

# Optimal Spray System Designs for Continuous Miner Dust Control

Gerrit V.R. Goodman and Robert A. Jankowski

National Institute for Occupational Safety and Health, Pittsburgh Research Center,  
Pittsburgh, PA USA 15236

## Abstract

Water sprays are the most widely-used technology in the coal mining industry for limiting worker exposure to respirable dust. They control exposure by suppressing airborne dust, influencing airflow patterns to keep personnel in clean air, and wetting coal surfaces to prevent airborne dust generation. Optimal spray system design depends upon the proper balance of these three mechanisms.

Worker exposures to coal and silica dusts have been reduced by water sprays strategically mounted on the continuous mining machine. These sprays have been placed above and below the cutting boom, in the loading shovel, and along the sides of the continuous miner. When a flooded-bed type scrubber is used for dust control, sprays must be used with caution to avoid inducing airflow beneath the cutting boom which can result in decreased scrubber efficiency. In practice, water sprays have been positioned near the scrubber inlets to contain the dust cloud beneath the cutting boom, thus improving capture of the dust. A high level of effectiveness has been attained in continuous miner dust control, although serious non-compliance can result from the improper application of water spray technology. This paper summarizes past research plus laboratory and in-mine studies with water sprays for effective continuous miner dust control

**Key Words:** coal mining, industrial hygiene, water sprays, occupational exposure

## Introduction

The United States Federal Coal Mine Health and Safety Act limits personal exposure to respirable dust to  $2.0 \text{ mg/m}^3$ . This limit is measured gravimetrically as an 8-hour TWA concentration of the respirable coal dust [4]. If the respirable dust sample contains more than 5 percent silica by weight, the respirable dust standard is reduced according to the formula  $10/(\% \text{ silica})$ . The  $2 \text{ mg/m}^3$  standard and a silica percentage of 5% corresponds to a PEL for silica of  $0.10 \text{ mg/m}^3$ . The National Institute for Occupational Safety and Health (NIOSH) recommended lower limits for respirable silica and coal dusts. It endorsed a recommended exposure limit (REL) for coal dust of  $1.0 \text{ mg/m}^3$ . The current NIOSH REL for respirable silica is  $0.05 \text{ mg/m}^3$ . Both RELs are measured as TWA dust concentrations for up to 10 hours/day during a 40 hour work week [5].

Because the continuous mining machine operator is located on or near the continuous mining machine, this person is frequently exposed to the greatest levels of respirable dust. Of all continuous miner operator samples taken in the years 1988 through 1991, nearly 40% of those analyzed contained more than 5% respirable silica dust [1]. Approximately 11% of the continuous miner operator samples exceeded the PEL of  $2.0 \text{ mg/m}^3$  for respirable coal dust.

Water sprays remain the most widely used technology for limiting operator exposure to respirable dust. Water sprays control dust exposure by suppressing airborne dust, inducing airflow to keep personnel in fresh air, and preventing generation of airborne dust.

### Mechanisms for Controlling Dust Exposures With Water Sprays

Water sprays control dust exposure by suppressing airborne dust. Prior work evaluated the effects of spray nozzle design (i.e. flat fan, hollow-cone, *full-cone*), water flowrate, and pressure on the ability to suppress airborne dust [3]. Flat fan sprays and hollow-cone sprays are superior for suppression of airborne dust. Full cone sprays are least effective for dust suppression.

Dust suppression increases with the flowrate of water through the spray nozzle. Doubling the flowrate results in a nearly four-fold improvement in suppression. Although suppression also is proportional to spray pressure, the optimal pressure is 690 kPa (100 psi). Generally, dust suppression is best for sprays operating at higher flowrates and pressures of 690 kPa (100 psi).

Water sprays also control dust exposure by inducing airflow patterns to reduce dust exposure for the mining machine operator. However, these sprays must be oriented with the face ventilation airflow to avoid turbulence that can increase dust rollback. Rollback occurs with the use of a poorly designed spray system. Because water sprays can be effective air movers, improper use of sprays can produce unwanted motion of the dust cloud. If ventilation airflow at the face is low, the water sprays can overpower the ventilation and drive the dust cloud from the cutting bits back to the continuous mining machine operator.

Water pressure and spray flowrate affect the ability of sprays to induce airflow [2]. Induced airflow levels increase as spray pressure and flowrate increase. However, water sprays are most effective for inducing airflow when operated at lower flowrates and higher pressures. Spray type (i.e. full-cone, hollow- cone, or flat fan) does not significantly influence spray performance.

Finally, water sprays control dust exposure by wetting the surface of the coal to prevent airborne dust generation. To be effective, however, water sprays should be positioned as close as possible to the dust source. Sprays placed closer to a dust source provide improved wetting of the coal surfaces than sprays placed farther from the source. Water sprays positioned closer to a dust source also move less air than sprays located farther away. Thus, sprays placed close to the dust source improve surface wetting while reducing the chance that spray-induced airflow will stir or disperse the dust cloud.

### Anti-Rollback Sprays

The anti-rollback spray system provided adequate dust suppression while reducing dust rollback. This system consists of a top spray bar containing 15 to 25 flat fan sprays with the spray pattern oriented parallel to the top of the cutting drum (figure 1). These flat sprays operate at a pressure of approximately 690 kPa (100 psi) and a corresponding flowrate of 3.6 liters/min (0.95 gpm) per spray. Dust rollback is reduced because the spray droplets move only a short distance before impacting on the top of the cutting drum. According to the design principles outlined earlier, the short spray distance reduces the potential for dust rollback by reducing the air movement caused by these sprays. The short distance also increases coal surface wetting capabilities.

The anti-rollback system also includes two large orifice, deluge-type, flat fan sprays mounted on the left and right underside of the boom near the cutting head. Each spray is oriented 30 degrees below horizontal and directed to spray into the cutting bits. Deluge-type sprays are used because they operate at a low pressure of roughly 48 kPa (7 psi) and a higher flow rate of

18.9 liters/min (5 gpm) per spray. Because these underboom sprays operate under low pressure, dust rollback is reduced. The high flowrate offered by these large orifice sprays improves the suppression of dust coming off the cutting drum.

This spray system was installed on a continuous miner for in-mine testing. The results showed that the anti-rollback sprays reduced machine operator dust exposure by 40% [2].

### Shovel Sprays

Additional sprays have been installed to improve dust control in the underboom area. Two hollow cone sprays are located at the rear corner of the shovel on the side opposite from the ventilation curtain (figure 2). These sprays are used with exhaust ventilation only. Each spray operates at a pressure of 1206 kPa (175 psi) with a flowrate of roughly 8.5 liters/min (2.3 gpm). Due to the high spray pressure and high flowrate, these sprays induces significant airflow beneath the cutting boom. This not only sweeps the underboom dust into the return airway, but also improves suppression of this dust.

Extensive underground testing of the shovel sprays showed that reductions of 60% were measured at the continuous miner operator's location. Subsequent analyses showed that these shovel sprays also were quite effective in controlling respirable silica dust produced by the continuous miner [2]. In fact, silica dust levels at the operator's location were virtually eliminated. The anti-rollback sprays, with the shovel sprays, are an effective means of reducing respirable dust exposure for the mining machine operator.

### Two Phase Sprays

Subsequent work examined the use of two-phase sprays for limiting exposures to respirable dust [4]. Two-phase sprays use a combination of water and air issuing from the same spray. This results in a discharge of fine mist from the spray rather than a discharge of water. In testing, the spray mist was found to have excellent airmoving capabilities and, as such, were placed on the shovel of the mining machine to sweep dust from the region under the cutting head.

For this work, two different shovel spray arrangements were tested. The first configuration mounted four two-phase sprays on the right side of the shovel while the second configuration mounted two sprays at the same location. All two-phase sprays used a water pressure of 228 kPa (33 psi) and an air pressure of 241 kPa (35 psi). The sprays were oriented to sweep dust-laden air away from the machine operator. Each shovel spray arrangement contained eighteen hollow-cone sprays mounted above the cutting head. The resulting dust levels measured with these two shovel spray configurations were compared to a baseline dust level obtained with the eighteen hollow-cone sprays in operation and no shovel sprays.

Dust levels were reduced more than 90% at the operator's location with use of either shovel spray configuration. Most surprisingly, these reductions were achieved with two-phase sprays using 63 percent less water than conventional water sprays. Although two-phase sprays do require an air supply to the continuous mining machine, they represent a dust control alternative for coal mining operations concerned with high water usage.

### Scrubber Blocking Sprays

Flooded-bed dust scrubbers consist of a fan, wetted filter, and wave plate mist eliminator. Dusty air is drawn by a fan through a series of inlets near the cutting head. This airflow then passes through the wetted filter where the dust is captured on the filter. The excess moisture is

removed as the airflow passes through the wave plate mist eliminator (figure 3). Dust scrubbers operate most efficiently when the dust cloud is contained beneath the cutting boom. If the dust cloud rolls out from under the cutting boom, it becomes very difficult to capture with a scrubber. Water sprays, therefore, must be located to provide adequate dust suppression and coal surface wetting without inducing significant airflow under the cutting boom.

Water sprays placed on the left and right sides of the cutting boom can increase containment of the dust cloud under the boom and thus improve the capture of this dust by the scrubber. This, in turn, reduces both dust rollback and dust exposure for the machine operator. These sprays were tested at an underground operation. One manifold, each containing two flat fan sprays, was mounted on each side of the continuous miner, near the scrubber inlets (figure 4). Sprays were selected to deliver 6.1 liters/min (1.6 gpm). Due to restrictions in the mine water supply system, spray pressure was limited to 690 kPa (100 psi).

Dust levels were measured at the continuous miner operator location with and without the side sprays in operation. Despite the lack of water pressure during testing, coal and silica dust levels decreased, although these reductions were marginal in some instances. It is likely that the decreases in dust concentrations arose from a combination of improved suppression and improved capture by the dust scrubber.

## Summary

Continuous miner dust control technology currently exhibits a high level of effectiveness for controlling personal dust exposures. Water sprays represent the most widely used technique for limiting worker exposure to respirable coal and silica dusts. Water sprays control exposures by suppressing airborne dust, inducing air movement to sweep dust away from personnel, and wetting the surface of the coal to prevent airborne dust generation. Spray system designs to limit dust exposures make frequent use of these principles.

For instance, the anti-rollback spray system places low pressure and high flowrate sprays above and below the cutting boom to improve dust suppression and surface wetting. The top sprays are positioned close to the cutting head to reduce airflow movement and limit dust rollback to machine operator.

Additional sprays often are located in the shovel to induce additional airflow movement under the cutting head. This sweeps dust-laden air from beneath the cutting head area and directs it away from the machine operator. These sprays operate at higher pressure and lower flow rate. Two-phase sprays, using a combination of air and water in the same spray, also have been located in the shovel.

Because water sprays are effective air movers, they must be used to maximize dust suppression and surface wetting without inducing significant airflow movement. Application of water spray technology to continuous miners with a dust scrubber includes the location of flat fan sprays on either side of the cutting boom. They induce airflow along the sides of the cutting boom to improve containment of the dust cloud under the boom.

## References

1. Ainsworth SM, Gero AJ, Parobek PS, Tomb TF. Quartz Exposure Levels in the Underground and Surface Coal Mining Industry. Am. Ind. Hyg. Assoc. Journal 1985; 56(10):1002-1007.
2. Foster-Miller, Inc. Development of Optimal Water Spray Systems for Dust Control in

Underground Mines. Contract Report, No. H0199070, U.S. Bureau of Mines, 1986, September, 146 pp.

3. Jayaraman NI, Schroeder WE, Kissell FN. Studies of Dust Knockdown by Water Sprays Using a Full-Scale Model Mine Entry. Society of Mining Engineers, Transactions 1986; 278:1875-1882.
4. Jayaraman, NI, Colinet, JF, Jankowski, RA. Evaluation of a Two Phase Flow System for Dust Control in a Model Mine. Symp. on Respirable Dust in the Mineral Industries, October, 1990, Pittsburgh, pp. 223-236.
5. National Institute for Occupational Safety and Health. Occupational Exposure to Respirable Coal Mine Dust, Criteria for a Recommended Standard. U.S. Dept. of Health and Human Services, Centers for Disease Control and Prevention, 1995, September, 336 pp.

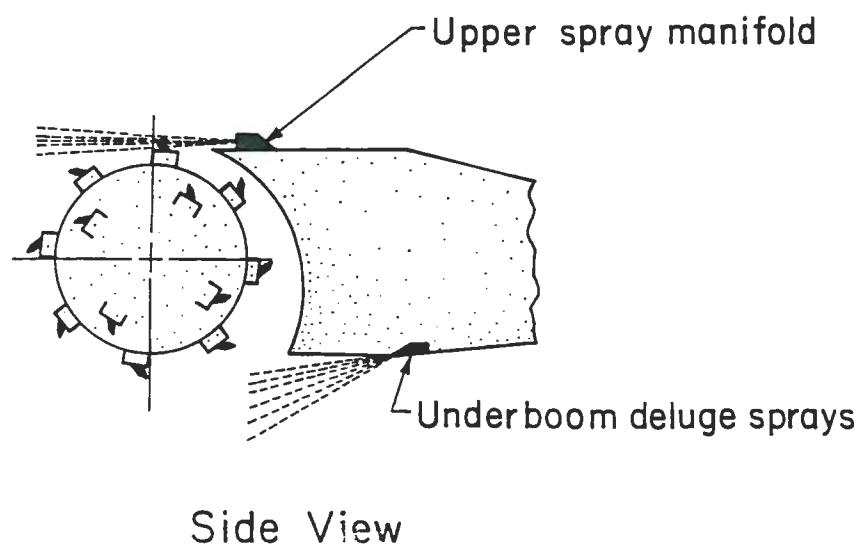
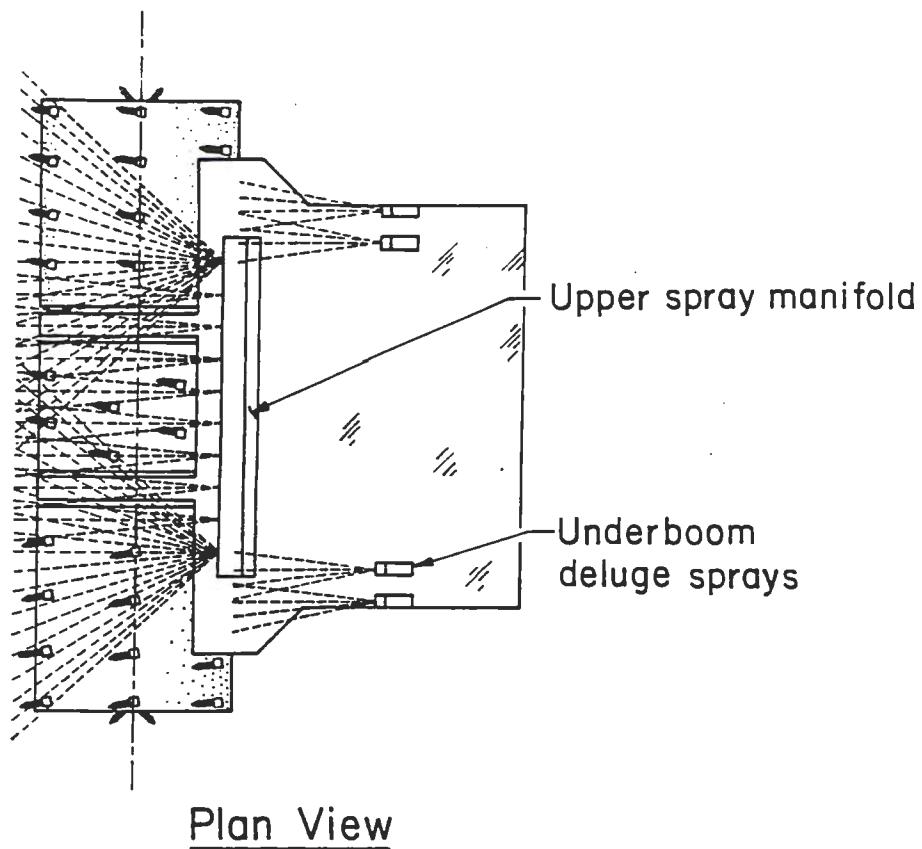




Figure 1. Diagram of Anti-Rollback Sprays

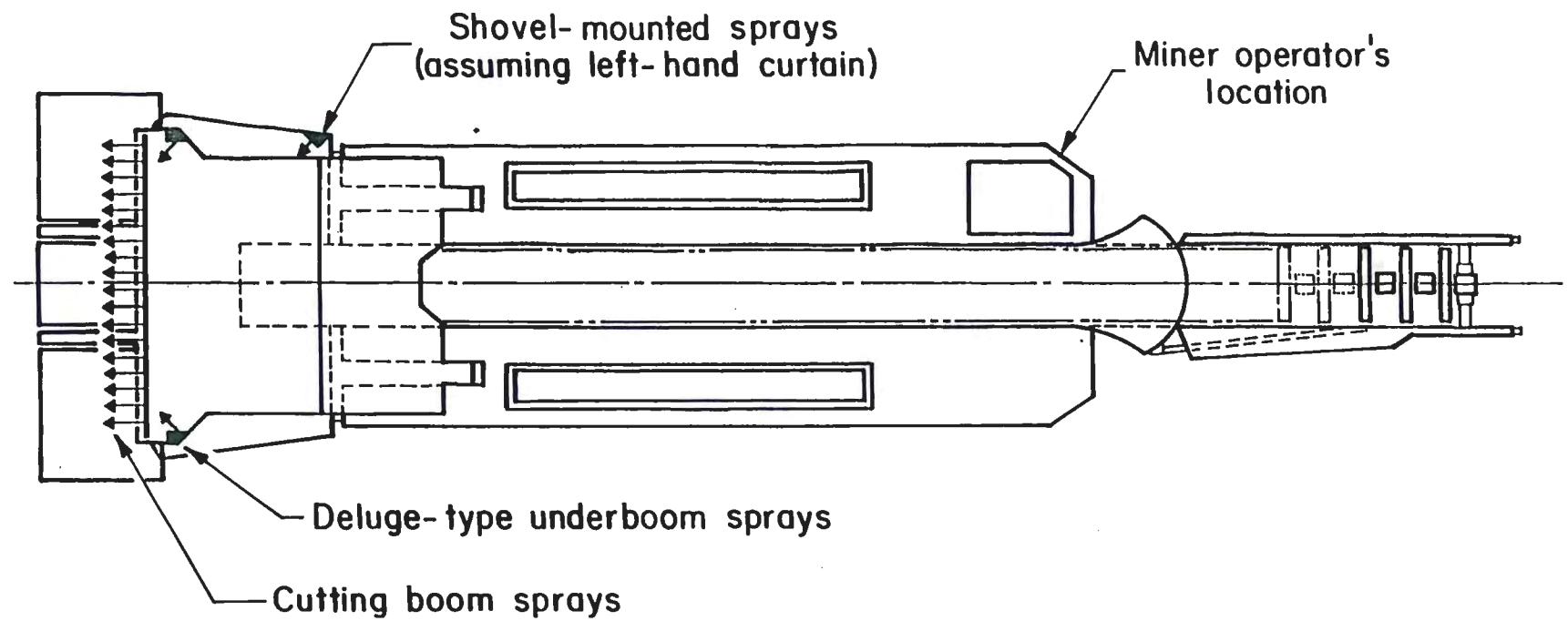



Figure 2. Diagram of Shovel Sprays




Figure 3. Details of Flooded-Best Dust Scrubber.

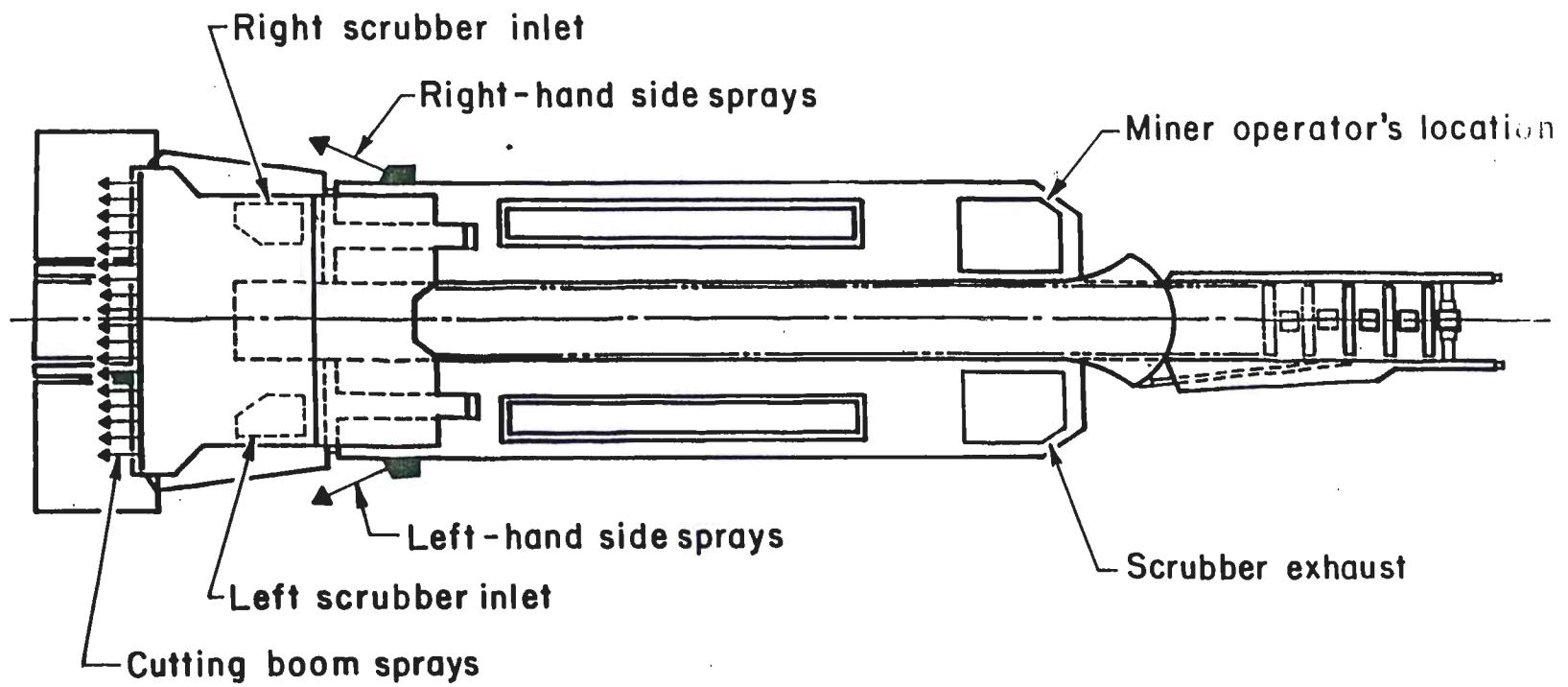



Figure 4. Diagram of Scrubber Blocking Sprays

# Advances in the Prevention of Occupational Respiratory Diseases

Proceedings of the 9th International Conference, Tokyo, Japan, 13-16 October 1997

Edited by

**K. Chiyotani**, Director, Rosai Hospital for Silicosis, Tochigi, Japan,  
**Y. Hosoda**, Consultant, Radiation Effects Research Foundation, Hiroshima, Japan and  
**Y. Aizawa**, Professor, Department of Preventive Medicine and Public Health, School of Medicine, Kitasato University, Sagamihara, Japan

Included in series

International Congress Series, 1153

## Description

This book will be very useful for those who are engaged in prevention or health management of occupational respiratory diseases. Key features of *Advances in the Prevention of Occupational Respiratory Diseases* are the discussions, presentations, and lectures at the 9th International Conference in Kyoto, Japan which focused on the results of the latest researches in the field and the tendency of occupational respiratory diseases in many countries.

Papers focused on all types of occupational respiratory diseases including:

- pneumoconiosis,
- biological effect of natural and synthetic fibers,
- occupational respiratory allergies,
- and more...

## Audience

Researchers, Industrial Doctors, Industrial Health Managers and Industrial Health Officials.

## Contents

**Preface.** **Organizing Committee Members.** **Keynotes.** Preventing pneumoconioses and eliminating silicosis: opportunities and illusions (G.R. Wagner). The role of health surveillance in the prevention of pneumoconiosis (H.E. Fengsheng, L.I. Dehong). Responses of the lung and pleura to inhaled particulate material: pathobiological aspects (A.R. Gibbs). Advances in imaging of occupational respiratory diseases (A.V. Proto). Engineering control of work environment reduces the incidence of occupational respiratory disease (T. Numano). The role of training and education in the prevention of occupational respiratory diseases (R. Green). **Working Groups.** Summary report of Working Group - 1: "ILO International Classification of Radiographs of Pneumoconioses;" and Working Group - 2: "Global Action on Elimination of Silicosis" (I. Fedotov). Summary report of Working Group - 3: "Occupational Respiratory Allergies" (W. Jones Williams). Summary report of Working Group - 4: "Natural and Synthetic Fibres"; and Working Group - 5: "Relationship Between Occupational Respiratory Diseases and Lung Cancer" (M.S. Huuskonen). **Epidemiology and health surveillance.** **Respiratory disorders.** Prevention of asbestosis at the work place in Hungary (Gy. Ungváry, A. Mándi, É. Six). Occupational diseases of the respiratory tract in the working inhabitants of Belgrade, Yugoslavia (M. Pavlovic, D. Filipovic, M. Mugosa). Improved reporting of asbestos-related occupational cancers in Finland (A.

products manufacturing plants in Japan (K. Yoshizumi *et al.*). Abolition of asbestos use in Italy and evaluation of workers' exposure (A. Iotti, U. Verdel). Pulmonary deposition of particles in welders: on-site measurements (D. Sherson, A. Frøsig, H. Bendixen) Occupational exposure to mineral dusts in an ornamental stone works in Brazil (C.R.S. Silva *et al.*). Direct on-filter analysis of crystalline silica by quantitative infrared spectrophotometry (Y. Shinohara). Monitoring urban air exposure of bus drivers and mail carriers in Denmark (M. Hansen *et al.*). Mineral-contaminated asbestos fibers in Korea analysis with three different methods (J.K. Choi *et al.*). Asbestos control in Brazilian asbestos cement production (J.B. Amancio *et al.*). **Dust control measures.** Countermeasure to control dust generating by chipping works in building construction sites (K. Tsuji, I. Fukuhara, Y. Nishiguchi). A new biosoluble stonewool insulation fibre (U. Draeger). Optimal spray system designs for continuous miner dust control (G.V.R. Goodman, R.A. Jankowski). Present status of respirable dust control technologies in Japan (T. Nakanishi, H. Komori, T. Nagoya). The classification of hazard levels due to exposure to industrial dust (L. Haiyan). Eliminating silicosis: how current efforts will provide models for control of occupational health risks (T.L. Guidotti). A technological study on collecting respiratory dust with bag filters (Y. Qun, C. Long-Shu). Health risk management for workers exposed to arsenic and selenium in vapor disposition process (S. Onuma *et al.*). Suppression of fume exposure using computer simulation technology (Y. Tsutsui *et al.*). Required performance of pushed air in push-pull ventilation system (H. Komine, K. Tsuji, Y. Mori). Particle and bioaerosol pollution in a big building in Rome (L. Camilucci *et al.*). Effective and practical smoking control in an office (H. Yamato *et al.*). **Respiratory protective equipment.** Service life of respiratory filters new aspects (P. Lüth, G. Schäcke). Work place protection factors for respiratory protective equipment a new approach (B. Rajan). Quartz dust, sodium chloride aerosol and oil mist as test aerosols for dust respirators (T. Myojo and M. Sugimoto). Measurement and treatment of various dusts generated during medical operations (H. Miyake, T. Nagoya, A. Ishikawa). A cleaning service of returnable filters for dust respirators (H. Yamada *et al.*). **Information, education and training.** Knowledge about silicosis in 1993 1996 in Hong Kong (T.H. Lam, S.F. Chung). Challenges in the fight against pneumoconiosis in Asia (S. Machida). Occupational exposure to hazardous chemicals and work environment controls in hospitals (S. Koda *et al.*). Supplementing the use of audio-visual training materials to prevent pneumoconiosis (J. Tarora). **Occupational respiratory diseases in Japan.** The history of pneumoconiosis in Japan (S. Yoshino, J. Tsuda, Y. Sahai). Study of computer-aided diagnosis of X-ray and CT images for detecting cancer in Japan (J.-i. Toriwaki). Silicosis among mill workers exposed to tonoko (mineral powder) used for traditional Japanese wooden furniture Y. Kurushima *et al.* "Rush (igusa)" pneumoconiosis in Fukuyama, Japan (Y. Yamawaki *et al.*). Konnyaku bronchial asthma T. Nakazawa and S. Kobayashi). Occupational hypersensitivity pneumonitis due to mushroom spores (T. Nakazawa *et al.*). A case of baritosis observed for 13 years (Y. Nakamura *et al.*). Hoya (sea squirt) asthma: occupational asthma induced by inhalation of sea squirt body fluid (T. Jyo *et al.*). **Index of authors.**

## Bibliographic Information

1998

Hardbound

- ISBN: 0-444-82791-9
- 1264 pages
- Price:
  - NLG 515.00
  - US\$ 296.00

EXCERPTA MEDICA

Last update: 31 Jan 1999

Mirror sites: [www.europe](http://www.europe) | [www.usa](http://www.usa) | [www.japan](http://www.japan)

© Website Copyright 1999, Elsevier Science, All rights reserved.

Advances in the Prevention of Occupational Respiratory Diseases: Proceedings of the 9th International Conference on Occupational Respiratory Diseases, Kyoto, 13-16 October, 1997. 07/1998 Elsevier Science.

Keizo Chiyotani and Yutaka Hosoda.

Series: International Congress Ser.

Trade Cloth ISBN 0-444-82791-9 LCCN: 98-027177 Available: JA Majors. 1236p.  
(Active)  
\$ 296.00 (Publisher)

Bowker: LUNGS - DUST DISEASES

Bowker: OCCUPATIONAL DISEASES

Bowker: RESPIRATORY ORGANS - DISEASES

Bowker: INDUSTRIAL HYGIENE

BISAC: BUSINESS & ECONOMICS / Industrial Management

BISAC: MEDICAL / Diseases / Cardiopulmonary

BISAC: MEDICAL / Occupational & Industrial Medicine

Dewey #: 616.2

LC Call#: RC732.I477 1997

End of record displayed.

OLUC ti "ADVANCES IN THE PREVENTION OF OCCUPATIONAL R... Record 1 of 1

NO HOLDINGS IN OSH - 37 OTHER HOLDINGS

- 28 700 1 Hosoda, Yutaka. ¶
- 29 700 1 Aizawa, Yoshiharu. ¶
- 30 938 Otto Harrassowitz #b HARR #n har005065563 #c 458.00 DEM ¶

OLUC ti "ADVANCES IN THE PREVENTION OF OCCUPATIONAL R... Record 1 of 1

NO HOLDINGS IN OSH - 37 OTHER HOLDINGS

- 14 111 2 International Conference on Occupational Respiratory Diseases #n (9th : #d 1997 : #c Kyoto, Japan) ¶
- 15 245 10 Advances in the prevention of occupational respiratory diseases : #b proceedings of the 9th International Conference on Occupational Respiratory Diseases, Kyoto, Japan, 13-16 October 1997 / #c edited by Keizo Chiyotani, Yutaka Hosoda, Yoshiharu Aizawa. ¶
- 16 260 Amsterdam ; #a New York : #b Elsevier, #c 1998. ¶
- 17 300 xxviii, 1236 p. : #b ill., 1 map ; #c 25 cm. ¶
- 18 440 0 International congress series ; #v no. 1153 ¶
- 19 504 Includes bibliographical references and indexes. ¶
- 20 650 0 Respiratory organs #x Diseases #v Congresses. ¶
- 21 650 0 Occupational diseases #v Congresses. ¶
- 22 650 0 Lungs #x Dust diseases #v Congresses. ¶
- 23 650 12 Respiratory Tract Diseases #x prevention & control #v congresses. ¶
- 24 650 12 Occupational Diseases #x prevention & control #v congresses. ¶
- 25 650 22 Air Pollution, Indoor #x prevention & control #v congresses. ¶
- 26 650 22 Air Pollutants, Occupational #v congresses. ¶
- 27 700 1 Chiyotani, Keizo. ¶

Beginning of record displayed.

OLUC ti "ADVANCES IN THE PREVENTION OF OCCUPATIONAL R... Record 1 of 1

NO HOLDINGS IN OSH - 37 OTHER HOLDINGS

| OCLC:   | 39361415 | Rec stat:                                            | c  | Entered: | 19980618 | Replaced: | 19990909 | Used:  | 19991218  |
|---------|----------|------------------------------------------------------|----|----------|----------|-----------|----------|--------|-----------|
| ► Type: | a        | ELvl:                                                |    | Srce:    | c        | Audn:     |          | Ctrl:  | Lang: eng |
| BLvl:   | m        | Form:                                                |    | Conf:    | 1        | Biog:     |          | MRec:  | Ctry: ne  |
|         |          | Cont:                                                | b  | GPub:    |          | LitF:     | 0        | Indx:  | 1         |
| Desc:   | a        | Ills:                                                | ab | Fest:    | 0        | DtSt:     | s        | Dates: | 1998, ¶   |
| ► 1     | 010      | 98-27177 ¶                                           |    |          |          |           |          |        |           |
| ► 2     | 040      | DNLM/DLC #c DLC #d YDX #d NLM #d UKM #d OHX #d OCL ¶ |    |          |          |           |          |        |           |
| ► 3     | 015      | GB98-67965 ¶                                         |    |          |          |           |          |        |           |
| ► 4     | 019      | 39962074 ¶                                           |    |          |          |           |          |        |           |
| ► 5     | 020      | 0444827919 ¶                                         |    |          |          |           |          |        |           |
| ► 6     | 050 00   | RC732 #b .I477 1997 ¶                                |    |          |          |           |          |        |           |
| ► 7     | 060 00   | W3 #b EX89 no.1153 1998 ¶                            |    |          |          |           |          |        |           |
| ► 8     | 060 10   | WF 140 #b I603a 1998 ¶                               |    |          |          |           |          |        |           |
| ► 9     | 069 0    | 9809676 ¶                                            |    |          |          |           |          |        |           |
| ► 10    | 072 7    | RC #2 lcco ¶                                         |    |          |          |           |          |        |           |
| ► 11    | 082 00   | 616.2 #2 21 ¶                                        |    |          |          |           |          |        |           |
| ► 12    | 090      | #b ¶                                                 |    |          |          |           |          |        |           |
| ► 13    | 049      | OSHMI ¶                                              |    |          |          |           |          |        |           |