two sets of vector equations and is valid for any 
round-strand wire rope. One set of equations is used to trace the paths of wires that 
have the form of a single helix. The other is used for the paths of double helical 
wires. The specific model for a 33-mm 6x19 Seale, IWRC, right regular lay wire rope 
was presented as an example. The paths and the geometric properties of the wires 
which include the path length per lay of strand, the curvature, and the torsion were 
determined from this model. In future work, the model could be used to conduct 
stress analysis for the wires in the deformed rope at a given rope strain and also to 
study the effect of wear and breaking of wires on strength loss for the various round­
strand wire ropes used in mine hoisting. 

1. Introduction 

Wire ropes are used essentially for transmitting · tensile forces. The main 
characteristics which make them so well suited to this function are flexibility and 
strength. A list of the uses of wire rope Is almost endless. In mine hoisting systems, 
wire rope is used to transport personnel, product and supplies between surface and 
underground. 

The Federal retirement criteria for wire ropes used in mine hoisting specify the 
allowable reductions of rope diameter and outside wire diameter and the location and 
number of broken wires and are listed In the Code of Federal Regulations (CFR 
1997). However, their effects on strength loss for ropes of different constructions· 
have not been properly considered. This will lead to removing wire ropes from 
service at different stages where the actual loss of strength is either less or more 
than what is anticipated. To remedy this deficiency, the knowledge of how the total 
load is distributed among the wires in different rope constructions needs to be 
acquired. In general, the load distribution Is dependent not only on the cross­
sectional area of wires, but also on the specific arrangement of wires in a rope. 

The wire stresses in an independent wire rope core (IWRC) were compared by 
Costello (1990). It was found that, for 17,379 N (3,907 lb) of load applied to the 
IWRC, the normal stress was 310,264 kPa (45,000 psi) in the central wire of the 
centre strand and 279,196 kPa (40,494 psi) in the central wire of the outside strand. 
They were not only significantly different but also considerably higher than 247,591 
kPa (35,910 psi), the nominal stress computed by taking the total load and dividing it . 
by the total metallic area. It is, therefore, believed that the load distribution must be 
considered for different rope constructions in order to prevent catastrophic failure of 
ropes in service. To do this, an understanding of the wire geometry which affects the 
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load distribution must be first acquired. Although mathematical models have been . 
used to study wire geometry by many researchers in the past, these models can be 
used only for single helical wires. Lee (1991) presented two sets of Cartesian co­
ordinate equations in matrix form for double helical wires but did not give detailed 
derivation of the equations. One set of the· equations was for regular lay ropes; and 
the other was for Lang's lay ropes. 

In this study, the rope structure was analysed and a generalised mathematical model 
describing the wire geometry in any rope construction with round strands was 
developed. The model contains a rotation ratio termed •relative rotation• in this 
report which characterises the relationship between the wire and the strand helices. 
In the use of rope with the ends restrained from rotating, this relative rotation remains 
constant and thus reduces the parameters in the models to the angle of wire rotation 
only. The model is general enough that any combination of wire and strand lay 
directions can be handled if the stated sign conventions for the angles of strand and 
wire rotation and the relative rotation are followed. 

2. Description of rope structure 

2.1 Structural elements 

A wire rope is a structure composed of many individual wires. There are two major 
structural elements in a typical wire rope. One is the strand which is formed by 
helically winding wires around a central wire or a strand core. Different shapes of 
strand may be fanned depending on the shape of the core. Only a wire rope made of 
round strands was analysed in this report. The_ other.major s~_ctural element is the 
core arouoo wtiicn· the -strands are helically wound. The core is made of natural 
fibres, polypropylene, or steel that will provide proper support for the strands under 
bending and loading In normal use. The most commonly used cores are fibre core 
(FC), independent wire rope core (IWRC), and wire strand core {WSC). 

Although the strand can be laid in any one of many specific geometric arrangements 
and composed of any number of wires, the rope also can have any number of 
strands. The Wire Rope Users Manual (Wire Rope Technical Board, 1993) contains 
more information on wire rope identification and construction. Most of the rope 
produced today is pre-formed, meaning that the wires are permanently shaped into 
the helical form they will assume in the rope. This manufacturing process eliminates 
the tendency of the wires to unlay, usually hazardously, when they are unrestrained 
or when the rope is cut. 

2.2 Clasalflcatfon of wires 

It is assumed in this study that all wires have a circular cross section and remain 
circular when they are stretched or bent. The centroidal axis which moves through 
the centre of a wire Is selected to represent the path of the wire and used to study its 
geometric characteristics that are related to wire stress. The centroidal axis of the 
central wire of a strand also represents the path of the strand. 

Based on the structural elements in a wire rope as described above, there is at most 
one straight wire in a straight rope. It is located in the centre of a WSC or an IWRC 
rope. All the remaining wires can be classified geometrically into two groups. They 
are either single helices or double helices. The outer wires in· a straight strand used 
as the WSC have a single helical form because they are helically wound only once 
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around a straight axis. When a strand Is helically wound Into a rope, the central wire 
also has a single helical form. All the other wires have a double helical fonn because 
they are wound twice, once around the strand axis and another around the rope axis. 
However, they remain single helices relative to the central wire of the strand in which 
they are wound. This relationship is Important in the modelling of a double helical 
wire. 

2.3 Structural parameters 

The following basic parameters specifying the helical structure are defined and the 
symbols representing them in the mathematical modelling are shown in parentheses. 

Strand helix axis (Z): The axis of the rope around which the strands are helically 
wound to fonn a rope, or around which the wires are helically wound to fonn the 
centre strand of a rope. The positive direction of the axis is defined to be the 
direction that the helix advances. 

Wire helix axis C'N): The centroidal axis of the helical wire around which other wires 
are helically wound to form a strand. It is also the centroidal axis of a helical 
strand. The positive direction of the axis is defined to be the direction that the 
helix advances. 

Radius of strand helix (r,): The perpendicular distance between the centroidal axis of 
the strand and the strand helix axis. 

Radius of wire helix (rw): The perpendicular distance between the centroidal axis of 
the wire and the wire helix axis. · 

{Cifr;ular helir. The strand helix having a constant helical radius is a circular helix. 
· Similarty, the wire helix having a constant helical radius is also a circular helix. 

,.Angle of strand helix (a.): The angle of a strand helix at any point along the 
" centroldal axis of the strand Is the angle between the tangent vector at that 

point, heading in the direction that the strand helix advances, and the plane 
which is perpendicular to the strand helix axis and passes through that point. 

fAng/8 of wira helix (aw): The angle of a wire helix at any point along the centroidal 
~ · axis of the wire is the angle between the tangent vector at that point; heading in 

the direction that the wire helix advances, and the plane which is perpendicular 
to the wire helix axis and passes through that point. 

~ of strand rotation (S.): The angle at which the centroidal axis of a helical 
· strand sweeps out in a plane perpendicular to the strand helix axis. The angle 

·Is defined to be positive in a right-handed co-ordinate system if a right lay rope 
Is formed and negative If a left lay rope is formed. The angle is expressed in 
radians unless specified otherwise. 

hie of wire rotation (8w): The angle at which the centroidal axis of a helical wire 
sweeps out in a plane perpendicular to the wire helix axis. The angle is defined 

. to be positive in a right-handed co-ordinate system if a right-hand strand is 
fonned and negative if a left-hand strand is formed. The angle is expressed in 
radians unless specified otherwise. 

· ·!]ength of strand (L.): The distance measured parallel to the axis of the rope 
~around which the centroidal axis of a strand or wire makes one complete helical 
' convolution. 
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Lay length (pitch) of wire (Lw): The distance measured parallel to the wire helix axis 
around which the centroldal axis of a wire makes one complete helical 
convolution. 

Length of rope (Sr or z): The length measured along the strand helix axis. It 
represents the distance that a strand helix has advanced on the axis of the 
rope. 

Length of strand (Sa or w): The length measured along the wire helix axis. · It 
represents the distance that a wire helix has advanced on the centroidal axis of 
the strand. 

Length of wire (Sw): The path length measured along the centroidal axis of the wire. 

3. Mathematical modelling 

3.1 Basic relationships 

In circular helices, the centroidal axes of both the wire and the strand may be 
considered to be lying on right circular cylinders. Because the surface of a cylinder 
can be developed into a plane, some basic relationships between each of the 
centroidal axes and the other parameters can be established by using the developed 
views shown in Figure 1. 

Strand helix 

Wire helix 

Figure 1: Developed views of strand and wire helices 
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The relationships between the length of rope and the angle of strand rotation and 
between the length of strand and the angle of strand rotation can be obtained by 
using the previously defined parameters and from the developed view of the strand 
helix, which may be expressed as: 

Sr =r.O, tan(a,) (1) 

s = r.o. 
• cos(a,) 

(2) 

The length of rope, Sr in Equation 1 becomes the lay length of the strand, Ls, when 

e.='br. 
Similarty, the relationships between the length of strand and the angle of wire rotation 
and between the length of wire and the angle of wire rotation also can be obtained by 
using the developed view of the wire helix and are expressed below. 

S, = rwOw tan(a.) (3) 

S = . rwOw 
w cos(aw) 

(4) 

The length of strand, S,, in Equation 3 becomes the lay length of wire, Lw. when 

8-.-:d:'br. 

: Since the length of strand obtained from the wire helix must be equal to that obtained 
:'from the strand helix for a given length of rope, a new term n is defined to be the ratio 
~ of the angle of wire rotation to the angle of strand rotation which can be obtained 
'.Jrom Equations 2 and 3. 

n =Ow= r, 
o. rw tan(aw )cos(a.) 

(5) 

This ratio is dependent on the angles of both helices when both helical radii are fixed. I is considered to be important in characterising the rope structure, specifically the 
~ tionship between the wire and strand helices, and is termed as the •relative 
,f'Otation• in this report The relative rotation will be positive for Lang's lay ropes and 
tnegative for regular lay ropes. 

~ Co-ordinate systems 

~ use several geometric characteristics of helices related to load distribution and 

E
stresses can be easily evaluated through vector analysis, vector equations 
bing these helices are used to model the different wires in a rope. To 

ish vectors from scalars, boldface type is used for vectors in . the equations. iv ree-dimensional, right-handed rectangular Cartesian co-ordinate systems are 
acted to analyse the strand and wire helices. 
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One is a global fixed system called, for convenience, the rope co-ordinate system 
(Figure 2A). The co-ordinates are X, Y, and Z with the origin at the centre of the rope 
and the Z-axis coinciding with the rope axis. The X-Y plane is perpendicular to the 
rope axis and is the plane where the angle of strand rotation is measured. The X-_ 
axis is arbitrarily selected so that it intersects, in its positive direction, with the 
centroidal axis of a strand. The X-axis is also used as the reference line from which 
the angle of strand rotation, 8, is measured. The unit vectors directed along the 
positive directions of X, Y, and Z are I, j and k respectively. 

A z B w 

~~++-*--... Y ~*"t-t-~-v 
0, '•· 0) o, , •• o> 

- --- -·- -· · - -x u 

Figure 2: Co-ordinate systems for single helix. A, rope co-ordinate system; B, strand co-ordinate 
system 

The other, a local co-ordinate system, is the strand co-ordinate system (Figure 28). 
Its co-ordinates are U, V, and W with the origin on the centroidal axis of a strand. 
This local co-ordinate system moves along the centroidai axis of the strand. The W­
axis is in the direction of the tangent vector to the centroidal axis of the strand. The 
U-V plane is perpendicular to the centroidal axis of the strand and is the plane where 
the angle of wire rotation, 8w is measured. The U-axis is parallel to the X-Y plane 
and is also parallel to the line on the X-Y plane which specifies the angle of strand 
rotation. The unit vectors directed along the positive directions of U, V, and Ware f, 
g, and h respectively. 

3.3 Vector equations for single and double helices 

The model describing the centroidal axis of the central wire of a strand in the rope 
using the rope co-ordinate system is a single helix model. The model describing the 
centroidal axis of a wire in a strand using the strand co-ordinate system is also a 
single helix model. Once these single helix models are formed, they will be used to 
develop a double helix model describing the centroidal axis of a double helical wire in 
either a regular lay or a Lang's lay rope in the rope co-ordinate system. 

20 
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Single helix model 
When the rope co-ordinate system is placed at the centre of the wire rope and a 
certain strand is specified to have an initial strand rotation angle of O at z=O, as 
shown in Figure 2A, the vector equation of the helix for the centroidal axis of this 
strand is: 

R=x.l+y,J+z.k (6) 

The subscript s indicates variables that are associated with a single helix. · The 
parametric equations of R for a circular strand helix are: 

x.=~ros~) m 

y, = r, sin (B,) (8) 

z. = r.e. tan (a,) (9) 

The strand rotation angle, 8, in Equations 7, 8 and 9 is positive for .a right lay rope 
jnd negative for a left lay rope. 

 :knilarfy, when the strand co-ordinate system is initially placed ori ·the centroidal axis 
a certain strand at e, = 0, a certain wire is specified to have an initial angle of wire 

· n of O at w = 0, as shown in Figure 2B. The vector equation of the circular 
for the centroidal axis of this wire is similar to Equation 6 in the rope co-ordinate 
m and can be written as: 

Q=uf+vg+wh 

·,·parametric equations of Q for a circular wire helix in a strand are: 

u = r w ros (Ow ) 

V = r w sin (Ow ) 

w =rwBw tan(aw) 

(10) 

(11) 

(12) 

(13) 

: wire rotation angle, 8w in Equations 11, 12, and 13 is positive if it forms a right­
. . strand and is negative if it forms a left-hand strand. Since the co-ordinate 

is moving along the centroidal axis of the strand, w simply represents the 
., length along the centroidal axis that the system has travelled for a wire rotation 
., ,of 8w. 

 21 
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Double helix model 

The double helix model can be developed by properly combining the vector R in the 
rope co-ordinate system and a vector q on the U-V plane of the strand co-ordinate 
system as shown in Figure 3. 

w 

Figure 3: Co-ordinate system for double helix 

It is assumed that, in the rope co-ordinate system, a position vector P with the head 
of the vector located at (u,v,w) of the strand co-ordinate system traces the centroidal 
axis of a double helical wire and has a general form: 

(14) 

where Xw, Yw, and Zw are the component functions. The subscript w indicates 
variables that are associated a double helix. 

The vector q in the strand co-ordinate system is a position vector which traces the 
centroidal axis of a double helical wire on the U-V plane at a certain value of w in the 
strand co-ordinate system. The vector equation for q may be written as 

q=uf+vg (15) 

The w component is not needed in specifying the location of the centroidal axis of a 
double helical wire because q is always on the U-V plane. The parametric equations 
for u and v are identical to Equations 11 and 12. 

Since the head of R is located exactly at the tail of q, the vector P can be readily 
obtained through vector addition once the vector q in the strand co-ordinate system is 
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projected to the rope co-ordinate system. Using the fact that the U-axis is parallel to 
the X-Y plane and the line which specifies the angle of strand rotation (81 ) and that 
the U-V plane is perpendicular to the W.axis which has an angle of strand helix (as), 
the individual projections of u and v on the X, Y, and Z axes are: 

Xu= U COS(Oa ) 

Yu= u sin(Oa) 

2u=O 

Xv= - V Sin(aa ) sin(Oa ) 

y v = v sin(a. ) cos(o. ) 

Zv = - V COS(aa ) 

he vector q now can be expressed in the rope co-ordinate _system as: 

q =(Xu+ Xv ) I+ (Yu+ Y v ) J + (Zu + Zv ) k 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

eecause the vector P is the sum of R and q, the general form of the vector equation 
~ p now can be written as: 

P = (x, +Xu+ Xv) I+ (y, +Yu+ Yv) J + (Za + Zu + Zv) k (23) 

'introducing the relative rotation, n (defined by Equation 5), into Equations 7, 8, 9, 
~: :-11, 19 and 20, replacing u and v with Equations 11 and 12, and substituting them 
-~ equation 23, the following component functions for the double helix model in 
· of only wire rotation angle are obtained. 

Xw = r, COS(O., /n)+ fw COs(O.,)COS(O.,/n)- fw sin(a,) Sin(O.,) sin(o.,/n) (24) 

y., = r, sin(o,.. In)+ r., cos(o,..) sin(o.,/n}+ r., sin(a,) sin(o.,) cos(o.,/n} (25) 

'._' ·sign for 8w is positive when it rotates anti-clockwise and negative when it rotates 
. The lay type determines the sign for n as defined by Equation 5. The 
nt Zw is always positive and increases in the direction that the helix 
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3.4 Example for a specific wire rope 

The circular helix models presented above are applicable to any type of rope 
construction as long as its strands are round, that is, the wires are laid in a circular 
pattern. As an example, the structural parameters of a 33-mm 6x19 Seale, IWRC, 
right regular lay wire rope are used to show how the model for a specific rope is 
obtained. 

The basic strand arrangement of a 6x19 Seale wire rope is shown in Figure 4. The 
structural parameters of different strands are presented in Table 1. The strand cross 
sections perpendicular to the strand or wire helix axis are shown in Figures 5 through 
7. The structural parameters of the single and double helical wires in each strand are 
presented in Table 2. Some of the parameters such as the lay length of strand, the 
lay length of wire, and the relative rotation were calculated based on the basic 
relationships given by Equations 1, 3, and 5. 

e 10 
e 

J I 0 

I 

>- -10 

·20 -10 0 10 20 

X-COORDINATE, mm 

Figure -4: Strand arrangement of 33 mm 6x19 Seale, IWRC, right regular lay wire rope 

Strand Fonn No. of Strand Helix parameters 
strands radius (mm) 

r, (mm) a. (rad) 

IWRC: 

S1 Straight 1 2271 NAp NAp 

S2 Single helix 6 2.016 4.287 1.2362 

Seale: 

S3 Single helix 6 5.110 11 .413 1.2259 

NAp Not applicable 

Table 1: Structural parameters of strands in 33 mm 6x19 Seale wire rope 

2-4 

L. (IMI) 

NAp 

n.48 

199.61 



3 

2 

E 
E 

w 
~ 0 i5 

§ _, 
~ 

·2 

-3 -2 •I O I 2 3 
X-COOROINATE, mm 

Figure 5: Cross section of IWRC strand S1 
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;Figure 6: Cross section of IWRC strand S2 
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lfjure 7: Cross section of Seale strand S3 
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Wire W21: 

X = 4.287 cos( Ow ) + 1.360 COS(Ow)cos(_§&__) -1 .285 sin(Bw)sin( ().., ) (24a) 
. "' 1.5087 1.5087 1.5087 

Y =4.287sin( (),, )+1.360cos(o..,)sin( ().,, )+1.285sin(o..,)cos( ().., ) (25a) 
.,, 1.5087 1.5087 1.5087 

Zw = 8.173 ().,,-0.447 sin(().,,) (26a) 

Wire ~O: 

Xs = 11.413 cos(().) · (7c) 

y. = 11.413 sin(o.) (8c) 

Zs= 31 .768 Os (9c) 

Wire W31: 

x.,,=11.413cos( ().,, )+2.168cos( ().,, )-2.040sin(o..,)sin( Bw ) · (24b) 
- 3.3855 - 3.3855 - 3.3855 

y,..=11.413sin( B,.. )+2.168cos(o.,,)sin( (),.. )+2.040sin(o,..)cos( ()..,) 
- 3.3855 - 3.3855 - 3.3855 

(25b) 

Zw = • 9.384 ().., • 0. 733 sin(()..,) (26b) 

Wire W32: 

Xw = 11.413 COS( ().., ) + 3.867 COS(().., )cos( ().., ) • 3.639 sin(()..,) sin( Ow ) 
- 3.3855 - 3.3855 - 3.3855 

(24c) 

y w = 11.413 sin( Ow ) + 3.867 cos(e ... ) sin( ().., ) + 3.639 sin(Bw) cos( Ow ) 
- 3.3855 - 3.3855 - 3.3855 

(25c) 

Zw = • 9.384 Bw -1.307 sin(()..,) (26c) 
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4. Model applications 

The model for a specific wire rope can be easily obtained, as shown in the example, 
and has many practical applications. It can be used to generate the wire paths and 
to evaluate the geometric properties of the-wires. The effect of defonnation can be 
detennined by substituting the structural parameters of the defonned rope into the 
original model. The model also has other applications such as predicting damage 
patterns through external and internal wear, examining and improving the design of a 
rope construction prior to manufacturing, and producing three-dimensional pictures of 
the wires for analysis with a computer. 

4.1 Generation of wire paths 

As described earlier, the wires in wire ropes have three forms: straight, single helix or 
double helix. The only straight wire in a rope is the centre wire in an independent 
wire rope core. The wires around the centre wire forming the centre strand and the 
centre wires in the outer strands of the core and in the surface strands have the 
shape of a single helix. The wires fonning the strand around the centre wire have 

. double-helical paths which are very complex in their configurations. Using the model 
developed in this report, the wire paths can be easily generated by a computer. They 
not only will reveal the shapes of the wire paths but also are useful in locating the 
places where a wire will be rubbed by the other wires and in determining the interval 
at which an outer wire will be exposed on the rope surface. 

Typical paths of single helical wires generated by Equations 7a to 9a, 7b to 9b, and 
7c to 9c for wires W11, W20 and W30, respectively, are shown in Figure 8. The 
paths shown are in about one lay of strand S3. Typical paths of double helical wires 
generated by Equations 24a to 26a, 24b to 26b and 24c to 26c for wires W21, W31 
and W32, respectively, are shown in Figures 9 through 11. The paths shown are in 
about two lays of the strand formed by each wire. The reason for the major 
difference between the shape of the W21 path and that of the W31 and W32 paths is 
because strand S2 which contains wire W21 is a Lang's lay strand while strand S3 
which contains W31 and W32 is a regular lay strand. The side views of all wire paths 
show much sharper turns than the actual wire paths. This is because much larger 
scales have been selected on the Y co-ordinate than those on the Z co-ordinate of 
these figures so that more of their paths can be viewed. 
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29 



OIPEEC Bulletin 81 - 2001 

6 

4 

I 
2 

I 0 

-2 

E -4 E .. 
~ -6 
z -8 -6 -4 -2 0 2 4 6 8 
c X-COORDINATE, mm 
0:: 6 
8 u 4 >-

2 

0 

-2 

-4 

-6 
0 20 40 60 80 100 120 140 160 

2-COORDINATE, mm 

Figure 9: Path of double helical wire W21 

30 



OIPEEC Bulletln 81 - 2001 

20----...-----.--------.---""T"""-------

10 

0 

-10 
E 
E 

End View 

w l- -20 __________ ...._ _______ ......, __ ... 
·~ z -30 
25 

-20 -10 0 10 
X- COORDINATE, mm 

20 30 

a:: 20 --......---...----------------8 u Side View 

>- 10 

0 

-10 

-20---------------------------------...... -----
o 100 200 300 400 

Z-COORDINATE, mm 

,.,,..10: Path of double helical wire W31 

31 



OIPEEC Bun,un 81 • 2001 

20 -----.--.......----,-,--"T---,----~ 
End View 

10 

o-----

-10 
E 
E .. 
~ -20 .__ ____ ....... _________ _ 

~ -30 -20 
0 

-10 0 10 20 
X-COORDINATE, mm 

a:: 20 --...--...-----,----------,.--
§ Side View 

-). 
10 

0 

-10 

-20------------------
0 100 200 300 400 

Z-COORDINATE, mm 
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4.2 Evaluation of geometric properties 

In order to know how the tensile load is distributed among the wires in a rope and to 
calculate wire stresses, several geometric properties of each wire must be evaluated 
before and after the application of load, These properties are the path length, the 
curvature and the torsion. 

Path length per lay of strand 

The equations for evaluation of the path length of single and double helical wires in 
each lay of the strand can be derived from Equations 2 through 4 and are shown in 
Equations 27 and 28. 

Path length of single helical wiras in each lay of strand: 

S = 21rr. 
' cos(a.) 

Path length of double helical wires in each lay of strand: 

- 2,r ,. 
Sw - cos(a,)sin(a.) 

(27) 

(28) 

Table 3 shows the path lengths per lay of strand for a 6x19 Seale rope as calculated 
by these two equations. The table also shows the wire-to-rope length ratios by 
comparing the wire paths to the strand lay lengths. 

Wire Lay length of Lay length of Path length per Wire-to-rope 
strand referred to strand L. (mm) lay of strand (mm) length ratio 

Straight: 

W10 NAp NAp NAp 1.000 

Single helical: 

W11 L,, 33.02 34.40 1.042 

W20 L20 n.48 82.03 1.059 

W30 L30 199.61 212.10 1.063 

Double helical: 

W21 L20 n.48 83.04 1.072 

W31 ~ 199.61 217.06 1.087 

W32 L30 199.61 227.50 1.140 

NAp Not applicable 

Table 3: Path length of wires per lay of strand 
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Curvature 

A special moving frame of reference has been used in generation of the basic 
equations for evaluation of the curvature and torsion of a curve in three-dimensional 
space (Sokolnikoff & Redheffer, 1958 and Leithold, 1986). This frame is formed by a 
three-dimensional, right-handed set of orthogonal unit vectors as shown in Figure 12. 
The origin of the frame is located at the head of any position vector that may be R or 
P of the models just developed. The three unit vectors t, n, and b are called the unit 
tangent, the unit principal normal, and the unit bi-normal vectors respectively. The· 
frame is sometimes referred to as the moving tri-hedral associated with the curve. 

X 

Ftgu,. 12: The moving trl-hedral 

(Blnormal vector) 
I I Wire 

(Principal ,' 
normal • 
vector) 

The curvature at a certain point of a curve is a measure of how quickly the curve 
changes direction at that point. It is the reciprocal of the radius of the curve at that 
point and expressed in the unit of 1/mm in this report. In a wire, a change of the 
curvature is produced by bending moments that act on the wire cross section. 
Curvature not only is related to the shearing stress but also has effect on the 
distribution of the tensile stress on the cross section. Therefore, the deformation of 
the rope structure in terms of the curvature change needs to be specified in order to 
determine its effect on shearing and normal stresses. 

The curvature vector is defined to be the first derivative oft in the moving tri-hedral, 
as shown in Figure 12, with respect to arc length of a curve. It can be expressed as 
Kn, where K is a scalar multiplier. The curvature vector is in the same direction of the 
principal normal vector. The magnitude of this vector is called the curvature of the 
curve and is simply equal to K because the magnitude of n is unity. The curvature of 
a straight line is always zero because the tangent vector is constant. The curvature 
of the centroidal axis of either a single or a double helical wire, therefore, may be 
specifically defined to be the magnitude of the rate of change of the unit tangent 
vector with respect to arc length of the wire. 

Basic formulae derived for evaluation of curvature are expressed in terms of the 
position vector with arc length as the parameter, because arc length arises naturally 
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from the shape of the curve (Sokolnikoff & Redheffer, 1958). To directly apply the 
model developed in this paper, it is more convenient to use Equations 29 and 30 for 
computation of the curvature (Stewart, 1991 ). The vectors R and P denoted with 
single and double primes in the equations represent the first and second derivatives 
respectively with respect to 8, or 8w, just as for real-valued functions. Similarly, the 
vectors denoted with triple primes to be used later, represent the third derivatives 
with respect to 8, or 8w. The symbo1 ·1 1·. by which the vector is bounded, represents 
the magnitude of the vector as is generally used in vector analysis. R was given by 
Equation 6 and its component functions were given in Equations 7, 8 and 9. P was 
given by Equation 14 and- its component functions were given in Equations 24, 25 
and 26. 

Curvature of single helical wires: 

_IR'xR'I 
K,- ~•r 

Curvature of double hellcat wires: 

-' P' X P' 1 
Kw- p•f 

(29) 

(30) 

Substituting the first and second derivatives of each vector into Equations 29 and 30 
and perfonning the cross and dot product and other operations, the expanded fonns 
of these equations expressed in tenns of the component functions are shown below. 

Expanded curvature equation for single helical wires: 

K,= 
(y',z",-z, y','f + (z, x·. -x',z",)2 +(x', y' 1 -y' 1 x",'f 

~{x','f +{y'.)2 +{z,)2 r {29a) 

After substituting the functions into Equation 29a, it can be reduced to its simplest 
fonn as shown in Equation 29b. This expression indicates that the curvature of a 
single helical wire is independent of the angle of strand rotation and is constant for a 
given helix angle. 

_ cos2{a,) 
K, -

r, 

Expanded curvature equation for double helical wires: 

ICw = 
{y'. z". - z. y' .>2 + (z. x". - x'. z" .)2 + {x'. y'. -y'. x" .'f 

~(x•.)2 +{y' .)2 +(z.)2 ]3 
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The curvatures were computed for both single and double helical wires in a 6x19 
Seale wire rope. The results for single helical wires are shown in Table 4. The 
results for double helical wires are shown in Table 5 with the absolute value of 8w 
increasing from O to 360 degrees at increments of 15 degrees. 

Wire Curvature (1/mm) Torsion (11mm) 

W11 0.0513 0.1753 

WlO 0.0252 0.0724 

W30 0.0100 0.0179 

Table 4: Curvature and torsion of single helical wires 

Angle of wire 
Curvature (11mm) Torsion (11mm) 

rotation (0
) W21 W31 W32 W21 W31 W32 

0 0.0652 0.0202 0.0265 0.1249 -0.0198 -0.0268 

15 0.0649 0.0201 0.0264 0.1256 -0.0200 -0.0273 

30 0.0638 0.0197 0.0260 0.12n -0.0207 -0.0288 

-45 0.0620 0.0190 0.0254 0.1313 -0.0218 -0.0314 

60 0.0593 0.0180 0.0244 0.1365 -0.0233 -0.0353 

75 0.0559 0.0167 0.0232 0.1435 -0.0254 -0.0407 

90 0.0517 0.0151 0.0216 0.1528 -0.0281 -0.0479 

105 0.0467 0.0132 0.0197 0.1653 -0.0319 -0.0580 

120 0.0411 0.0110 0.0175 0.1829 -0.0377 -0.0723 

135 0.0353 0.0086 0.0152 0.0286 -0.0485 -0.0933 

150 0.0297 0.0060 0.0130 0.2460 -0.0757 -0.1234 

165 0.0254 0.0033 0.0113 0.2914 -0.1897 -0.1586 

180 0.0238 . 0.0016 0.0106 0.3157 -0.7359 -0.1768 

195 0.0254 0.0033 0.0113 0.2914 -0.1897 -0.1586 

210 0.0297 0.0060 0.0130 0.2460 -0.0757 -0.1234 

225 0.0353 0.0086 0.0152 0.2086 -0.0485 -0.0933 

240 0.0411 0.0110 0.0175 0.1829 -0.0377 -0.0723 

255 0.0467 0.0132 0.0197 0.1653 -0.0319 -0.0580 

270 0.0517 0.0151 0.0216 0.1528 -0.0281 -0.0479 

285 0.0559 0.0167 0.0232 0.1435 -0.0254 -0.0407 

300 0.0593 0.0180 0.0244 0.1365 -0.0233 -0.0353 

315 0.0620 0.0190 0.0254 0.1313 -0.0218 -0.0314 

330 0.0638 0.0197 0.0260 0.1277 -0.0207 -0.0288 

345 0.0649 0.0201 0.0264 0.1256 -0.0200 -0.0273 

360 0.0652 0.0202 0.0265 0.1249 -0.0198 -0.0268 

Table 5: Curvature and torsion of double helical wires 
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; The curvatures of the IWRC and S3 helical wires were plotted against the absolute 
value of the angle of strand or wire rotation. Their relationships are shown in Figure 

;, 13 for two periods. They indicate that 

;:(a) the curvature of single helical wires is independent of the angle of strand i rotation as expressed by Equation 29b; 

• ) the curvature of double helical wires is a periodical function of the angle of wire 
rotation with a period of 360 degrees; and, 

the curvature of double helical wires is at maximum when the wires are 
farthermost from the rope centre and is at minimum when the wires are nearest 
to the rope centre because the angle of wire rotation is measured from the 
positive- U axis which points away from the rope centre as shown in Figure 3. 

E 
E ...... -

0.06 

0.05 

0.04 

0.03 

w 0.02 L........i.-..i-.-.i.-----i-~-------
0:: 
~ 0.028 -----..-----.---r----,--~-, 

~ a:: 0.024 
:::, 
u 0.020 

0.016 

0.012 

0.008 

0.004 

1--~=-~~-----l~--,r----, 

O t 80 360 540 720 

ANGLE OF STRAND OR WIRE ROTATION 
(85 or Bw), deg 

.. 13: Curvature of IWRC and S3 wires 
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Torsion 

The torsion at a certain point of a curve measures the degree of twisting of a curve at 
that point. The change of torsion in a wire is produced by twisting moments that act 
on the wire cross section. Angular deformation between cross sections results in 
shearing .stresses. 

The first derivative of b in the moving tri-hedral, as shown in Figure 12, with respect 
to arc length of a curve will yield a vector which is parallel to n and can be expressed 
as -m. The scalar multiplier , is called the torsion of the curve. It measures the rate 
at which the centroidal axis of either a single or a double helical wire twists out of its 
osculating plane, which is the plane containing the unit tangent and the unit principal 
normal vectors. The torsion of a straight line is defined to be zero. If the curve is a 
plane curve, the torsion is always zero because the osculating plane is the plane of 
the curve and the unit bi-normal vector is constant. 

Basic formulae derived for computation of torsion are expressed in terms of the 
position vector with arc length as the parameter (Sokolnikoff & Redheffer, 1958). To 
directly apply the models developed in this paper, It is more convenient to use 
Equations 31 and 32 for computation of the torsion (Stewart, 1991 ). 

Torsion of single helical wires: 

R' xR"• R• 
1', = IR'x R" r (31) 

Torsion of double helical wires: 

(32) 

Substituting the derivatives of each vector into the equations and performing the 
cross and dot product and other operations, the expanded forms of these equations 
expressed in terms of the component functions are shown below. 

Expanded torsion equation for single helical wiras: 

i- = X-, (y', z", - Z:, y" ,) + 'i, (Z:, x•, - x, z" ,) + z•, (x', y", -y', x• ,) 
1 

(y' 1 z" a - Z I y° 1 >2 + (z' a x· a - x' 1 z" 1 )
2 + (x' I y° a - y' 1 x· 1 )

2 (31a) 

After substituting the functions into Equation 31a, it can be reduced to its simplest 
form as shown in Equation 31 b. It indicates that the torsion of a single helical wire is 
independent of the angle of strand rotation and is constant for a given helix angle. 

_ sin(a,) cos(a,) 
1'1 - (31b) 

r, 
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Expanded torsion equation for double helical wi19s: 

: ~.(y' w rw -tw 'J' .,,)+ 'J'\(iw ~. - X'w r.)+ Z-w(x'w y'.,, -y' w ~.) 
i"w )2 ( 2 ( , 2 ('/'.r.-t.'/'. + t.~.-x'.rw) + x.'J'.-y' • .,:.) 

(32a) 

The torsions of both single and double helical wires In a 6x19 Seale wire rope were 
computed. The results for single helical wires are shown in Table 4. The results for 
double helical wires are shown in Table 5 with the absolute value of 8w increasing 
from Oto 360 degrees at increments of 15 degrees. The negative torsions for W31 
and W32 represent the twisting of the centroidal axes of these wires in a left lay 
strand, where the twisting Is opposite In direction to that in a right lay strand. 

The torsions of the IWRC and S3 helical wires were plotted against the absolute 
value of the angle of wire rotation. Their relationships are shown in Figure 14 for two -
periods. They indicate that: 

(a) the torsion of single helical wires is independent of the angle ofstrand rotation 
as expressed by Equation 31b; 

(b) the torsion of double helical wires Is a periodical function of the angle of wire 
rotation with a period of 360 degrees; and, 

(c) the torsion of double helical wires is at minimum when the wires are farthermost 
from the rope centre and is at maximum when the wires are nearest to the rope 
can~. --

It is also noted that the minimum torsion occurs at the locations where the curvature 
is at maximum and the maximum torsion occurs at the locations where the curvature 
is at minimum. 

39 



91PEEC Bulletin 81 - 2001 

E 
E 

' -.. 
z 
0 
en 
a:: 
f2 

0.32 

0.28 

0.24 

0.20 

0.16 

0.12 

0.08 

0.04 

0.1 

0 

·-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

-0.6 

-0.7 

-o.s-----------------
0 180 360 540 720 

ANGLE OF STRAND OR WIRE ROTATION 
(85 or Bw), deg 

Figure 14: Torsion of IWRC and S3 wires 



OIPEEC Buietln 81 - 2001 

4.3 Model for the defonned rope 

When a tensile load is applied to a wire rope, each individual wire will deform. 
Because of the differences in the wire lengths and the helix angles of single and 
double helical wires, the load will not be distributed among the wires simply based on 
the cross-sectional areas. The effect of these wire deformations on the geometry of 
the rope structure needs to be determined. The major change is· axial elongation 
along the centroidal axis of a wire. Accompanying the axial elongation is a lateral 
contraction of the cross section. In addition, bending and twisting moments are 
generated in the wire that cause the changes in the curvature and torsion of the wire. 
The combination of all of these individual wire deformations result in the deformation 
of the rope structure. 

There will be a resultant twisting moment which will cause the rope to rotate if the 
ends are not restrained. Therefore, the deformation of the rope structure will depend 
on whether the rope is allowed to rotate or not In mine hoisting, the cage or skip and 
rope are prevented from rotating by the shaft guides. Some rope manufacturers also 
produce rotation-resistant rope (Wire Rope Technical Board, 1993), which is made 

. w~ layers of strands laid in opposite directions to produce counteracting torques. In 
the use of rope with both ends restrained, the total number of strand lays and the 
total number of wire lays in a rope are kept constant. Thus, the relative rotation, n, 
includ~ in the models for double helical wires, remains constant as the rope 
structure deforms under load. A system of equations can be established for 
determining the structural parameters of the deformed rope at a given rope strain, 
thus obtaining the model for the deformed rope. The geometric properties of each 
deformed wire can be evaluated the same way as shown in this report for the 
undeformed rope. 

5. Con cl us Ions 

The model developed in this report fully describes the geometry of the structure of 
wire ropes of any round-strand construction. It is expressed by vector equations in a 
three-dimensional, right-handed rectangular Cartesian co-ordinate system and is 
general enough that any combination of wire and strand lay directions can be 
handled, being careful only to observe the stated sign conventions for the angles of 
strand and wire rotation and the relative rotation in the component functions. 

The wire paths are defined for the first time by using a developed model, which not 
only reveal the sha~s of the various wires but also are useful for predicting damage 
patterns through external and internal wear. The geometric properties of each wire 
can be easily evaluated by using this model. An analysis for a 33-mm 6x19 Seale 
IWRC, right regular lay wire rope was made to illustrate the usefulness of the model. 
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