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INTRODUCTION

Exposure to mineral aerosol is an occupational health hazard in mining and mineral
processing industries because of the risk of developing pneumoconiosis. Agricola (1556)
described this hazard for metal mining in Carpathia. He described shortness of breath and
consumption, conditions that are now associated with asthma and emphysema. By the end
of the nineteenth century, several respiratory diseases were known to affect miners, includ-
ing silicosis and coal workers’ pneumoconiosis (Fletcher, 1948; Seaton et al., 1981). For
example, silicosis, not tuberculosis, was clearly recognized as the hazard in the Vermont
granite quarries and stone-cutting sheds (McFarland, 1927). The Gauly Bridge Tunnel
disaster in the mid-1930s caused the deaths of an estimated 700 workers by acute silicosis
and focused the nation’s attention on this disease (Cherniack, 1986). By the mid-twentieth
century, it was clear that risk of simple pneumoconiosis is associated with a miner’s cumula-
tive exposure to mine aerosol in the respirable size range and that prevention lies in reduc-
ing that exposure through regulation (Seaton, 1986).

In the United States, regulation of mine worker exposure to airborne mine dust is the
responsibility of the Mine Safety and Health Administration (MSHA) in the U.S. Depart-
ment of Labor. The key legislation relating to improved mine worker health was the Federal
Coal Mine Health and Safety Act, enacted in 1969 (U.S. Congress, 1969) and subsequently
amended as the Federal Mine Safety and Health Act of 1977 (U.S. Congress, 1977). MSHA
receives technical assistance from the National Institute for Occupational Safety and Health
(NIOSH). NIOSH also provides recommended exposure limits (RELs) for contaminants to
MSHA. MSHA'’s regulation of mines includes the establishment of a dust standard adminis-
tratively based on the these RELs. Some mine operators must submit a dust control plan
designed to meet the dust standard. Periodic mine inspections determine if mines are com-
plying with both the dust standard and the dust control plans (MSHA, 1991).

The most common dust measurements are those for respirable dust (according to the
definition given in Fig. 26-7), that is, the fraction of aerosol particles able to reach the
gas exchange region of the lungs. The other health-related size fractions (inhalable and
thoracic—see Fig. 25-1, and “total” dust) are also occasionally measured. A “total” dust mea-
surement is defined by the common practice of the last 30 years or so, using 25mm or 37mm
plastic cassettes (e.g., from PAL, MIL, SKC*). The types of mines have been categorized

*See Appendix I for full manufacturer addresses referenced to the italicized three-letter codes.
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for regulatory purposes as either coal mines or other types of mines (mdlcated as metal and
nonmetal mines).

This chapter summarizes aerosol measurement technology currently used in the U.S.
mining industry as it relates to regulation, research, and personal exposure monitoring.

MINE AEROSOL SOURCES

The choice of measurement techniques and the performance of various aerosol monitors may
be affected by the type of aerosol to be sampled. Mine aerosols typically originate from com-
minution, re-entrainment, and combustion sources.

Comminution

Mechanical crushing of the mined material by drill bits, crushers, and mining machine picks
generate significant concentrations of respirable aerosol mass in the mine. In metal and non-
metal mines, a typical mining process begins with the cutting or drilling and blasting of the
ore from the parent rock. The ore is then scooped or gathered and loaded into trucks or onto
conveyers for transport to the surface. In some cases the ore is crushed underground to facil-
itate transportation. The aerosol composition generated from these activities is generally
similar to the host ore; however, some selective fractionation of the composition may
occur based on the cleavage and strength patterns of the host ore. After the ore is removed,
underground construction activities then begin to support the roof, direct ventilation air, and
extend the mine’s infrastructure.

Continuous mining methods are the most prevalent underground coal extraction
processes, accounting for most of the underground coal mined (Organiscak, 1989). In con-
tinuous mining, a mining machine, pictured in Figure 26-1, cuts coal from the face and
loads it directly into shuttle cars. The shuttle cars transport the coal from the face area to the
material transfer system, usually a crusher that loads onto a conveyor belt.

Fig. 26-1. Continuous miner. (From U.S. Bureau of Mines.)
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Re-entrainment

Aerosols that result from comminution may settle on roadways or in return air entries and
be subject to re-entrainment through the activities of mobile equipment such as shuttle cars,
ventilation, or in-mine construction activities (Jankowski and Hake, 1989). In coal mining, an
inert limestone dust is spread on the entryway roof, floor, and ribs to prevent coal dust explo-
sions. This limestone dust is coarse and contributes only a small fraction to the overall mine
aerosol concentrations.

Combustion

Combustion by-products are the other major source of aerosols in mines. Combustion aerosol
particles are smaller in size and currently can contribute significantly to the overall mass of
respirable aerosols. They have higher number concentrations than the coarser comminution
aerosol and a greater interaction potential with the lungs. Typical mining sources include
blasting agent fumes, welding fumes, and diesel engine particles and condensates.

Concentrations of blasting agent fumes and welding aerosols in the mine environment are
primarily controlled by dilution with the mine ventilation air. Monitoring the aerosol con-
centration of these agents must focus on the transient nature of the aerosol and short-term
exposure monitoring. Due to the intermittent nature of the sources and the substantial ven-
tilation volumes needed for mining, the overall concentrations of these aerosols are gener-
ally low with some exceptions in areas with poor ventilation.

With the exception of coal mines, diesel engines provide the primary power source
for mining equipment. In addition to being exposed to dust, a miner working in an
underground mine with diesel-powered equipment is exposed to a wide array of pollutants
from diesel exhaust. These include CO, CO,, NO, NO,, SO,, diesel exhaust aerosol, and
a variety of aerosol-associated and gas-phase hydrocarbon compounds (Cantrell and Watts,
1997). To date, ventilation rates in diesel-equipped mines have been dictated by gas concen-
trations. In the future, new standards may dictate that diesel exhaust aerosol concentration
is the factor that will control required ventilation volumes (U.S. Department of Labor, 1998;
MSHA, 2001a,b).

Of the combustion aerosols in the mining environment, diesel exhaust aerosol is of
particular concern because it is almost entirely respirable in size, with more than 90% of
the particles, by mass, having an aerodynamic diameter less than 1.0um (Cantrell, 1987).
This means that the aerosol can penetrate to the deepest regions of the lungs and, if retained,
cause or contribute to the development of obstructive or restrictive lung disease
(Watts, 1987).

PHYSICAL CHARACTERISTICS OF MINE AEROSOL

Aerosols in mines sources have particle size distributions that are determined by both the
mining method and the source of the aerosol (Cantrell and Rubow, 1992a,b). A size distrib-
ution summarizing the physical characteristics of mine aerosols is shown in Figure 26-2. The
shape of the aerosol size distribution is influenced by the different sources contributing to
the aerosol. Figure 26-2 displays some of these sources and the physical mechanisms, such as
condensation and coagulation, which transfer aerosol mass from one size to another. It should
be noted that these mechanisms and the general shape of the distribution are not unique to
mine aerosols.

There are three distinct aerosol size ranges identifiable by features in measured mine
aerosol size distributions. The smallest of these, from 0.001 to 0.08 um, is the Aitken nuclei
range, which contains primary aerosol from combustion sources, such as diesel engines, and
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Fig. 26-2. Size distribution summarizing the general physical characteristics of mine aerosol. (From
Cantrell et al., 1987.)

secondary aerosols or chain aggregates, formed by coagulation of primary aerosols. The
next size range, from 0.08 to approximately 1.0um, is termed the accumulation range. This
size range contains direct aerosol emissions plus aerosols that grow from the Aitken nuclei
range by accumulating mass through coagulation and condensation processes. The last range,
1.0pum to approximately 40um, is termed the coarse particle range. Aerosols within this
size fraction generally result from mechanical processes such as rock fracture and bulk
material handling. Mineral dust aerosol re-entrained by mine haulage vehicles during the
load-haul-dump cycle is an example of an in-mine emission that will contribute aerosol to
this size range.

For convenience, the Aitken nuclei and the accumulation ranges are combined in a single
“fine” particle range. A division is usually made between this range and the “coarse” par-
ticle range at 1.0 um. This distinction is possible because sources of aerosol in the two ranges
are usually different, and the coarse particle range contains very little mass transferred from
the accumulation range by coagulation.

In each of the ranges mentioned, the size distribution of mine aerosol can exhibit a
maximum, or mode, which takes its name from the size range in which it occurs. Hence, the
maximum in the accumulation range is termed the accumulation mode. Figure 26-3 presents
a typical size distribution of aerosol mass concentration measured in a haulage entry of a
diesel-equipped coal mine (Cantrell and Rubow, 1990). Here the modal character of the size
distribution is discernible even though the nuclei mode is suppressed compared with the accu-
mulation mode. In contrast, Figure 26—4 shows a mass size distribution measured in the



PHYSICAL CHARACTERISTICS OF MINE AEROSOL 805

2 T TTITTTT T T rTorIramm

Ac,/Alog 1o(dp), mg/m 3

0.1 1 0 100
AERODYNAMIC DIAMETER (d ) pm

Fig. 26-3. Mass size distribution of mine aerosol in diesel-equipped mine. (From Cantrell and
Rubow, 1990.)
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Fig. 26-4. Mass size distribution of mine aerosol in an all-electric-equipped mine. (From Cantrell and
Rubow, 1990.)

haulage way of an all-electric-motor-equipped coal mine. Here the accumulation mode is
much smaller than the coarse particle mode. Taken together, the figures indicate that diesel
aerosols can make a strong contribution to accumulation mode aerosols in a diesel engine—
equipped mine.
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MEASUREMENT TECHNOLOGY

Aerosol measurement technology used by and for the mining industry can be conveniently
separated into compliance measurements in support of regulation and research measure-
ments that aid in the development of new compliance measurement techniques, determine
control effectiveness, and assist in determining the fundamental properties of mine aerosols.

Compliance measurements are primarily intended for use in enforcement of regulations
established by MSHA. Regulatory requirements determine the sampling strategy and instru-
mentation used for such measurements. Research aerosol measurements are used to evalu-
ate engineering dust control techniques, to develop new aerosol instrumentation, to define
new occupational health hazards, and to expand knowledge regarding mine aerosols. They
draw on all of the technology available to the aerosol community. Consequently, compliance
and research aerosol measurements are treated separately here. Also, the following discus-
sion focuses on aerosol measurements in U.S. mines. For a discussion of measurement prac-
tices in the European Community, see Vincent (1991).

Compliance Measurements and the Regulatory Environment

Regulatory Requirements

Metal and Nonmetal. MSHA regulates practices affecting health and safety in metal and
nonmetal mines and mills under the authority of the Federal Mine Safety and Health Act
of 1977 (U.S. Congress, 1977). The specific regulations are found in the Code of Federal
Regulations, Title 30 (MSHA, 1991). MSHA continues to use the 1973 recommended thresh-
old limit values of the American Conference of Governmental Industrial Hygienists
(ACGIH, 1973). Compliance with these regulations is determined by the collection of envi-
ronmental samples by MSHA inspectors. Aerosol-related contaminants that are regulated
include total dust, respirable dust, quartz, asbestos, silicates, radionuclides in air, diesel
exhaust aerosol, and welding fumes (MSHA, 1990; 2001a,b).

The following example illustrates the type of sampling and analysis procedure for a
respirable dust containing more than 1% quartz. A sample is collected using the personal
respirable dust sampler shown in Figure 26-5. Sample air is first passed through a Dorr-Oliver
nylon cyclone pre-classifier (MSA) at a flow rate of 1.7 L/min to remove the nonrespirable
fraction of sampled dust. Respirable dust is then collected on a filter that is analyzed
gravimetrically to determine mass concentration. The filter deposit is also analyzed for quartz
content using X-ray diffraction (MESA, 1975). The measured mass concentration is com-
pared with the PEL determined from the quartz content of the respirable dust by

10mg/m?*

PEL, uarlz = .
%% ™ percent respirable quartz+2

(26-1)

For a given exposure level, the magnitude of the toxicity is proportional to the quartz
content (ACGIH, 1980). The factor 2 in the denominator of the PEL formula ensures that
dust exposures will not be excessively high when the quartz content is less than 5%. When
quartz levels are less than 1%, nuisance particles listed by the 1973 ACGIH standard are reg-
ulated to 10 mg/m’ of total dust. MSHA has proposed a revision of many of the existing health
regulations (MSHA, 1989a). Included in these revisions is a proposed change in the PEL for
respirable quartz. The current PEL is 100pg/m’ of respirable quartz (MSHA, 1971).

Coal. Respirable coal mine dust measurements are made to determine compliance with
MSHA -established dust standards (MSHA, 1989b). In 1970, a mandatory total respirable dust
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Fig. 26-5. Personal Respirable Dust Monitor. (Courtesy of MSA Co.)

standard of 3.0mg/m® was established for underground coal mines in the Federal Coal Mine
Health and Safety Act of 1969 (U.S. Congress, 1969). The respirable dust standard was sub-
sequently lowered in 1972 to 2.0mg/m®. Mandatory dust standards for surface work areas of
underground coal mines and surface mines also became effective in 1972. These regulations
were continued under the Federal Mine Safety and Health Act of 1977 (U.S. Congress, 1977),
which amended the 1969 Coal Act and merged coal and noncoal regulations into one law. In
the 1969 Act, “concentration of respirable dust” was defined as that measured using a Mining
Research Establishment (MRE) parallel plate elutriator (Casella, model 113A, United
Kingdom) sampling instrument (Fig. 26-6) or such equivalent concentration measured with
another device. This instrument was designed to have a sampling efficiency equivalent to
the respirable response curve specified by the British Medical Research Council (BMRC)
(Lippman, 1989). The 1977 Act changed the definition of “concentration of respirable dust”
to be the “average concentration of respirable dust measured with a device approved by the
Secretary (of Labor) and the Secretary of Health Education and Welfare.”

The personal respirable dust sampler illustrated in Figure 26-5 is also approved for mea-
suring respirable coal mine dust (MSHA, 1989b). The sampling rate used for coal, however,
is 2L/min (Tomb and Raymond, 1970). Sample analysis for total respirable dust is gravimet-
ric (Raymond et al., 1987). Analysis for quartz is by Fourier transform infrared spectrome-
_ try (Ainsworth et al., 1989). Measurements are converted to equivalent MRE concentrations
by multiplying the measured concentrations by an accommodation factor of 1.38 (Treaftis et
al., 1984). The difference between the Dorr-Oliver and BMRC sampling efficiency curves is
evident from Figure 26-7 (Caplan et al., 1977a,b; Lippman, 1989). Specific regulations detail-
ing the methods for collecting respirable dust samples are found in the Code of Federal
Regulations, Title 30 (MSHA, 1991).

A mine is in noncompliance with its dust standard if the arithmetic average concentration
of five consecutive respirable dust samples is in excess of the applicable standard (MSHA,
1989b). If the percent quartz is less than 5%, the standard is 2.0mg/m?, calculated using
Eq. 27-1. In underground coal mines, samples are collected on workers with a designated
occupation, usually a mining machine operator. A mine may also not be in compliance
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with the law if the dust control plan is not being used. MSHA is required to inspect all under-
ground coal mines four times a year, and the mine operators are required to sample
bimonthly.

Diesel Exhaust Aerosol. NIOSH (1988) has recommended that “whole diesel exhaust
be regarded as a ‘potential occupational carcinogen,” as defined in the Cancer Policy of the
Occupational Safety and Health Administration.” NIOSH further stated that “though
the excess risk of cancer in diesel-exhaust-exposed workers has not been quantitatively
estimated, it is logical to assume that reduction in exposure to diesel exhaust in the work-
place would reduce the excess risk.” The International Agency for Research on Cancer (1989)
has also classified diesel exhaust as “probably carcinogenic to humans.” Additionally, the
Mine Safety and Health Administration (MSHA, 1988) received a recommendation from
an advisory committee to establish a diesel exhaust aerosol standard and to establish regu-
lations to minimize exposure to all diesel pollutants in underground coal mines. The ACGIH
has proposed a threshold limit value (TLV) for diesel exhaust particles of 50 ug/m*(ACGIH,
2000).

MSHA has proceeded to establish a diesel exhaust aerosol emission standard for
diesel powered equipment in underground coal mines (MSHA, 2001la) and a PEL for
diesel exhaust aerosol in metal and non-metal mines (MSHA, 2001b). The regulation
for coal mines specifies a limit of 2.5 grams per hour for permissible heavy duty equipment.
The regulation also specifies an interim aerosol emissions limit of 5.0 grams per hour and,
after the year 2005, a limit of 2.5 grams per hour for non permissible heavy duty equipment.
Light duty diesel powered equipment exhaust aerosol emissions are limited to 5.0 grams per
hour. For metal/non-metal mines MSHA has proposed an interim total diesel aerosol carbon
(TC) PEL of 400p1g/m® based on an 8 hour sample and, after the year 2005, a final PEL of
160pg/m®.

Research Aerosol Measurements

Research measurements are used to characterize the mine aerosol’s mass and specific com-
ponents such as quartz, trace elements, and carbon as a function of aerosol size. Recent
emphasis on the potential health hazard associated with exposure to diesel exhaust aerosols
has focused attention on specific techniques to measure these aerosols. The primary tech-
nique used to collect samples in coal and noncoal mines for all of these measurements is size-
selective sampling using inertial impaction. In addition, several aerosol sensor techniques are
being developed for continuous monitoring of respirable mine aerosols. These include both
light-scattering and direct mass measurement.

Size-Selective Sampling. A size-selective sampling technique that has been useful for
in-mine measurement of both diesel and mineral dust aerosol employs the Marple personal
impactor (series 290, AND) discussed in Chapter 10. The series 290 sampler was originally
designed for NIOSH as a wood dust sampler by Rubow et al. (1987). More recently, it has
been used in surveys of diesel-equipped mines by the U.S. Bureau of Mines (BOM) and
NIOSH to measure the size distribution of mine aerosol (NIOSH, 1987). Estimates were
made of average concentration levels of respirable diesel aerosol for the working shift using
the sub-1.0pum portion of each sample under the assumption that this accounted for most of
the diesel exhaust in the mine atmosphere. The average concentration for submicrometer
aerosol generated in the mining sections was 0.7 £ 0.3mg/m".

The micro-orifice, uniform deposit impactor (MOUDI) (model 100, MSP), also discussed
in Chapter 10, has also been used to measure the size distribution of mine aerosol over the
size ranges in which respirable coal dust and diesel aerosols are expected to predominate
(Marple et al., 1991). In addition to laboratory studies of these aerosols (Marple et al., 1986),
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the MOUDI has been used during field experiments in underground coal mines to evaluate
its ability to separate diesel aerosol from coal dust aerosol on the basis of their size distrib-
utions (Rubow et al., 1990a). The field evaluations were conducted in underground mines
that used only electric-powered haulage equipment and in other mines that used diesel-
powered haulage equipment.

Typical mass size distributions of aerosols measured in the haulage entry of the diesel-
equipped mines, shown in Figure 26-3, exhibit two distinct maxima: one submicrometer
and the other greater than 1 pum. These measurements indicate that more than 90% of diesel
exhaust aerosols in the diesel-equipped coal mines studied were submicrometer in size
(Cantrell, 1987). The diesel-associated submicrometer aerosol accounted for approximately
40% to 60% of the respirable aerosol mass concentration. In contrast, aerosol size measure-
ments in the all-electric coal mines, typified by Figure 26-4, exhibited a very small sub-
micrometer maximum. Less than 10% of the measured respirable aerosol mass was in the
submicrometer size range.

Diesel Aerosol Sampling and Analysis. Three analytical methods have been used for mea-
surement of diesel exhaust aerosol in underground mines. These methods are (1) its mass
concentration, (2) its carbon content, and (3) the combustible fraction of the sample. The first
is measured using typical filter gravimetric techniques and the second by direct analysis of
the organic carbon (OC) and elemental carbon (EC) content of the aerosol through
thermal-optical analysis (see Chapter 11). The third is the respirable combustible dust (RCD)
method that uses gravimetric techniques combined with ashing to separate mineral from
combustible matter. In all cases, size-selective sampling can be used to provide a sample that
contains most of the diesel-associated portions of the sampled respirable aerosol.

A personal diesel exhaust aerosol sampler based on size-selective sampling, developed
for use in underground coal mines (Rubow et al., 1990b; McCartney and Cantrell, 1992), is
pictured in Figure 26-8. It has three stages and employs inertial impaction for separating and
collecting the diesel and mineral dust fractions of the sampled respirable aerosol. The first
stage is an inertial preclassifier that separates and collects the larger, nonrespirable aerosol.
The pre-classifier used in this design is a 10mm Dorr-Oliver cyclone. Its second stage is a
four-nozzle impactor with a 50% cut point of 0.8 um aerodynamic diameter. The third stage,
which is a filter, collects the remaining aerosol particles with less than 0.8 um aerodynamic
diameter. The sampler components are used with an MSA dust monitor sampling frame and
operate at a sampling flow rate of 3.33 x 10°m®s [2L/min]. It is designed to be compatible
with commercial personal sampling pumps.

Gravimetric Analysis. Coupled with gravimetric analysis, the personal diesel exhaust aerosol
sampler can provide measurements of diesel exhaust aerosol concentrations in coal mines
under worst-case sampling conditions, which are accurate to within 25%, with a confidence
of 95%, for concentration levels greater than 0.3 mg/m® (Cantrell and Rubow, 1991). During
field evaluation tests, the sampler was used to make numerous aerosol concentration mea-
surements in underground coal mines that use diesel haulage equipment. Figure 26-9 sum-
marizes respirable aerosol concentrations in these mines, determined from area samples
collected in thé haulage entries, on coal shuttle cars, and in the ventilation return entries
(Cantrell et al., 1992). Figure 26-10 summarizes the diesel exhaust aerosol concentrations
measured using the same samples.

The haulage, shuttle car, and return locations have similar distributions for the diesel
exhaust aerosol portion of the respirable total. This implies that diesel exhaust aerosol con-
centrations are uniform regardless of where they are measured in the section. Total respirable
aerosol concentration levels are different depending on where the samples are taken. The
highest is in the ventilation return, and the lowest is in the haulage way. These results imply
that exposure to respirable mineral dust is location and hence, is occupation dependent.
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The median diesel exhaust aerosol concentration determined with the personal sampler
at the haulage location for the three mines surveyed was 0.8 + 0.2mg/m’. Diesel aerosol
contributed 65% of the respirable aerosol at this location.

Direct Carbon Analysis. The use of size-selective sampling with gravimetric analysis is only
intended for measuring diesel exhaust aerosol concentrations at the levels displayed in Figure
26-10 and cannot be used to support a standard below approximately 300 ug/m’. Because
control technology is currently capable of reducing diesel exhaust aerosol concentrations to
levels well below 300pg/m’, there is a need for an analytical technique that can be used to
measure diesel exhaust aerosol at this level (Ambs et al., 1991).

One approach is the thermal-optical method (Birch and Cary, 1996) published as Method
5040 by NIOSH. The method was initially described in 1996 and was recently updated
(NIOSH, 1999). In the analysis, the OC and EC in a quartz fiber filter sample are determined
through temperature and atmosphere control. The instrument has an optical feature that
corrects for sample charring. The analytical technique on which the method is based was orig-
inally developed for atmospheric aerosols (Johnson et al., 1981; Cadel and Groblicki, 1980;
Hering et al., 1990). NIOSH proposed its use for occupational monitoring of DPM. Although
OC and EC are determined by the method, NIOSH researchers proposed use of EC as
an-exposure index because it is a selective marker of DPM in many occupational settings. In
contrast, OC can originate from many nondiesel sources (e.g., drill oil mist, hydraulic oil mist,
hydraulic fluids, and carbonates). The method evaluation included field studies and interlab-
oratory comparisons (Birch, 1998; Birch et al., 1999). Improvements in the original method
and instrument design were made in collaboration with the laboratory that first offered the
analysis and instrument on a commercial basis. The method can detect as little as 1 pg/m’® of
EC. Currently, there are five commercial laboratories (four in the United States and one in
Canada) that perform the analysis. In underground mines, EC and total carbon (TC = EC +
OC) account for about 50% and 80% respectively, of the submicrometer particulate mass,
but these percentages vary depending on the engine duty cycle, fuel quality, after-treatment
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devices, and other factors. Thermal analysis techniques for OC and EC are also being used
in several European countries.

The simplest sampling train for EC analysis, and the one used by MSHA to obtain field
samples, consists of a 10mm Dorr-Oliver cyclone followed by a 37mm precombusted ultra-
pure tissue—quartz fiber filter (PALL 2500QAT, GEL) mounted in a 37 mm plastic cassette.
Alternatively, the Dorr-Oliver cyclone can be followed by the 0.8 um size-selective impactor
described above. In this situation, diesel exhaust aerosol particulates, which are primarily
smaller than 0.8 pum, are collected on the filter. This is advantageous because large, mechan-
ically generated aerosols are not collected on the filter and cannot interfere with the carbon
analysis.

Respirable Combustible Dust Analysis. In the RCD method, total respirable dust
(TRD) is collected from sample air on a 25 or 37mm, 0.8pum pore size silver membrane
(SM) filter after passing through a 10mm Dorr-Oliver cyclone pre-classifier at a flow rate of
2.83 x 10°m%s [1.7L/min]. Flow is controlled using a personal sampling pump. At this
flow rate, the cyclone is a respirable dust pre-classifier with a 50% cut point of 4um. TRD
is determined gravimetrically by weighing the SM filter before and after the sample is
collected. The RCD fraction of TRD is determined gravimetrically from the amount of
material removed from the SM by controlled combustion at 673K [400°C] for 1 to 2h. A
correction is made for loss of mass from the SM due to combustion (Gangal et al., 1990;
Gangal and Dainty, 1993).

Elemental and Mineral Analysis. Another method for analyzing diesel aerosol is source
apportionment. This technique has been used to evaluate measurements made in under-
ground mines using size-selective sampling (Cantrell, 1987; Rubow et al., 1990a; Cantrell and
Rubow, 1990). It relates elemental, mineral, or chemical components in an aerosol sample to
those same components in the sources of the aerosol. Using this relationship, the contribu-
tion of each source to the sampled aerosol can be determined. For diesel-equipped coal mines
the primary sources of aerosol are coal, rock dust used as a fire retardant on the mine walls,
and diesel exhaust aerosol emissions. One specific analytical technique used to apportion col-
lected aerosol among these sources is chemical mass balance model analysis (Watson, 1984;
Henry et al., 1984; Davis, 1984). =
The model is expressed as

Cei = ia,)-Si (26—2)
j=1

Here, c.; is the mass concentration of the ith elemental, mineral, or chemical component of
the sample in pg/m’; a; is the fractional amount of component i in emissions from source j;
S; is the total contribution of source j to the sample; and p is the number of sources. Appor-
tionment of the source is achieved by first characterizing the aerosol sources, obtaining values
for aj, then analyzing the aerosol in the sample for the same components, and finally solving
for the S;. A least-squares regression analysis is used to determine the S; of the overdeter-
mined system of equations expressed by Eq. 26-2.

Real-Time Measurement

Real-time measurement of mine dust remains an objective for aerosol research. A report of
the Secretary of Labor’s Advisory Committee on the Elimination of Pneumoconiosis Among
Coal Mine Workers listed several recommendations dealing with the need for continuous
respirable dust monitors to help protect workers’ health (U.S. Department of Labor, 1996).
In addition, a NIOSH Criteria Document lists improved sampling devices as a research need
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pertinent to coal miner respiratory health and prevention of disease (NIOSH, 1995). In
mining, personal exposure monitoring is preferable to area monitoring (Leidel et al., 1977).
Dust concentrations have been shown to change dramatically over times of a few seconds
and distances of just 0.6m in underground coal mines (Kost and Saltsman, 1977). Therefore,
to meaningfully approximate a worker’s dust exposure, personal real-time monitoring is the
preferred strategy.

Several approaches are being taken to address these needs. The more promising
technologies include light-scattering dust monitors, a person-wearable tapered-element
oscillating microbalance, and the Dust Dosimeter (Tsao et al., 1996; Lehocky and
Williams, 1996; Volkwein et al., 2000). The principal goals of each of these efforts has been
to develop an instrument that will give short-term or real-time measurements of worker dust
exposure.

Light Scattering. Often called photometers or nephelometers, light-scattering instruments
use a light source to illuminate sample aerosol and a light sensor to measure the scattered
light that can be related to the mass concentration of the dust. The theory of these monitors
is summarized in Chapter 15. Several of the monitors have been characterized in the
laboratory for different dusts (Kuusisto, 1983; Marple and Rubow, 1981, 1984; Keeton, 1979;
Rubow and Marple, 1983). The relationship of the instruments’ responses to dust concentra-
tion is not simple but depends on particle size, particle composition, and instrument design
and manufacturing differences. Significant changes in dust particle characteristics such as
shape, size, surface properties, and density, can affect the instrument’s correlation with mass
concentration and require calibration of the instrument for each type of dust measured
(Williams and Timko, 1984). These factors have limited the use of photometers to dust
source identification and control technology evaluation. They are not useful for monitoring
compliance with dust standards.

Most of the mining community’s experience with real-time, photometric instruments is
with the RAM-1 and MINIRAM devices (MIE), which were initially designed for use in the
mine environment. Intrinsically safe versions of these instruments were certified by MSHA
for use in the potentially explosive atmospheres of underground coal and gassy noncoal
mines. They are normally operated with the Dorr-Oliver 10mm cyclone to remove water
droplets and ensure a respirable dust sample (Treaftis et al., 1984; Tomb et al., 1981). The
RAM, pictured in Figure 26-11, is a real-time light-scattering aerosol monitor with a sam-
pling pump that pulls aerosol through the sensing zone. The MINIRAM employs similar tech-
nology but typically operates in the passive sampling mode wherein size classification is based
solely on light-scattering properties. An optional chamber and pump may be used to allow
a cyclone classifier to physically determine the respirable fraction. McCawley and Cocalis
(1986) obtained good correlations (* = 0.92) between in-mine MINIRAM measurements
and those obtained using a gravimetric sampler fitted with an intake impactor to restrict
penetration of particles larger than 1.5pum. Analysis of the collected sample was accom-
plished using RCD measurements. This successful comparison between diesel aerosol and
the response of a photometric instrument holds promise that it might be used to monitor
diesel aerosol.

Tapered Element Oscillating Microbalance. The theory of the Tapered Element Oscillat-
ing Microbalance (TEOM, R&P) is summarized in Chapter 14. Despite limited application
in the mining industry, this technology offers one notable advantage: direct measurement of
dust mass. Because dust exposure standards are based on dust mass, this attribute of the
TEOM is significant. In 1983, the BOM and NIOSH funded the development of a prototype
TEOM personal dust monitor (Patashnick and Rupprecht, 1983). The prototype monitor
developed is a system configured for end-of-shift measurements. It is not a real-time monitor,



MEASUREMENT TECHNOLOGY 815

Fig. 26-11. MIE RAM-1 Real-Time Respirable Aerosol Monitor equipped with a Dorr-Oliver Cyclone
Sample Inlet. (From Olson and Veith, 1987.)

but uses oscillating microbalance technology to “weigh” the collection filter before and after
dust sampling. :

The BOM has evaluated this prototype system in the laboratory for both end-of-shift
and near-real-time applications (Williams and Vinson, 1986). The effective standard devia-
tion of repeated measurements was 1.6pg. Tests at controlled temperature and humidity
showed less than 20 pg of drift during an 8 h shift. These early attempts to construct a person-
wearable form of the TEOM required a substantial mass in the base of the element to
dampen the vibrations, reducing the concept’s “wearability.” Recent proprietary develop-
ments by R&P have solved the need for a substantial base mass electronically, and devel-
opment of a person-wearable TEOM-based personal dust sampler is nearing completion
under a NIOSH contract.

Dust Dosimeter. An alternative to highly accurate mine dust measurement devices is a
new instrument that is based on a dust detector tube (Volkwein et al.,, 2000). The
Dust Dosimeter, shown in Figure 26-12, is an inexpensive device that consists of a small
pump with integral pressure transducer and a disposable detector tube, much like a gas
detector tube, that correlates pressure drop across the filter with mass accumulation. It has
recently been tested and shown to provide qualitative mid-shift and end-of-shift determina-
tions of cumulative dust exposure. Figure 2613 shows the laboratory responses for a variety
of coal types. The Dust Dosimeter is an example of a new type of tool to help improve
workers’ health by enabling frequent and timely knowledge of current dust levels. Field
testing of the device has shown that it gives a higher response to diesel particulate than to
coal dust.
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