

DOE/ET/12201-T1  
(FE-8922-4)  
(DE&1023759)  
Distribution Category UC-88

DEVELOPMENT OF OPERATIONAL AIDS  
FOR  
IMPROVED DRAGLINE UTILIZATION

FINAL TECHNICAL REPORT  
AS OF  
30 MAY 1981

This report represents work on a program that was originated by the Interior Department's Bureau of Mines and was transferred to the Department of Energy in January 1978

C. W. ESCHMAN  
J. S. THORN  
M. A. TRELZ

MCDONNELL DOUGLAS ELECTRONICS CO.  
ST. CHARLES, MO 63301

DATE PUBLISHED - MAY 1981

Prepared Under  
Contract No. U.S. D.O.E. DE-AC22-76ET12201  
(Formerly U.S.B.M. H0262056)

U.S. DEPARTMENT OF ENERGY  
ASSISTANT SECRETARY OF FOSSIL ENERGY  
OFFICE OF COAL MINING

### ABSTRACT

The Dragline Data Link Prototype System, developed under DOE Contract Number DE-AC22-76ET12201, Modification M007, provides for direct data transfer between the Display and Information Gathering System (DIGS) located on board a dragline and a computer system located in the mine office. Reports of dragline activity available from the DIGS on the dragline can also be accessed from the mine office. This report describes the Data Link System design, installation, application and evaluation in a working mine environment.

## TABLE OF CONTENTS

| <u>Paragraph No.</u> | <u>Title</u>                                        | <u>Page</u> |
|----------------------|-----------------------------------------------------|-------------|
| 1.0                  | Executive Summary . . . . .                         | 1           |
|                      | Display and Information Gathering System (DIGS) . . | 2           |
|                      | Installation Site . . . . .                         | 13          |
| 2.0                  | System Approach . . . . .                           | 15          |
| 2.1                  | SITE Selection . . . . .                            | 15          |
| 2.2                  | Frequency Selection . . . . .                       | 23          |
| 2.3                  | Design Consideration . . . . .                      | 23          |
| 2.4                  | Equipment Specifications . . . . .                  | 26          |
| 2.5                  | Computer Program . . . . .                          | 46          |
| 3.0                  | Development and Laboratory Testing . . . . .        | 59          |
| 3.1                  | Radio . . . . .                                     | 59          |
| 3.2                  | Modem . . . . .                                     | 61          |
| 3.3                  | Computer . . . . .                                  | 61          |
| 3.4                  | System Tests . . . . .                              | 62          |
| 4.0                  | Field Installation and Test . . . . .               | 64          |
| 4.1                  | Dragline System . . . . .                           | 64          |
| 4.2                  | Mine Office Installation . . . . .                  | 64          |
| 4.3                  | System Test . . . . .                               | 66          |
| 5.0                  | Conclusions and Recommendations . . . . .           | 75          |
| 5.1                  | Design Goals . . . . .                              | 75          |
| 5.2                  | Operational Goals . . . . .                         | 75          |
| 5.3                  | Recommendations . . . . .                           | 76          |

## LIST OF ILLUSTRATIONS

| <u>Figure</u> | <u>Title</u>                                   | <u>Page</u> |
|---------------|------------------------------------------------|-------------|
| 1-1           | DIGS System Components . . . . .               | 4           |
| 1-2           | Typical Drag Sensor Installation . . . . .     | 5           |
| 1-3           | Typical Swing Sensor Installation . . . . .    | 6           |
| 1-4           | DIGS Block Diagram . . . . .                   | 7           |
| 1-5           | DIGS Display/Control Panel . . . . .           | 8           |
| 1-6           | Chronological Report . . . . .                 | 10          |
| 1-7           | Operator Summary Report . . . . .              | 11          |
| 1-8           | Total Summary Report . . . . .                 | 12          |
| 2-1           | Block Diagram, Mine Office Data Link . . . . . | 16          |
| 2-2           | Block Diagram, Dragline Data Link . . . . .    | 17          |
| 2-3           | Mine Office Installation . . . . .             | 19          |
| 2-4           | Dragline Installation . . . . .                | 20          |
| 2-5           | Dragline Teletypewriter Installation . . . . . | 21          |
| 2-6           | Lincor Sight Transmission Path . . . . .       | 22          |
| 2-7           | Functional Schematic . . . . .                 | 27          |
| 2-8           | Computer Configuration . . . . .               | 30          |
| 2-9           | Data Modem Interface Configuration . . . . .   | 31          |
| 2-10          | Modifications to Data Modem . . . . .          | 33          |
| 2-11          | Data Modem Cable . . . . .                     | 34          |
| 2-12          | Data Modem Strap Configuration . . . . .       | 37          |
| 2-13          | Data Modem Panel . . . . .                     | 38          |
| 2-14          | Mine Office Antenna . . . . .                  | 42          |
| 2-15          | Dragline Antenna . . . . .                     | 44          |
| 2-16          | Dragline Antenna (Close-Up) . . . . .          | 45          |

## LIST OF ILLUSTRATIONS

| <u>Figure</u> | <u>Title</u>                                                  | <u>Page</u> |
|---------------|---------------------------------------------------------------|-------------|
| 2-17          | Program Diagram - Xmit . . . . .                              | 49          |
| 2-18          | Program Diagram - XISR . . . . .                              | 50          |
| 2-19          | Program Diagram - RISR . . . . .                              | 51          |
| 2-20          | Program Diagram - RISR (Continued) . . . . .                  | 52          |
| 2-21          | Program Heirarchy - Base Station . . . . .                    | 55          |
| 2-22          | Program Heirarchy - Dragline Data Link<br>With DIGS . . . . . | 57          |
| 3-1           | Transmitter RF Power Chassis . . . . .                        | 60          |
| 3-2           | Laboratory Test Configuration . . . . .                       | 63          |
| 4-1           | The First Data Link Transmission . . . . .                    | 65          |
| 4-2           | Typical Old Ben Ropes Report (Sheet 2 of 7) . . .             | 67          |

## Table

|     |                                       |    |
|-----|---------------------------------------|----|
| 2-1 | Parts List, Radio Data Link . . . . . | 28 |
|-----|---------------------------------------|----|

## FOREWORD

This report was prepared by McDonnell Douglas Electronics Company (MDEC) under the Department of Energy Contract DE-AC22-76ET12201 (formerly ET-76-C-01-8922) titled Development of Operational Aids for Improved Dragline Utilization. Modification M007, dated September 14, 1979, specifically authorizes the development of the Dragline Data Link System. This modification was administered under the direction of Mr. J. C. Riggs and Mr. H. E. Parkinson of the Carbondale Mining Technology Center. Mr. C. H. Curtis was the contract administrator for the Department of Energy.

A special note of appreciation is directed to the personnel of the Old Ben Coal Company of Oakland City, Indiana who assisted in the installation and evaluation of the Data Link System.

MDEC personnel contributing to this report include C. W. Eschman, J. S. Thorn, and M. A. Trelz. Mr. G. D. Dalton and W. J. Lally coordinated contractual matters.

## 1.0 EXECUTIVE SUMMARY

Productivity of draglines and other large mining equipment is dependent upon several factors. These include the operators skill in using the equipment and managements skill in analyzing mine operation and providing direction, training and procedures to mining personnel. Operational aids such as the dragline Display and Information Gathering System (DIGS) were developed to assist equipment operators and mine management personnel in the pursuit of better productivity. In addition to aiding the operators with pertinent performance displays the DIGS gathers, processes, records and prepares reports of the mine production activities of the dragline. These reports were available only on-board the dragline. To further increase the usage of these management reports a data link system has been added which transmits dragline activity data directly to the mine office where reports are immediately available. The feasibility of applying a radio data link between a dragline operating in a typical mining environment and a remote receiving station (mine office) for the purpose of digital data transmission has been demonstrated during the course of this program.

Background. As part of a program to develop techniques and equipment to increase coal productivity, McDonnell Douglas Electronics Company (MDEC) was awarded Contract No. H0262056 by the U.S. Bureau of Mines in September of 1976. This program was transferred to the Department of Energy in January of 1978 and continued under Contract No. ET-76-C-01-8922. The contract number was later changed to DE-AC22-76ET12201. This program, titled Operational Aids for Improved Dragline Utilization, continued the development of an on-board display and information gathering system and dragline computer simulation model begun under a prior U.S. Bureau of Mines Contract Number J0255014, Concept Feasibility Study for Training Equipment to Improve

Coal Productivity. The dragline Display and Information Gathering System (DIGS) was developed to the prototype state and the system was installed at the Jim Bridger Mine in Wyoming to collect and record data pertinent to the evaluation of the system. During this validation exercise, the introspective training value and the productivity reporting capability of DIGS was confirmed. The DIGS was consequently developed for production and offered on the commercial market. In addition to the initial prototype, three production systems have been installed and are operational and a fourth will soon be activated.

In September of 1979 DOE modified Contract No. DE-AC22-76ET12201 (Modification M007) to incorporate the Dragline Data Link. The objective of this modification was to "modify an existing on-board dragline display system and demonstrate/evaluate the benefits of a data link connecting a computer located in a remote office, with the data recording system located on board the dragline." The dragline data link system was completed and installed at Old Ben Coal Co. Old Ben Number 2 Mine near Oakland City, Indiana in November 1980. The system is interfaced to a DIGS installed on a Bucyrus-Erie Model 1370 dragline. The remote installation is in the engineers office at the mine office. The system performed flawlessly during the two month evaluation period.

Display and Information Gathering System (DIGS). The prime objective of the base contract, that includes the development of the Dragline Data Link, is to increase dragline utilization and, therefore, mine productivity. Data Link can aid productivity improvement only as a vehicle to speed the flow of data to those whose decisions affect production. This data is the important

factor and its usefulness is dependent upon its accuracy, completeness and timeliness. Since this data is automatically gathered and processed by DIGS, it is necessary to understand this process such that the Data Link can be evaluated in qualitative productivity terms.

DIGS is a system marketed by MDEC for installation on-board a dragline to provide and record feedback of the draglines activities. It has two separate but related functions both of which are directed toward productivity improvement. The most visible is its display capability. From a console located in the cab the operator can obtain a variety of feedback data relative to his performance in operating the dragline. This data is additionally processed and stored for future use by the report preparation capability.

System Operation. The components of the DIGS are shown in Figure 1-1. The control and display console (Figures 1-1, center) is installed in the cab within reach of the operator. The teletypewriter, computer console, and input/out box are installed on-board the dragline at environmentally suitable and convenient locations. In addition, sensors for hoist, drag and swing positions and power data are installed at the source of this data. Typical position sensor installations are shown in Figures 1-2 and 1-3. Figure 1-4 block diagram describes the data flow. Feedback from the sensors and the control panel are input into the computer. Operator inputs include his code, the job code and down time codes. This data is processed in the computer to drive the displays shown in Figure 1-5. Bucket position is shown in the "Height", "Reach" and "Swing Angle" displays.

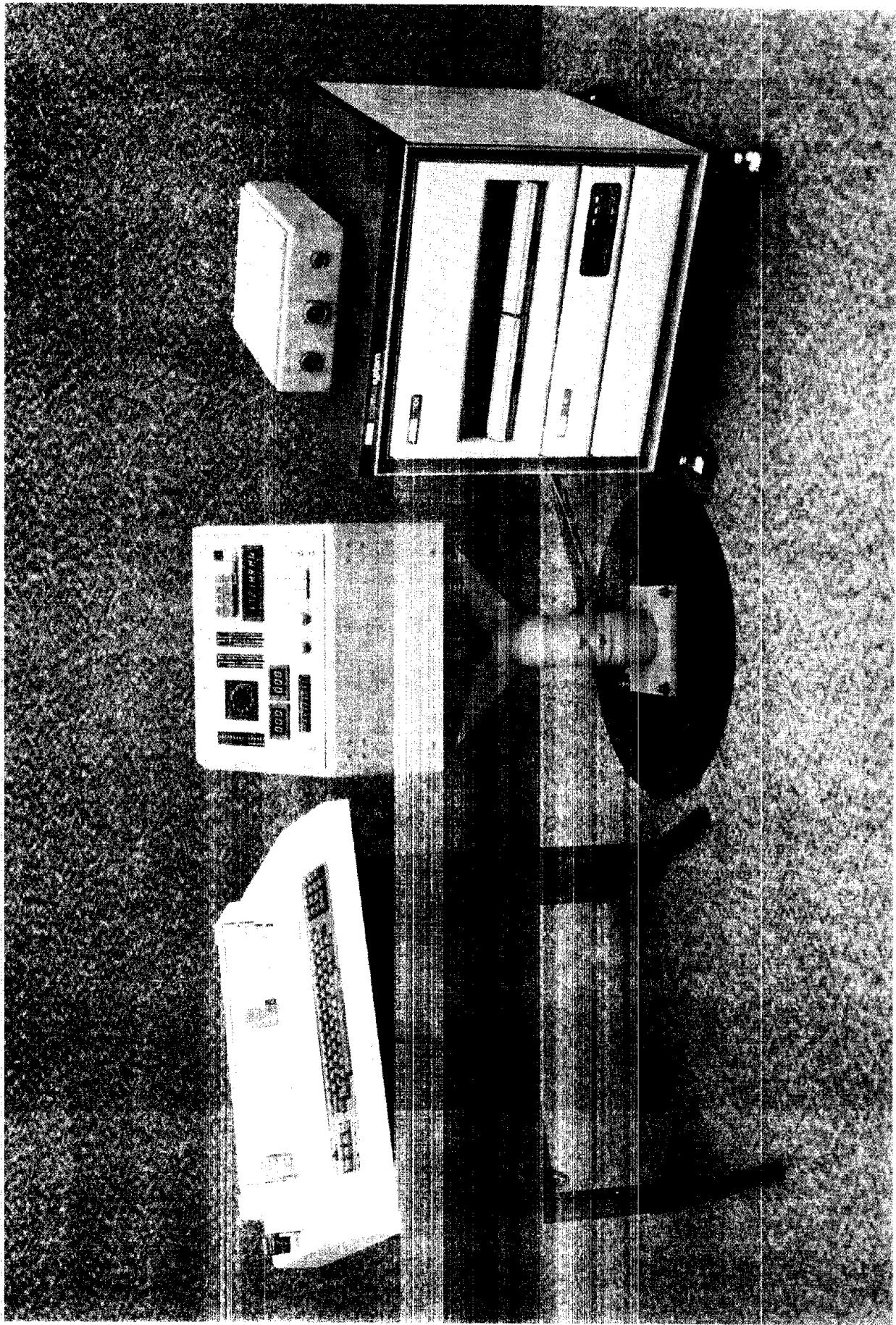
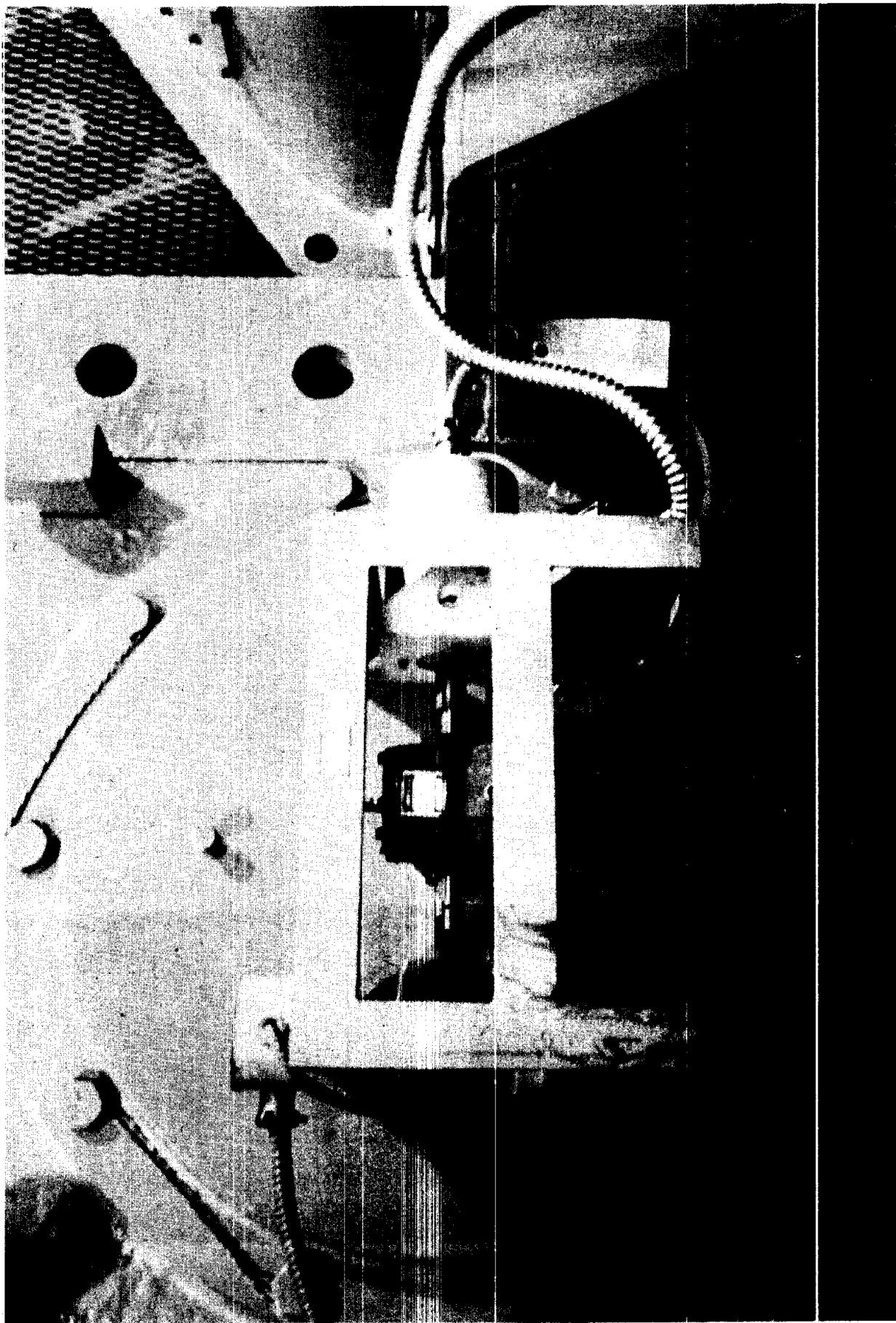
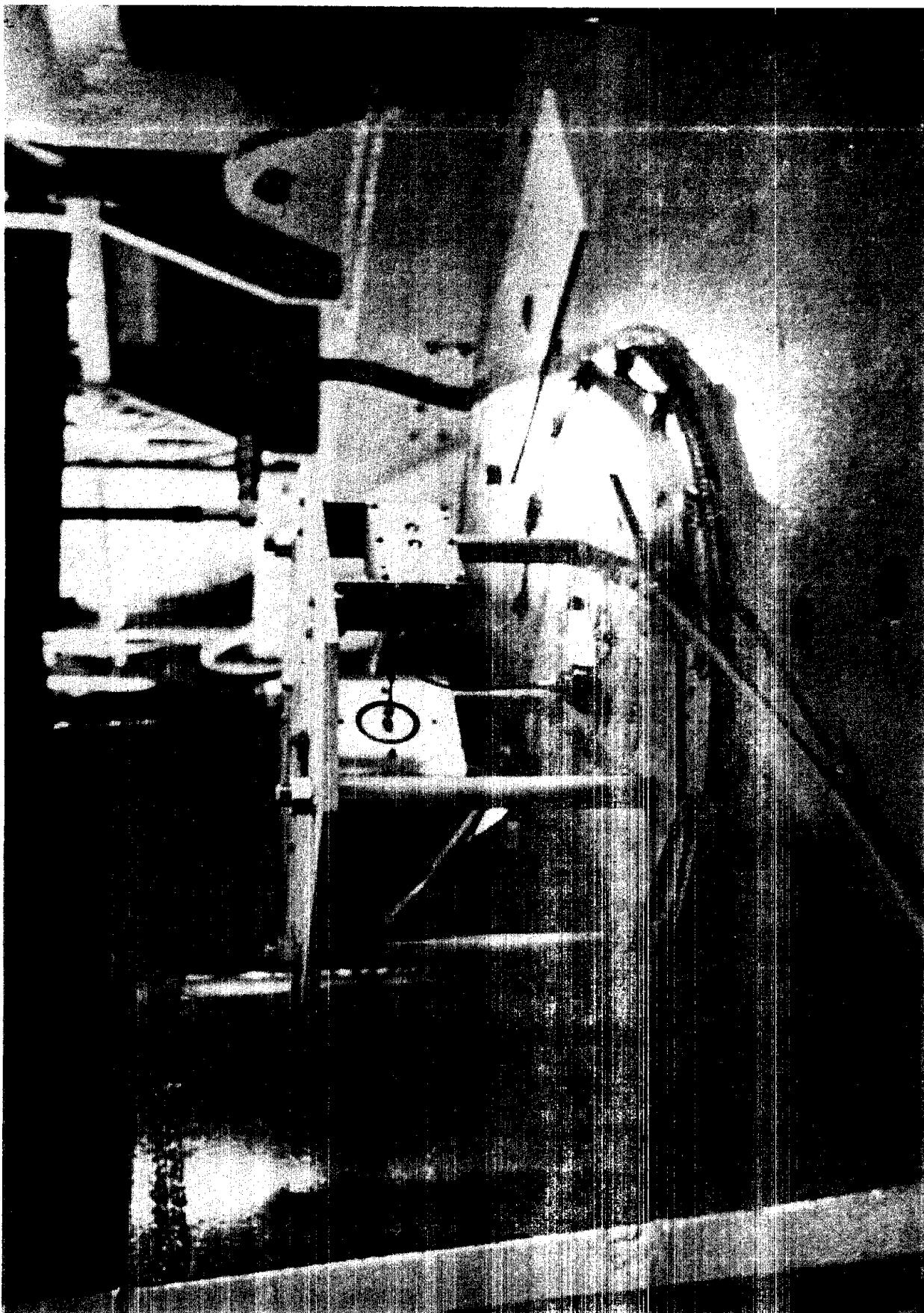



Figure 1-1

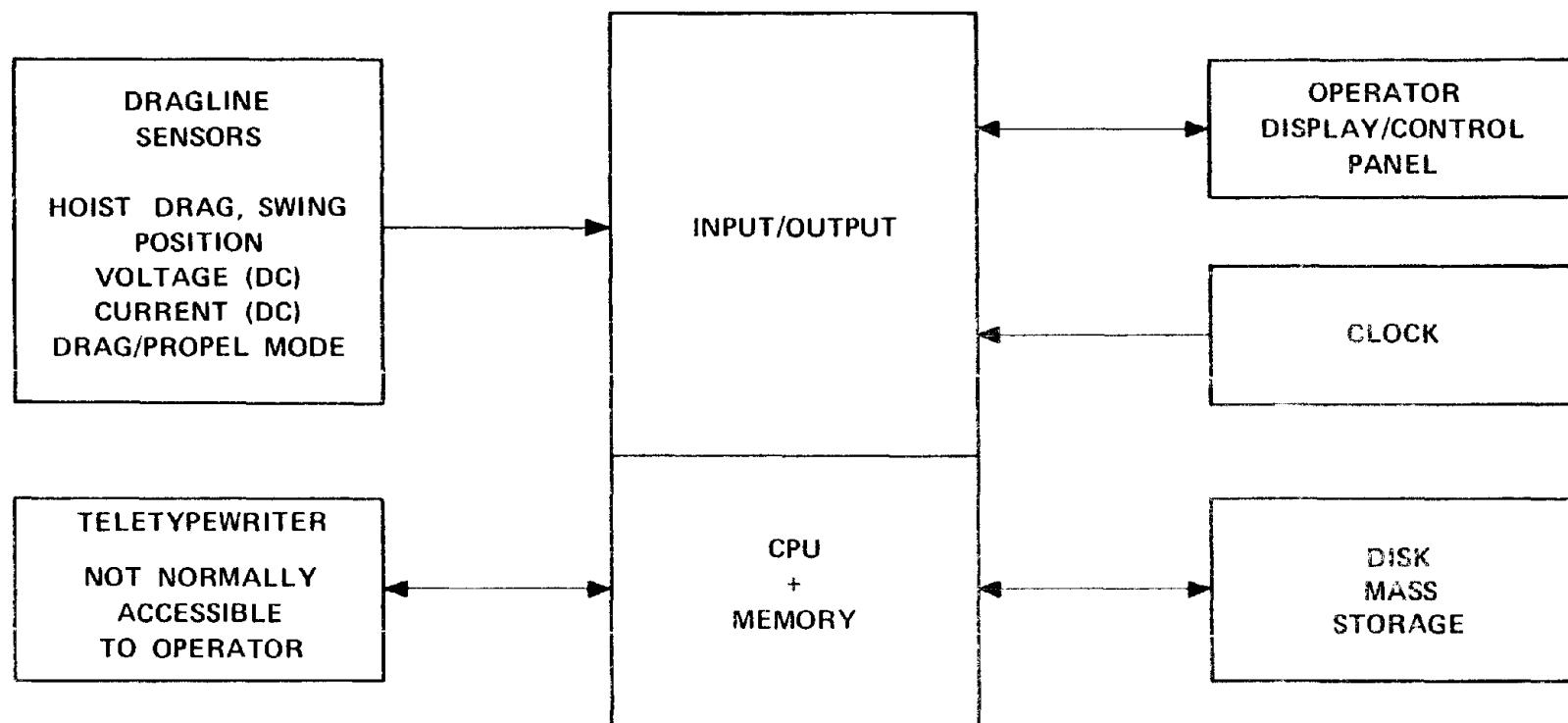


Figure 1-2

Figure 1-3



# DIGS BLOCK DIAGRAM

Figure 1-4. Block Diagram



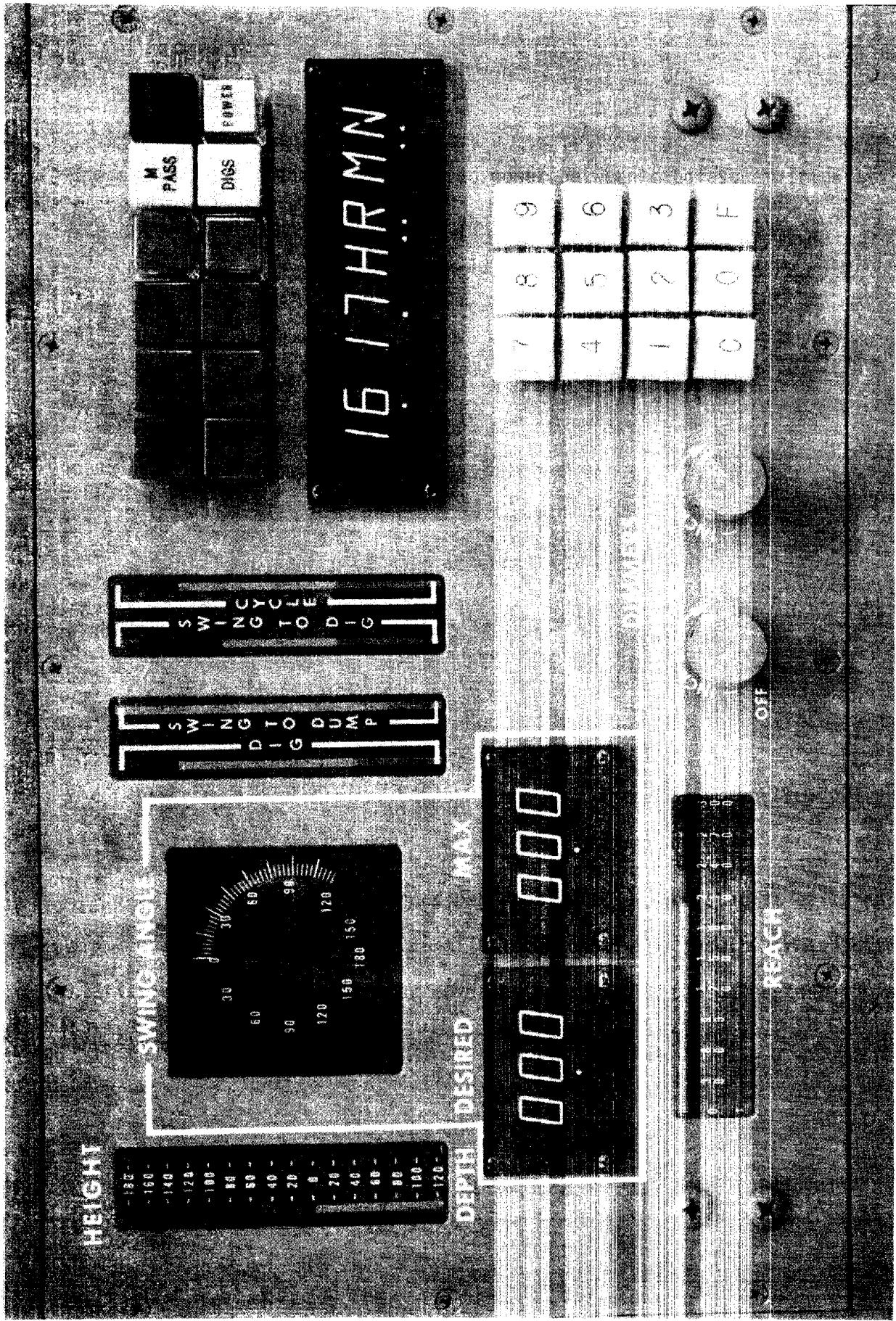



Figure 1-5

A figure of merit for last cycle performance is shown in the bar graphs labeled "DIG", "SWING TO DUMP", "SWING TO DIG" and total "CYCLE". Lighted push-button switches allow the operator to enter down time, operator code, job code, perform self diagnostic (DIGS) and select display codes. In addition, alert indicators for multipass operation, tightlining and excessive power usage are included in this cluster. The keyboard is used to enter appropriate codes for that function selected by the pushbutton switches or to call up specific displays when the display pushbutton is depressed. These groups of information are available:

- (1) Totals, such as number of cycles, yardages, and strip rates.
- (2) Averages, such as yardage, load distance, load time, cycle time and energy usage.
- (3) Last cycle information, such as yardage, load time, cycle time and energy.

Report Generation: The feedback data collected from the dragline sensors and the operators control panel are additionally processed and stored in a disk mass storage device. Approximately two weeks of data may be stored on a dual density flexible disk and retained in that form as a permanent record. This data can also be accessed at any time and for any period of operating time within the two week period by specified (usually management) personnel. This is accomplished by requesting the type of report desired on the teletypewriter. Figures 1-6, 1-7 and 1-8 are examples of a Chronological Report, Operator Summary Report and Total Summary Report. Other optimal reports include Dragline Operating Summary, Current Rope and Chain, Post Rope and Chain and Power Use Reports.

# PORTION OF CHRONOLOGICAL REPORT

|                                           | OPERATOR<br>REMOVAL | KEYCUT | BENCH<br>REMOVAL   | BENCH<br>FILL | CLEAN<br>COAL | RE-<br>HANDLE |
|-------------------------------------------|---------------------|--------|--------------------|---------------|---------------|---------------|
| OPERATOR # 32 FROM WED 15 MAR 1978        | 01: 6               |        | TO WED 15 MAR 1978 |               | 5:26          |               |
| MINUTES                                   | 55.                 | 0.     | 0.                 | 0.            | 0.            | 172.          |
| CYCLES                                    | 44.                 | 0.     | 0.                 | 0.            | 0.            | 142.          |
| YARDS                                     | 5169.               | 0.     | 0.                 | 0.            | 0.            | 12802.        |
| KWH                                       | 1125.               | 0.     | 0.                 | 0.            | 0.            | 3435.         |
| AV SW ANG                                 | 94.                 | 0.     | 0.                 | 0.            | 0.            | 118.          |
| XTRA PASS                                 | 0.                  | 0.     | 0.                 | 0.            | 0.            | 13.           |
| TL STAT                                   | 0.                  | 0.     | 0.                 | 0.            | 0.            | 1.            |
| TL DYN                                    | 0.                  | 0.     | 0.                 | 0.            | 0.            | 0.            |
| CB YARDS                                  | 603.                | 0.     | 0.                 | 0.            | 0.            | 199.          |
| STRIP RATE                                | 5642.               | 0.     | 0.                 | 0.            | 0.            | 4461.         |
| LONG CYCLE                                |                     | 0:10 - | 0:13               | 3 MIN         | 73 KWH        |               |
| LONG CYCLE                                |                     | 0:15 - | 0:19               | 4 MIN         | 71 KWH        |               |
| 14 MOVE UP AND LEVELING                   |                     | 1: 4 - | 1: 5               | 1 MIN         | 0 KWH         |               |
| 14 MOVE UP AND LEVELING                   |                     | 1: 5 - | 1: 9               | 4 MIN         | 2 KWH         |               |
| MOVED 3 STEPS, AT 217 DEGREES, IN 3 MIN   |                     |        |                    |               |               |               |
| MOVE COMPLETED AT 1:11                    |                     |        |                    |               |               |               |
| MOVED 3 STEPS, AT 219 DEGREES, IN 3 MIN   |                     |        |                    |               |               |               |
| MOVE COMPLETED AT 2: 8                    |                     |        |                    |               |               |               |
| 6 OIL AND GREASE MACHINE                  |                     | 2:58 - | 3:11               | 13 MIN        | 3 KWH         |               |
| 14 MOVE UP AND LEVELING                   |                     | 3:16 - | 3:19               | 3 MIN         | 1 KWH         |               |
| 14 MOVE UP AND LEVELING                   |                     | 3:21 - | 3:22               | 1 MIN         | 0 KWH         |               |
| 14 MOVE UP AND LEVELING                   |                     | 3:23 - | 3:26               | 3 MIN         | 0 KWH         |               |
| 14 MOVE UP AND LEVELING                   |                     | 3:28 - | 3:33               | 5 MIN         | 5 KWH         |               |
| MOVED 5 STEPS, AT 280 DEGREES, IN 4 MIN   |                     |        |                    |               |               |               |
| MOVED 20 STEPS, AT 290 DEGREES, IN 17 MIN |                     |        |                    |               |               |               |
| MOVE COMPLETED AT 3:55                    |                     |        |                    |               |               |               |
| 14 MOVE UP AND LEVELING                   |                     | 3:57 - | 3:59               | 2 MIN         | 0 KWH         |               |
| LONG CYCLE                                |                     | 4: 2 - | 4: 6               | 4 MIN         | 75 KWH        |               |
| 14 MOVE UP AND LEVELING                   |                     | 4: 6 - | 4: 8               | 2 MIN         | 17 KWH        |               |
| 14 MOVE UP AND LEVELING                   |                     | 4:11 - | 4:19               | 8 MIN         | 2 KWH         |               |
| MOVED 8 STEPS, AT 268 DEGREES, IN 7 MIN   |                     |        |                    |               |               |               |
| MOVE COMPLETED AT 4:26                    |                     |        |                    |               |               |               |
| OPERATOR # 55 FROM WED 15-MAR-1978        | 5:26                |        | TO WED 15-MAR-1978 |               | 6:30          |               |
| MINUTES                                   | 65.                 | 0.     | 0.                 | 0.            | 0.            | 0.            |
| CYCLES                                    | 45.                 | 0.     | 0.                 | 0.            | 0.            | 0.            |
| YARDS                                     | 5383.               | 0.     | 0.                 | 0.            | 0.            | 0.            |
| KWH                                       | 1208.               | 0.     | 0.                 | 0.            | 0.            | 0.            |
| AV SW ANG                                 | 131.                | 0.     | 0.                 | 0.            | 0.            | 0.            |
| XTRA PASS                                 | 0.                  | 0.     | 0.                 | 0.            | 0.            | 0.            |
| TL STAT                                   | 3.                  | 0.     | 0.                 | 0.            | 0.            | 0.            |
| TL DYN                                    | 0.                  | 0.     | 0.                 | 0.            | 0.            | 0.            |
| CB YARDS                                  | 529.                | 0.     | 0.                 | 0.            | 0.            | 0.            |
| STRIP RATE                                | 4970.               | 0.     | 0.                 | 0.            | 0.            | 0.            |

30-823-27

Figure 1-6. Chronological Report

# PORTION OF OPERATOR SUMMARY REPORT

| OVRBRDN<br>REMOVAL                                              | KEYCUT | BENCH<br>REMOVAL | BENCH<br>FILL | CLEAN<br>COAL | RE-<br>HANDLE |
|-----------------------------------------------------------------|--------|------------------|---------------|---------------|---------------|
| OPERATOR # 55 FROM MON 13-MAR-1978 3:11 TO THU 16-MAR-1978 4:54 |        |                  |               |               |               |
| MINUTES                                                         | 114.   | 0.               | 0.            | 0.            | 60.           |
| CYCLES                                                          | 75.    | 0.               | 0.            | 0.            | 49.           |
| YARDS                                                           | 8824.  | 0.               | 0.            | 0.            | 5430.         |
| KWH                                                             | 2016.  | 0.               | 0.            | 0.            | 1005.         |
| AV SW ANG                                                       | 118.   | 0.               | 0.            | 0.            | 60.           |
| XTRA PASS                                                       | 3.     | 0.               | 0.            | 0.            | 1.            |
| TL STAT                                                         | 4.     | 0.               | 0.            | 0.            | 2.            |
| TL DYN                                                          | 0.     | 0.               | 0.            | 0.            | 0.            |
| CB YARDS                                                        | 615.   | 0.               | 0.            | 0.            | 0.            |
| STRIP RATE                                                      | 4625.  | 0.               | 0.            | 0.            | 5450.         |
| MON 13-MAR-1978                                                 |        |                  |               |               |               |
| 6 OIL AND GREASE MACHINE                                        |        | 3:11 - 3:12      | 1 MIN         | 2 KWH         |               |
| 6 OIL AND GREASE MACHINE                                        |        | 3:37 - 3:40      | 3 MIN         | 2 KWH         |               |
| 14 MOVE UP AND LEVELING                                         |        | 3:43 - 4:11      | 28 MIN        | 9 KWH         |               |
| MOVE COMPLETED AT                                               | 4:13   |                  |               |               |               |
| MOVE COMPLETED AT                                               | 4:15   |                  |               |               |               |
| MOVED 4 STEPS, AT 131 DEGREES, IN                               | 15 MIN |                  |               |               |               |
| MOVED 11 STEPS, AT 121 DEGREES, IN                              | 11 MIN |                  |               |               |               |
| MOVE COMPLETED AT                                               | 4:41   |                  |               |               |               |
| TUE 14-MAR-1978                                                 |        |                  |               |               |               |
| WED 15-MAR-1978                                                 |        |                  |               |               |               |
| THU 16-MAR-1978                                                 |        |                  |               |               |               |
| 6 OIL AND GREASE MACHINE                                        |        | 3:12 - 3:14      | 2 MIN         | 7 KWH         |               |
| LONG CYCLE                                                      |        | 3:56 - 4: 0      | 4 MIN         | 32 KWH        |               |
| LONG CYCLE                                                      |        | 4: 0 - 4: 3      | 3 MIN         | 57 KWH        |               |
| LONG CYCLE                                                      |        | 4: 5 - 4: 9      | 4 MIN         | 49 KWH        |               |
| LONG CYCLE                                                      |        | 4: 9 - 4:12      | 3 MIN         | 53 KWH        |               |
| LONG CYCLE                                                      |        | 4:12 - 4:15      | 3 MIN         | 54 KWH        |               |
| LONG CYCLE                                                      |        | 4:15 - 4:19      | 4 MIN         | 59 KWH        |               |
| 14 MOVE UP AND LEVELING                                         |        | 4:25 - 4:29      | 4 MIN         | 0 KWH         |               |
| 14 MOVE UP AND LEVELING                                         |        | 4:40 - 4:42      | 2 MIN         | 0 KWH         |               |
| LONG CYCLE                                                      |        | 4:43 - 4:46      | 3 MIN         | 31 KWH        |               |
| MOVED 6 STEPS, AT 277 DEGREES, IN                               | 0 MIN  |                  |               |               |               |
| MOVE COMPLETED AT                                               | 4:51   |                  |               |               |               |
| MOVE COMPLETED AT                                               | 4:51   |                  |               |               |               |

30-823-28

Figure 1-7. Operator's Summary Report

# TOTAL SUMMARY REPORT

|                                          | OVRBRDN<br>REMOVAL | KEYCUT | BENCH<br>REMOVAL | BENCH<br>FILL      | CLEAN<br>COAL | RE-<br>HANDLE |
|------------------------------------------|--------------------|--------|------------------|--------------------|---------------|---------------|
| <hr/>                                    |                    |        |                  |                    |               |               |
| DRAGLINE OPERATIONS FROM MON 13-MAR-1978 |                    |        | 3:11             | TO MON 20-MAR-1978 |               | 7:21          |
| MINUTES                                  | 3643.              | 34.    | 467.             | 0.                 | 113.          | 2621.         |
| CYCLES                                   | 3380.              | 27.    | 521.             | 0.                 | 96.           | 2764.         |
| YARDS                                    | 323919.            | 2225.  | 43853.           | 0.                 | 8511.         | 223681.       |
| KWH                                      | 84712.             | 696.   | 11109.           | 0.                 | 2592.         | 55741.        |
| AV SW ANG                                | 99.                | 97.    | 85.              | 0.                 | 95.           | 80.           |
| XTRA PASS                                | 89.                | 0.     | 6.               | 0.                 | 3.            | 115.          |
| TL STAT                                  | 8.                 | 0.     | 4.               | 0.                 | 0.            | 7.            |
| TL DYN                                   | 0.                 | 0.     | 0.               | 0.                 | 0.            | 0.            |
| CB YARDS                                 | 41595.             | 202.   | 698.             | 0.                 | 705.          | 0.            |
| STRIP RATE                               | 5334.              | 3946.  | 5633.            | 0.                 | 4518.         | 5121.         |
| <br>--OPERATIONAL DELAYS--               |                    |        |                  |                    |               |               |
| CHANGE POWER CABLE                       |                    |        |                  | 17. MIN            |               | 12. KWH       |
| OIL AND GREASE MACHINE                   |                    |        |                  | 454. MIN           |               | 279. KWH      |
| TRAFFIC PASSING MACHINE                  |                    |        |                  | 2. MIN             |               | 4. KWH        |
| MOVE UP AND LEVELING                     |                    |        |                  | 1697. MIN          |               | 132. KWH      |
| SHOOTING HIGHWALL                        |                    |        |                  | 2. MIN             |               | 8. KWH        |
| LOADING SUPPLIES                         |                    |        |                  | 21. MIN            |               | 83. KWH       |
| NOT REQUIRED                             |                    |        |                  | 1. MIN             |               | 7. KWH        |
| <br>--BREAKDOWN REPAIRS--                |                    |        |                  |                    |               |               |
| HOIST                                    |                    |        |                  | 10. MIN            |               | 4. KWH        |
| SWING                                    |                    |        |                  | 15. MIN            |               | -5. KWH       |
| BUCKET, CHAINS, FINS, TEETH              |                    |        |                  | 26. MIN            |               | 21. KWH       |
| ALL OTHER ELECTRICAL                     |                    |        |                  | 121. MIN           |               | 56. KWH       |
| <br>--UNCONTROLLABLE DELAYS--            |                    |        |                  |                    |               |               |
| POWER OUTAGE                             |                    |        |                  | 6. MIN             |               | 43. KWH       |
| PREVENTIVE MAINTENANCE                   |                    |        |                  | 573. MIN           |               | 1. KWH        |
| <br>--OTHER DELAYS--                     |                    |        |                  |                    |               |               |
| INVALID CODE                             |                    |        |                  | 21. MIN            |               | 1. KWH        |
| LONG CYCLES                              |                    |        |                  | 331. MIN           |               | 2235. KWH     |
| PROPEL MODE                              |                    |        |                  | 653. MIN           |               | 616. STEPS    |

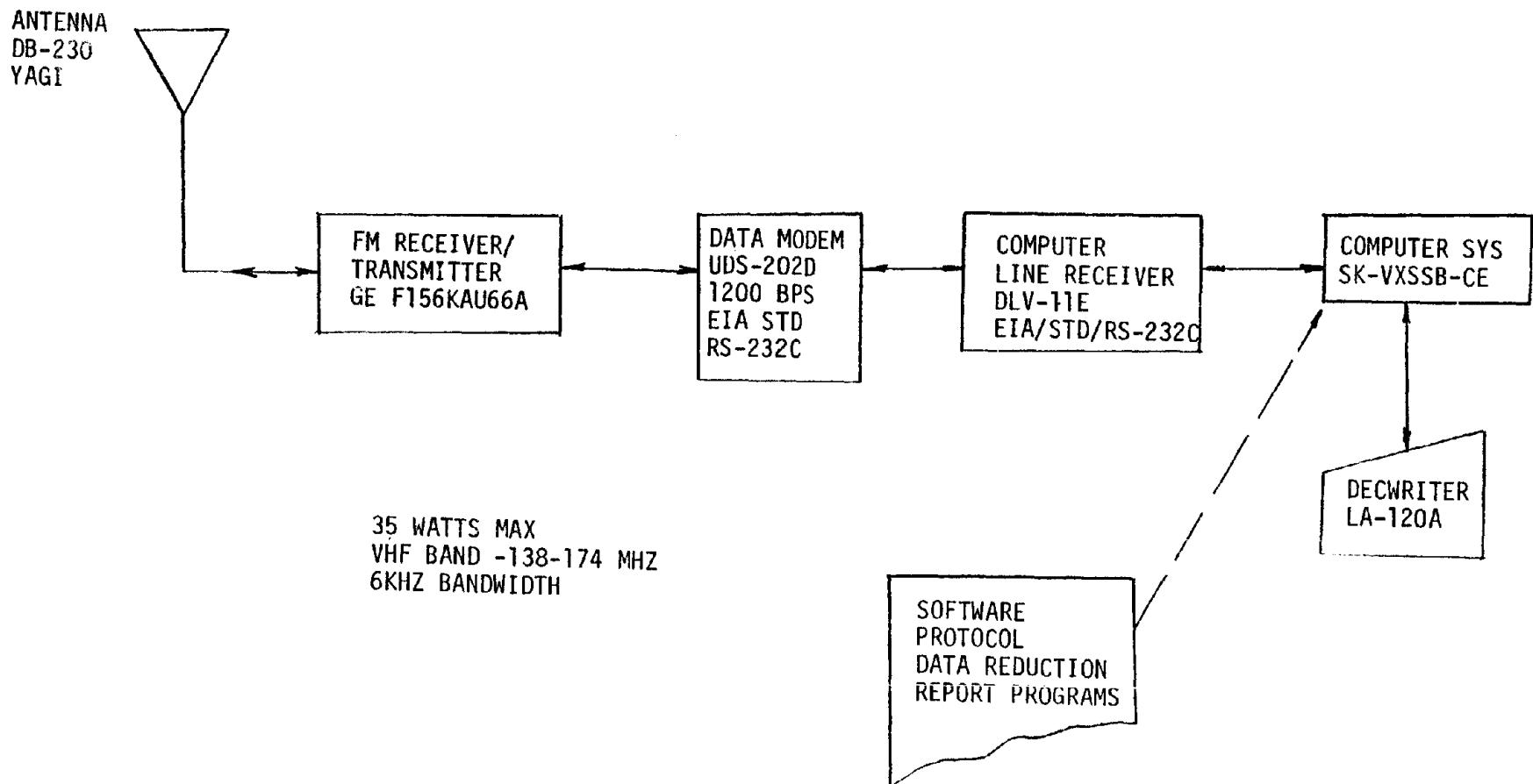
30-823-26

Figure 1-8. Total Summary Report

Most DIGS users agree that reports summarizing production are desirable at least on a daily basis and that other reports such as maintenance activity reports should be available on demand. This would require daily visits to the dragline to acquire the desired routine data and occasional additional visits to obtain specific data as its need arises. Aside from the inconvenience to the authorized system operator, his travel time and the time spent waiting for generation and printout of the reports could be better applied to his primary function. Although the data collection means provided by the DIGS is significantly more efficient than that by conventional means the printing of the DIGS reports is often postponed and sometimes ignored due to other pressing matters of mine operation. The role of the data link system, as applied to DIGS, is to provide the means to collect current dragline performance and maintenance data when it is desired with minimum inconvenience and time loss.

Installation Site. The choice of an installation and evaluation site for the Dragline Data Link System was limited to users of DIGS. This criteria, in itself, lends credence to the site selection since it implies an active mine operation with progressive management interested in improving productivity through better data communication. Old Ben Coal Co. through their Regional Office at Oakland City, Indiana agreed to participate in this program. A DIGS was in use on a Bucyrus Erie Model 1370 dragline at their Old Ben No. 2 Mine approximately ten miles north of Oakland City. Their personnel participated in the installation of the system on the dragline and in the engineering area at the mine office and were the prime equipment operators during the evaluation phase.

Old Ben Mine No. 2 Mine provided most of the objectives used in the system design of the data link system. They operate under a variety of weather conditions and provide a transmission path over irregular terrain with the line of sight broken by spoil peaks. The antenna to antenna distance varied from about 1 to 1.3 miles, however, and did not allow verification of longer distance transmission.


A radio operation license was applied for and received from the Federal Communications Commission through the Special Industrial Radio Service Association Inc. in the name of the Old Ben Coal Company Inc. A frequency in the high band VHF range was assigned.

## 2.0 SYSTEM APPROACH

The design of the Data Link System was predicated upon a universal application for data exchange in a mining environment. The model system shown in Figure 2-1 and 2-2 consists of a central base installation at the mine office capable of supporting many remote or mobile data collection sources. Data transfer is initiated from the base installation by entering the remote system address, the data category and the period of time for which the data is desired. The addressed remote system will respond and transmit the required data to the base station. All record print-out routines are resident in the base system such that print-out can be immediately obtained following completion of the data transfer. The system evaluated uses a radio frequency (RF) data link, however, the data format and protocol is compatible with a conventional telephone link. Both half and full duplex transmission modes can be accommodated although a single frequency system was used for the evaluation. Terrain and topography considerations for the RF link are based upon irregular terrain with the line of sight transmission path blocked by "spoil" piles located near the remote system. A figure of 99% probability of reception at any location within a five mile sector radius was made a design goal. Wherever practical, readily available commercial quality equipment consistent with the environmental conditions were utilized.

2.1 Site Selection. Old Ben Coal Company agreed to allow MDEC to install the Data Link at their Old Ben Number 2 Mine near Oakland City, Indiana. They also assisted in its installation and evaluation. Their selection was almost mandatory since they were the sole established user of a production IGS at the time that site selection was made.

Figure 2-1. Block Diagram, Mine Office Data Link



PRESENT DIGS

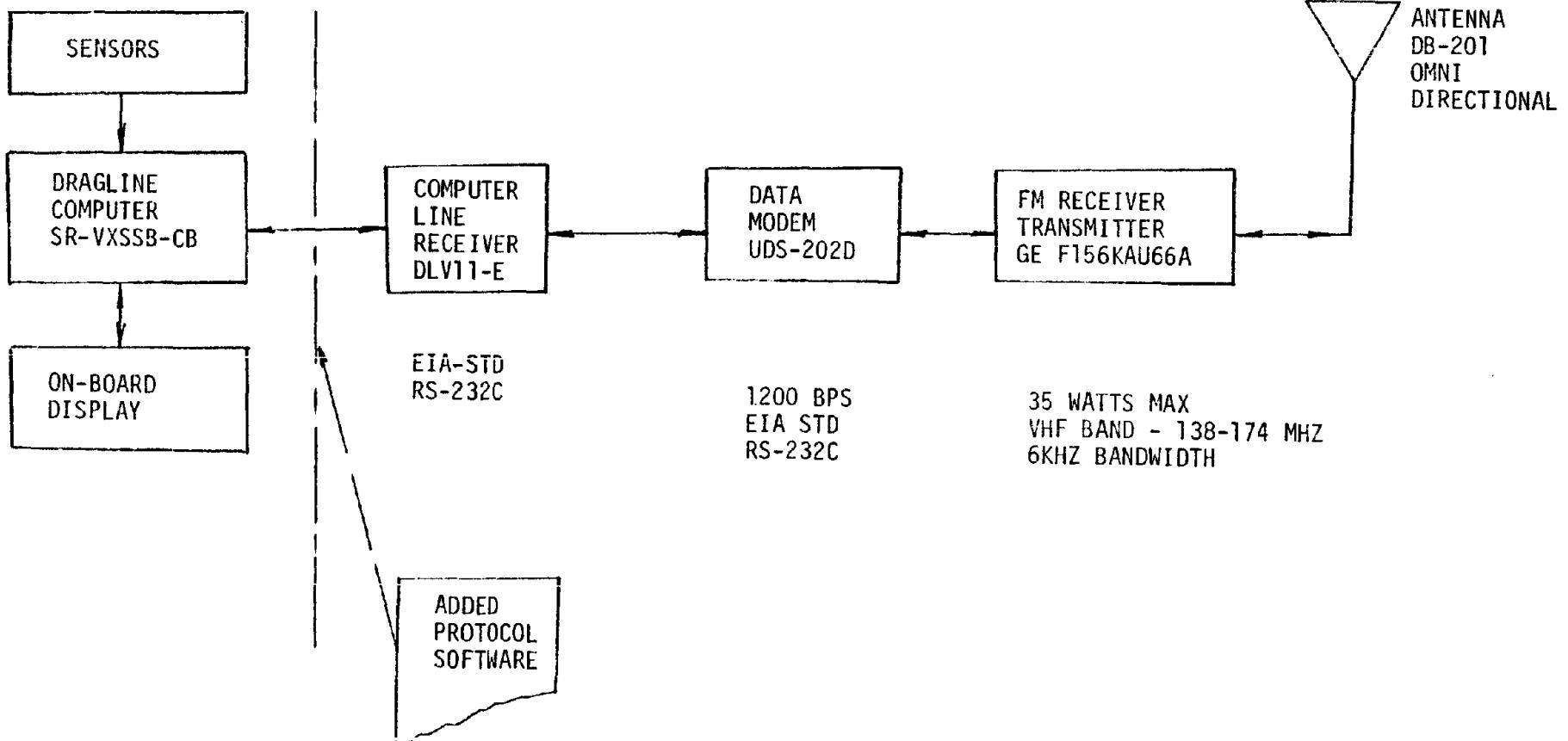



Figure 2-2. Block Diagram, Dragline Data Link

Old Ben Coal Company provided space in their engineering office for installation of the mine office data link and computer system. A 20a 115V service outlet was available to power this equipment. Approximately six square feet of floor space is required for this installation. The equipment is free standing with the radio and modem stacked on the computer. The teletypewriter is positioned adjacent to the computer. Figure 2-3 shows this installation.

The dragline data link system was installed in the DIGS room located in the tub of the BE Model 1370 dragline. This room was previously constructed for and contains the computer and teletypewriter supplied with DIGS. The room is sealed to dust, insulated and temperature controlled between 12°C to 24°C. Vibration/shock levels recorded on two models of draglines indicate levels of less than .5 grms. Although the model 1370 was not specifically tested, its similarity of construction and operation, tends to support similar results.

Installation of the radio and modem is identical to that of the base station, i.e., free standing on the DIGS computer. Power is supplied by conventional 20 amp 115V service outlets. Figures 2-4 and 2-5 depict the dragline data link installation.

The topography at Old Ben Mine Number 2 is typical of midwestern strip mines. The terrain is irregular due to past mining activity. Conventional benching and spoiling techniques are employed. At various dragline positions the antenna to antenna line of sight is interrupted by spoil peaks. Figure 2-6 shows the approximate line of sight path. The base station antenna is located about midway on the mast adjacent to the mine office. The dragline's antenna is located on the "A" frame.

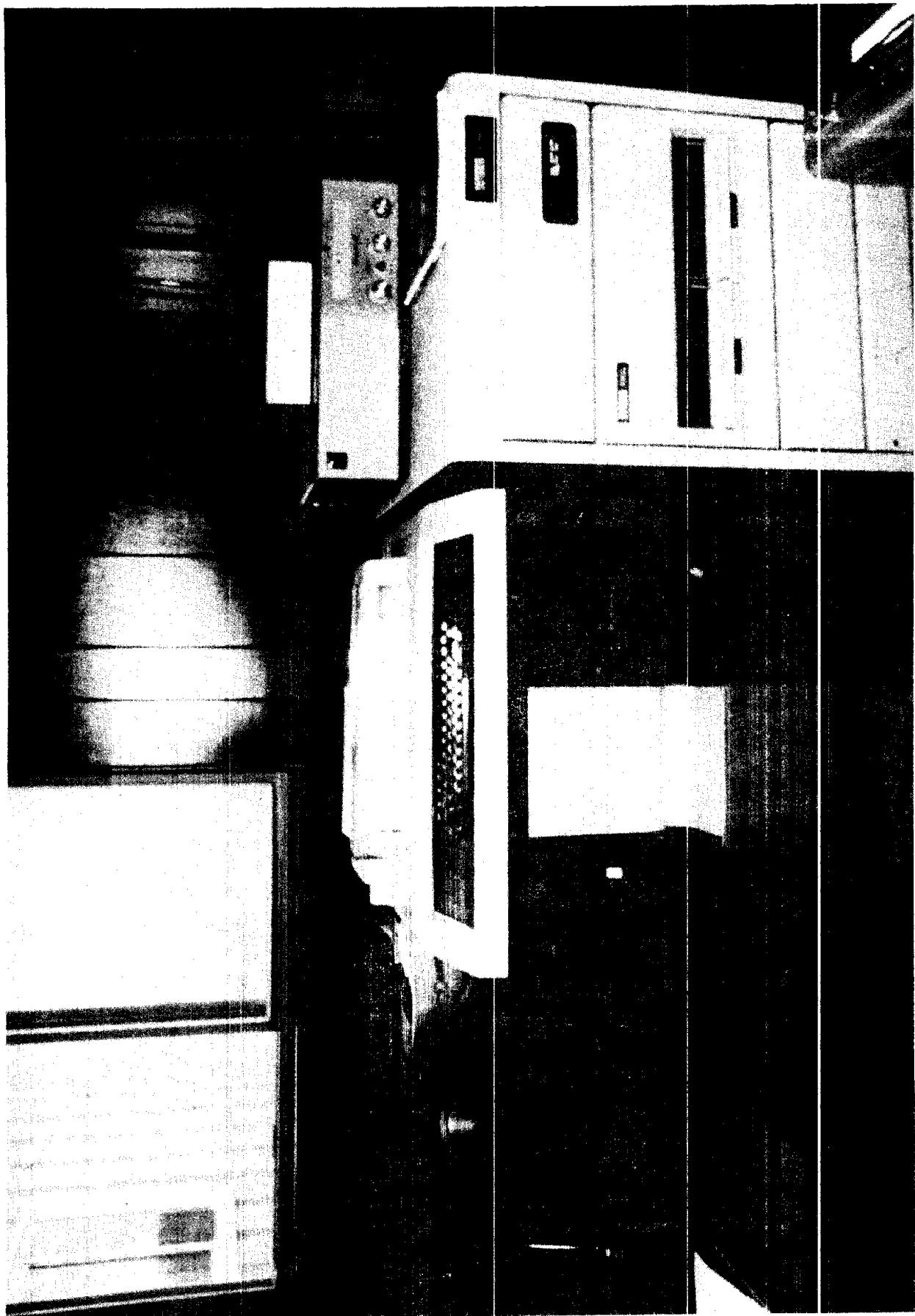



Figure 2-3

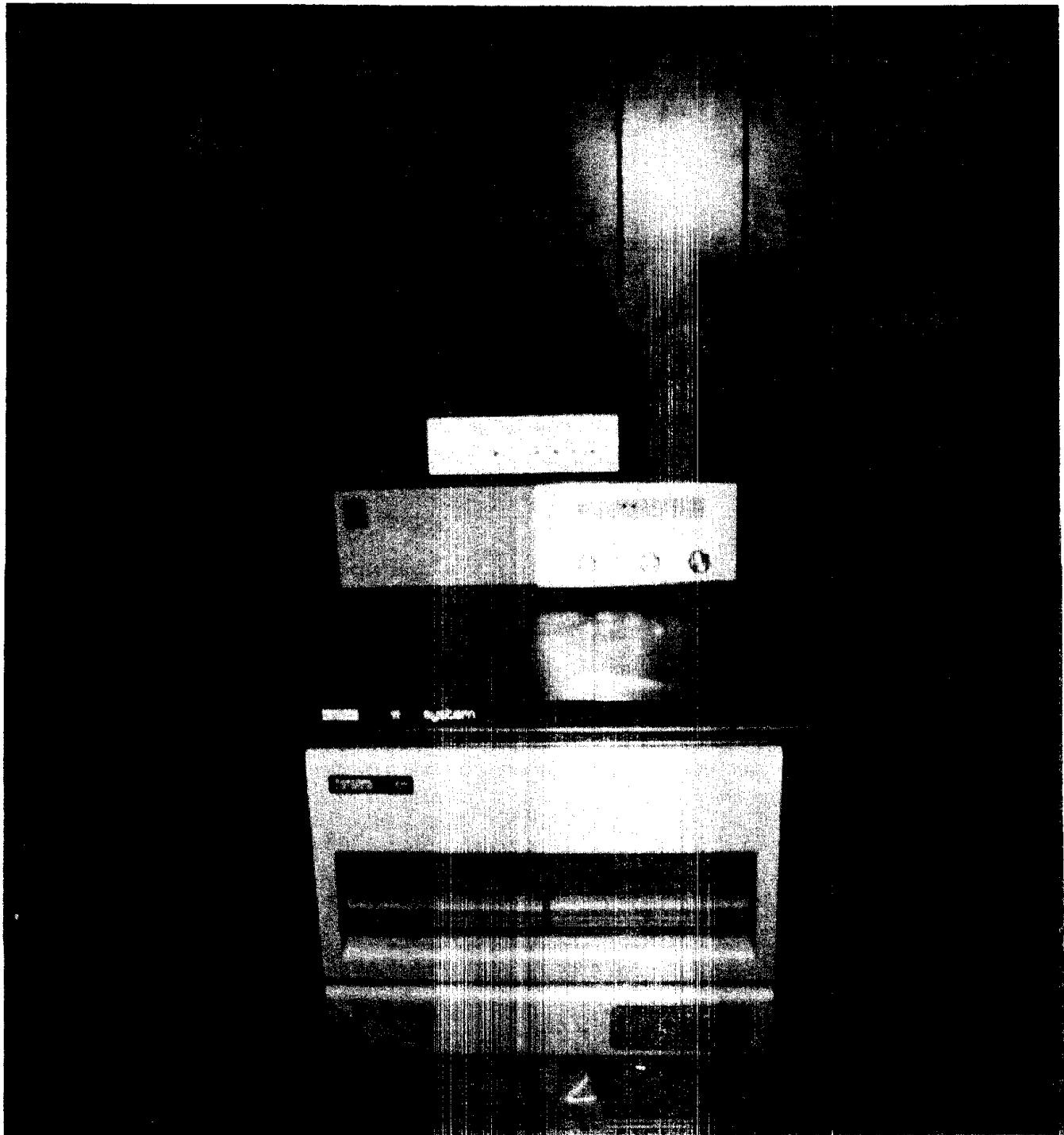



Figure 2-4

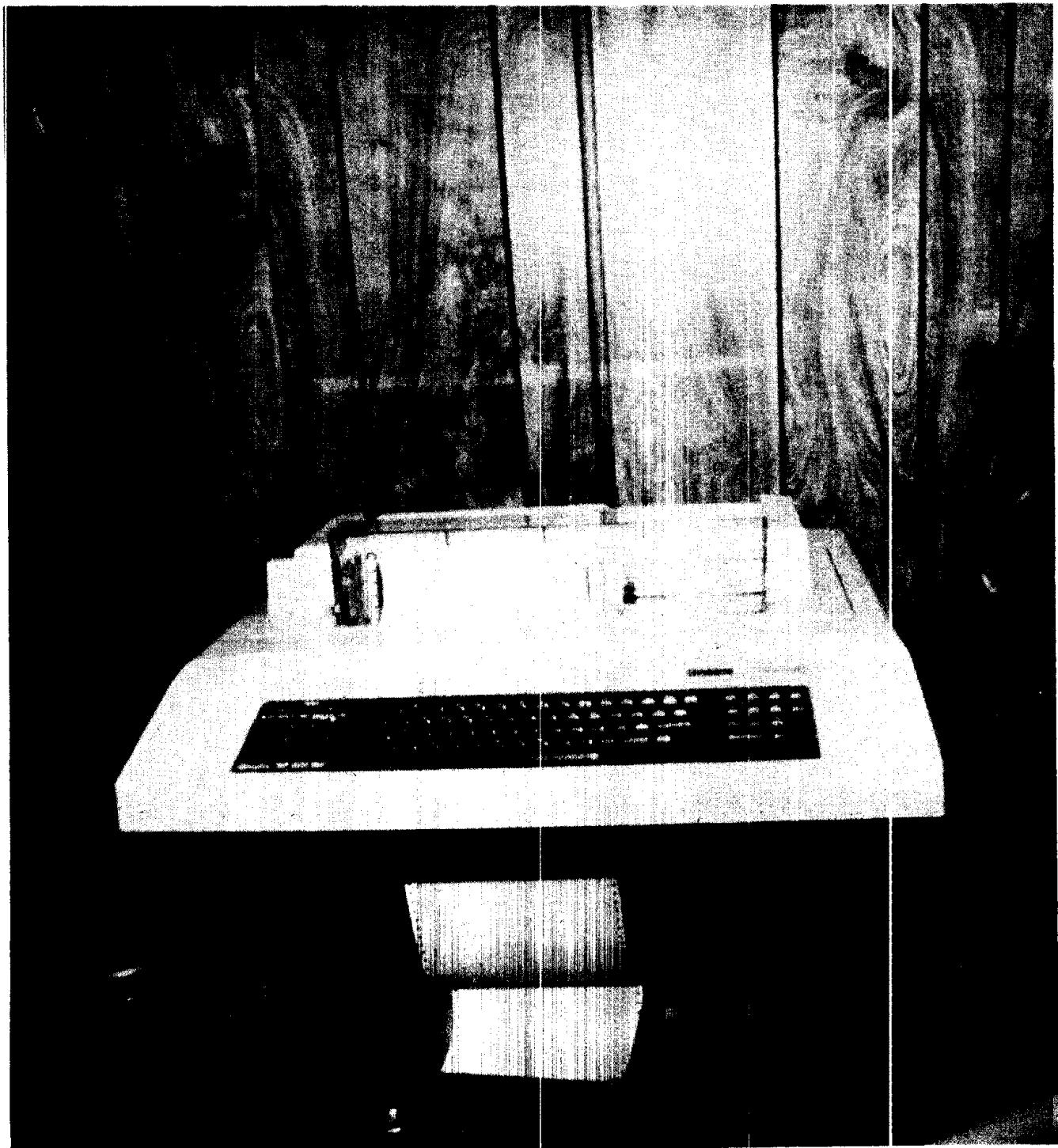
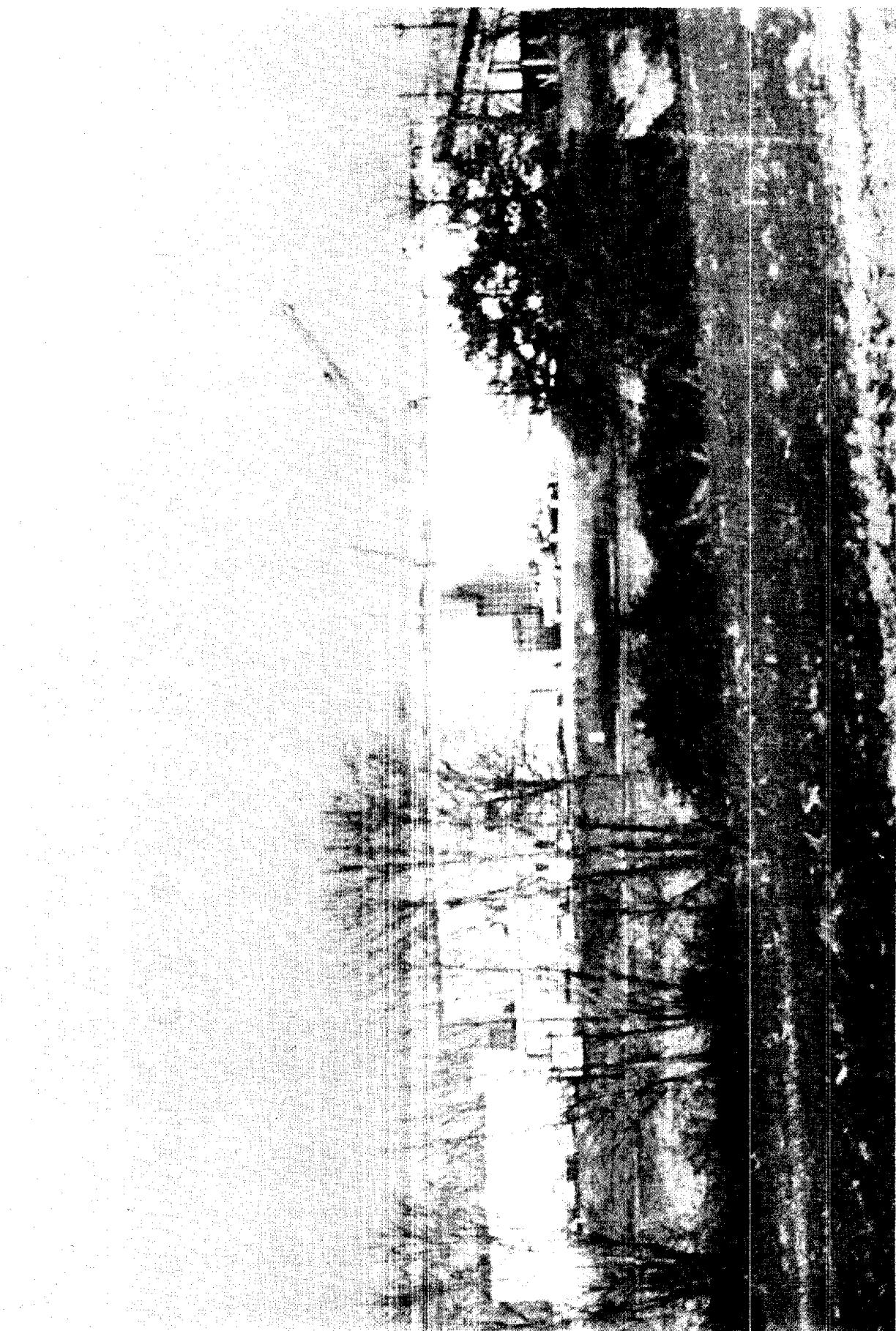




Figure 2-5

Figure 2-6



2.2 Frequency Selection. In reviewing the Federal Communications Commission rules for frequency assignment it was determined that the mine data link application resides with the Special Industrial Radio Service Group. Reasonable selections available were in bands about 150 MHZ, 170 MHZ and 450 MHZ. Due to path loss considerations the lower frequency groups were desired. Application for frequency recommendation was made to the Special Industrial Radio Service (SIRSA). After coordination with radio users in the Oakland City locale they recommended that 154.46375 MHZ be used. Application was made and a radio license received from the FCC in Nov. 1980, in the name of Old Ben Coal Co. The license provides for 35 watt output, type 6F9 emmission, and 203.5 HZ tone controlled squelch frequency. The base station (mine office) is classed as Operational Fixed and utilizes a directional antenna having 10db gain. Its location is 38°26'10" lattitude and 87°14'42" longitude. The remote station (dragline) is classed as Temporary Operational Fixed. It also provides for 35 watts output, type 6F9 emmission but uses a unity gain omnidirectional antenna.

### 2.3 Design Considerations.

2.3.1 Transmission Path Loss: The Data Link model used for the loss calculation is as follows:

|                                                               |           |
|---------------------------------------------------------------|-----------|
| Receiver Sensitivity (20db quieting)                          | - 0.5 uv  |
| Base Antenna, Directional 3 element<br>Yaggi gain over dipole | - 7dB     |
| Base Antenna Height                                           | - 50 Ft.  |
| Dragline Antenna, Dipole Gain                                 | - Unity   |
| Dragline Antenna Height (Ground<br>Level)                     | - 40 Ft.  |
| Distance Between Antennas                                     | - 5 Miles |

|                            |                 |
|----------------------------|-----------------|
| Total Length Coaxial Cable | - 500 Ft.       |
| Frequency                  | - 154.46375 MHZ |

The theoretical plane earth received power between dipoles, empirically modified for irregular terrain at above 40 MHZ is given by

$$P_r = 0.345 \left( \frac{h_t h_r}{d^2} \right)^2 \left( \frac{40}{f} \right)^2 P_t \times 10^{-14} \quad (1)$$

where  $P_r$  = Received power - watts

$h_t$  = Transmitting antenna height - feet

$h_r$  = Receiving antenna height - feet

$d$  = Distance between antennas - miles

$f$  = Frequency - MHZ

$P_t$  = Transmitted power - watts

For the model specified and  $P_t = 1$  Watt

$$P_r = 1.48 \times 10^{-12} \text{ watts}$$

$$P_r = 118.3 \text{ dBw}$$

The path loss calculation methods per foot note(1) were statistically and empirically derived for 50 percentile locations. The results are adjusted statistically to achieve better coverage by applying the power terrain factor for fixed to vehicular service. From footnote (1)

for 90 percentile locations add -24dB

for 99 percentile locations add -33dB

(1) Radio Propagation Above 40 MHZ Over Irregular Terrain, John J. Egli, Proceedings of IRE Oct 1957, Page 1383.

The received power figure for the 99 percentile location is

$$P_R = -151.3$$

Additional loss for coaxial cable at 0.027 db per foot 13.5db

Total Path Loss then is -164.8db

System gain for receiver sensitivity specified at 0.5 microvolts into a 50 ohm load is -143db

Antenna gain over dipole is 7db

Total system gain -150db

Total gain deficit 14.8db

The transmitter power required to achieve the required level of reception for the given model is:

$$P_r = 10^{1.48} = 30.2 \text{ watts}$$

The antenna separation at evaluation site, however, was a maximum of 1.5 miles giving a net gain for transmitter power of one watt equal to 7.9 dBw.

2.3.2 Bandwidth. The dragline data link system was designed for compatibility with conventional unconditioned telephone line transmission. Transmission bit rate established at 1200 bits per second. The data modem provided Frequency Shift Keyed (FSK) modulation with a 1200 HZ mark and 2200 HZ space. For FSK telegraphy, the required bandwidth is given by

$$Bw = BK + 2D \quad (2)$$

where  $Bw$  = bandwidth 1w HZ

$B$  = Band rate - bits per sec.

$K$  = Distortion factor (for nonfading signals = 3)

$D$  = Half the difference between maximum and minimum modulation frequencies.

$$Bw = 4600 \text{ HZ}$$

(2) Reference Data for Radio Engineers, International Telephone and Telegraph Corp. Fourth Edition.

Conventional FM modulation techniques were used for the RF link. The frequency deviation was established at 3.6 KHz giving a modulation index of 3 and 1.7 for the mark and space respectively. Reviewing the side band distribution in conjunction with the Bessel Function of the first kind and using a frequency deviation of 3.6 KHZ, better than 70% of the modulation power is contained within a 5 KHZ bandwidth.

2.3.3 Information Transfer/Modem. The modem and interface used in the Data Link system was chosen to be compatible with EIA Standard RS-232C. The modem is also compatible with Bell WE-202D. This system was selected based upon applicability, availability and relative cost of equipment. Frequency shift keyed modulation is used at a rate of 1200 bits per second. Data is transmitted in groups of 256 bytes. Four additional bytes are used for addressing and transfer validity. The transmission duty cycle is approximately 50%. Data processing and timing delays make up the other 50% of the time. A complete transmission cycle requires about 2 sec. At that rate a full disk of data (480 blocks of 512 bytes each) can be transmitted in about 30 minutes. Reports used at Old Ben Coal Co. range from 80,000 bytes for power to 110 bytes for current rope and chain reports. These reports require about 22 and less than 1 minute of transmission time respectively.

2.4 Equipment Specification. The major equipment items making up the data link system are the computer, line interface, data modem, radio and antenna. Both the mine office and dragline installations are functionally the same. The functional schematic of the system is shown in Figure 2-7. The parts list is shown in Table 2-1.

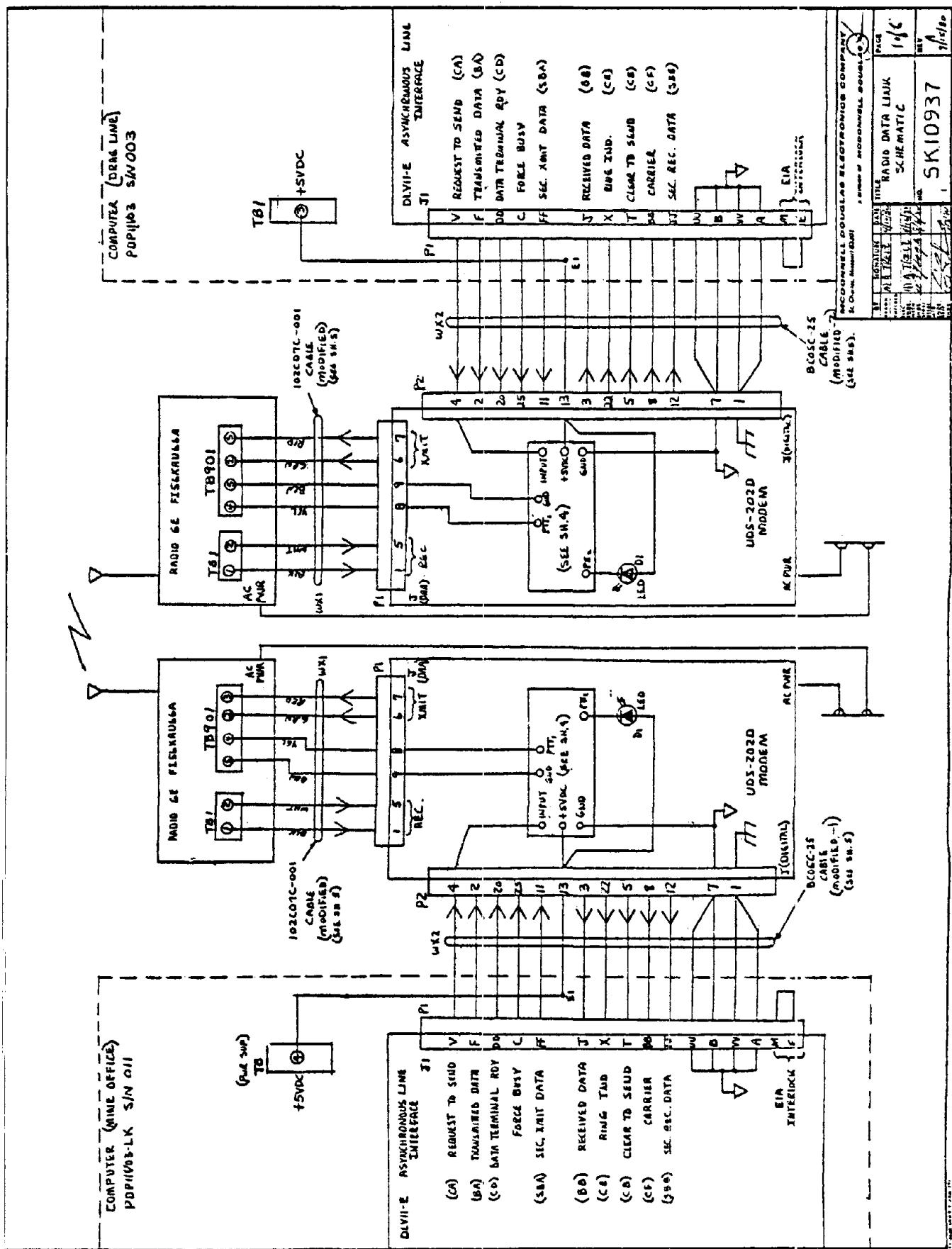



Figure 2-7. Functional Schematic

| <u>Qty</u> | <u>Part No.</u> | <u>Name</u>                                                                       | <u>Manufacturer</u>           |
|------------|-----------------|-----------------------------------------------------------------------------------|-------------------------------|
| 2          | DLV11-E         | Asynchronous Line Interface                                                       | Digital Equipment Corp. (DEC) |
| 1          | PDP1103-L       | Computer W/LA120 DecWriter<br>Fortran/RJ-11/RX02 Disk/<br>Cables and Installation | Digital Equipment Corp. (DEC) |
| 2          | UDS-202D        | Data modem and cable                                                              | Universal Data Systems (UDS)  |
| 2          | BCOSC-25        | Model Cable                                                                       | DEC                           |
| 2          | F15GKAUGGA      | Transmitter/Receiver                                                              | GE                            |
| 1          | DB-230          | Antenna, 1/AGI                                                                    | Decibel Products              |
| 1          | DB-201          | Antenna, Dipole                                                                   | Decibel Products              |
| 500        | RG-80           | Cable, Coaxial                                                                    |                               |
| 2          | SK10937         | Transmitter Keying<br>Circuit Assy                                                | MDEC                          |

TABLE 2-1. PARTS LIST, RADIO DATA LINK

2.4.1 Computer. The Digital Equipment Corporation Model PDP1103-L Computer System was selected for the data link system. This is the same computer as used on DIGS. It has 56 kilo bytes of memory and utilizes the RX02 dual flexible disk and LA120 DecWriter. FORTRAN/RJ-11 system software is provided. The computer system, shown in Figure 2-4, is packaged in a short cabinet configuration suitable for office environment. Its operating temperature range is 5 to 40°C. The internal configuration of the mine office and dragline computers is shown in Figure 2.8.

2.4.2 Data Modem Interface. The DLV11-B is an asynchronous line interface module that interfaces the PDP 1103L bus to any of several types of serial communications lines. The module receives serial data from a peripheral device, assembles it into parallel data and transfers it to the bus. It accepts data from the bus, converts it into serial data and transmits it to the peripheral device. The DLV11-E offers full modem control and is compatible with EIA Standard RS-232C, Bell WE-202D and other devices. The DLV11-E is a circuit card that is installed directly into the PDP1103-L computer system. Various functional configurations are implemented by jumper on the card. Figure 2-9 shows the configuration used with the data link.

2.4.3 Data Modem. The Universal Data Systems Model 202D is a phase coherent, frequency shift keyed (FSK) data modem designed for asynchronous operation up to 1800 bps. The modem, packaged as a desk top unit, complies with EIA Standard RS-232C and is compatible with existing Bell WE-202D modems. The UDS-202D processes up to 1200 bits per second serial, asynchronous, digital, input data for transmission over unconditioned lines and up to 1800 bits per

Figure 2-8 Computer Configuration

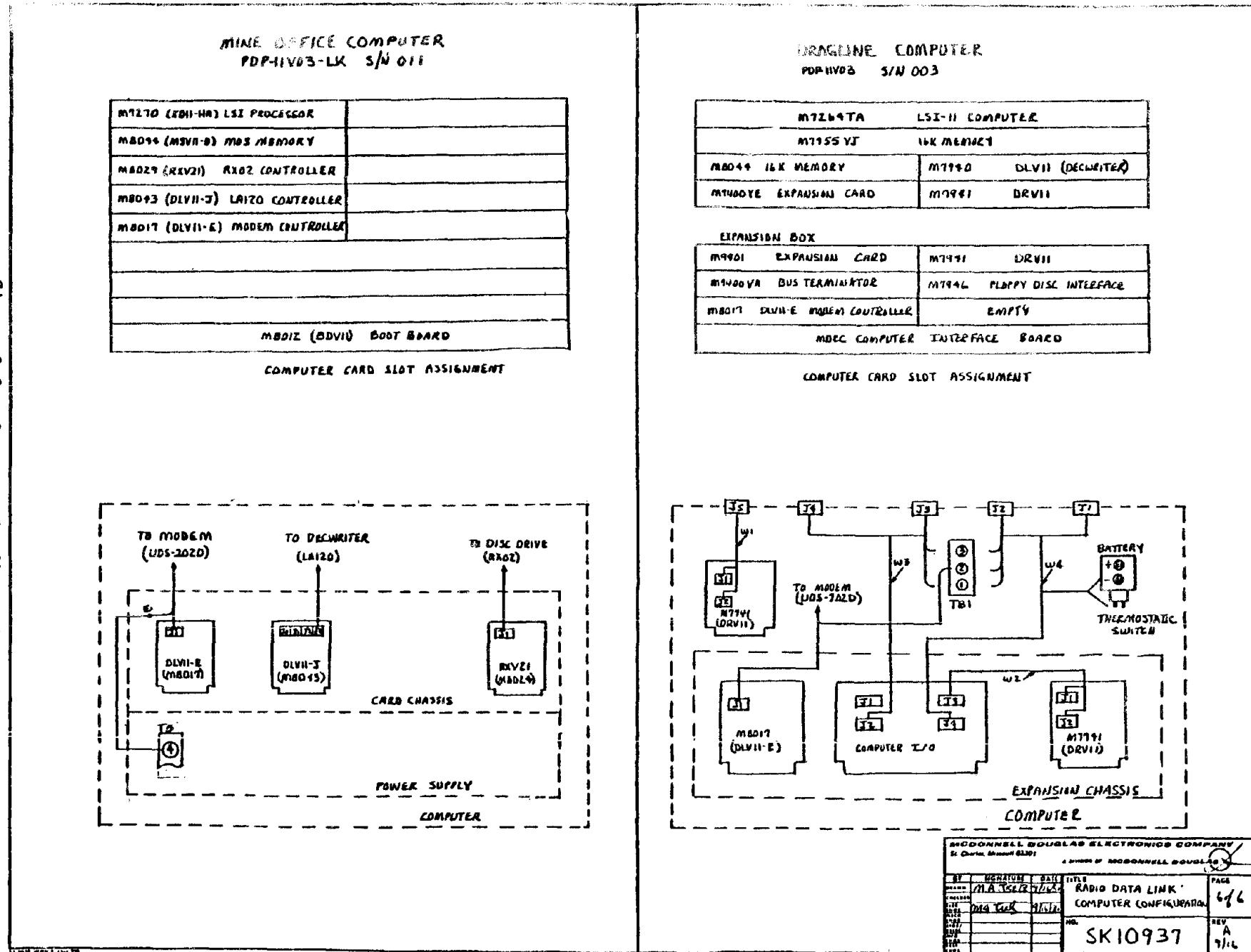
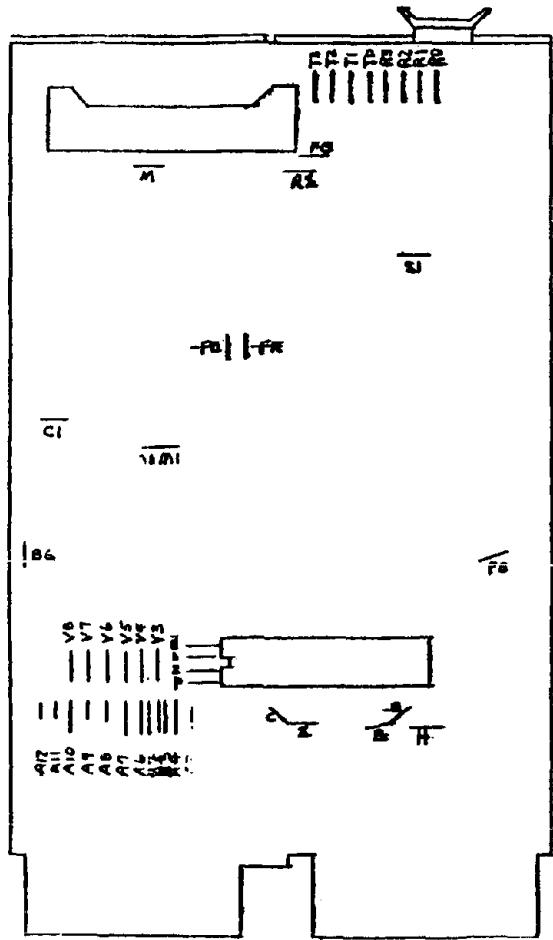




Figure 2-9. Data Modem Interface Configuration



DLVII-E JUMPER LOCATIONS

| JUMPER DESIGNATION | JUMPER STATE | FUNCTION IMPLEMENTED                                                                                  |
|--------------------|--------------|-------------------------------------------------------------------------------------------------------|
| A3                 | I            | JUMPERS A3 THRU A12 IMPLEMENT DEVICE ADDRESS 17661K UNIT #1.                                          |
| A4                 | R            |                                                                                                       |
| A5                 | R            |                                                                                                       |
| A6                 | I            |                                                                                                       |
| A7                 | I            |                                                                                                       |
| A8                 | I            |                                                                                                       |
| A9                 | I            |                                                                                                       |
| A10                | I            |                                                                                                       |
| A11                | I            |                                                                                                       |
| A12                | I            |                                                                                                       |
| V3                 | I            | JUMPERS V3 THRU V8 IMPLEMENT INTERRUPT VECTOR ADDRESS 170.                                            |
| V4                 | I            |                                                                                                       |
| V5                 | I            |                                                                                                       |
| V6                 | I            |                                                                                                       |
| V7                 | I            |                                                                                                       |
| V8                 | I            |                                                                                                       |
| R0                 | R            | MODULE CONFIGURED TO RECEIVE 1200 BAUD. (COMMON SPEED)                                                |
| R1                 | R            |                                                                                                       |
| R2                 | R            |                                                                                                       |
| R3                 | R            |                                                                                                       |
| T0                 | R            | MODULE CONFIGURED TO TRANSMIT 1200 BAUD. (COMMON SPEED)                                               |
| T1                 | R            |                                                                                                       |
| T2                 | R            |                                                                                                       |
| T3                 | R            |                                                                                                       |
| B6                 | I            | BREAK GENERATION IS ENABLED<br>PARITY BIT IS DISABLED<br>PARITY TYPE NOT APPLICABLE WHEN P IS REMOVED |
| P                  | R            | OPERATION WITH 8 DATA BITS PER CHARACTER                                                              |
| E                  | R            | PROGRAMMABLE BAUD RATE FUNCTION DISABLED.<br>COMMON SPEED ENABLED                                     |
| I                  | R            | SPLIT SPEED DISABLED                                                                                  |
| 2                  | R            |                                                                                                       |
| P0                 | R            | HALT ON FRAMING ERROR DISABLED.<br>BOOT ON FRAMING ERROR DISABLED.                                    |
| CJ                 | I            |                                                                                                       |
| S1                 | T            |                                                                                                       |
| S1                 | R            |                                                                                                       |
| H                  | R            |                                                                                                       |
| B                  | R            |                                                                                                       |
| -B                 | I            |                                                                                                       |
| -FD                | I            | "DATA TERMINAL RDY" (CD) SIGNAL NOT FORCED TRUE.                                                      |
| -FR                | I            | "REQUEST TO SEND" (CA) SIGNAL NOT FORCED TRUE.                                                        |
| RS                 | I            | "REQUEST TO SEND" (CA) SIGNAL IS ENABLED.                                                             |
| FB                 | R            | "FORCE BUSY" SIGNAL IS DISABLED.                                                                      |
| M                  | R            | FACTORY USE ONLY.                                                                                     |
| M1                 | R            | FACTORY USE ONLY.                                                                                     |

R = JUMPER REMOVED  
I = JUMPER INSTALLED

|                                       |                        |
|---------------------------------------|------------------------|
| MCDONNELL DOUGLAS ELECTRONICS COMPANY |                        |
| MC-1000, MC-1000B                     |                        |
| A DIVISION OF MCDONNELL DOUGLAS       |                        |
| SIGNATURE                             | DATE                   |
| M. A. TAYLOR                          | 11/16/93               |
| TITLE                                 | RADIO DATA LINK -      |
| M. A. TAYLOR                          | DLVII-E PC. BOARD MOD. |
| NO.                                   | 306                    |
| REV                                   | A                      |
| 5K10937                               | 11/16/93               |

second over conditioned lines. In the dragline data link application the FSK modulating frequencies are level controlled and input directly to the audio input terminals of the transmitter. The modems were modified at MDEC by the addition of a transmitter keying circuit as shown in Figure 2-10. The circuit provides a relay closure in lieu of the microphone press to talk switch upon receipt of a request to send signal from the computer. The data modem cable is modified to add the keying feature as shown in Figure 2-11. Specifications are as follows:

Dimensions - 9 x 2.6 x 10 inches

Weight - 5 lbs.

Operating Temperature -0 to 65°C

Storage Temperature -40 to 70°C

Humidity -95% relative (no condensation)

Power - 115VAC = 10% single phase

47 to 63 HZ, 5 watts maximum

Data Rate 0 - 1200 bps, unconditioned line

0 - 1800 bps, C2 conditioned line

Modulation - Frequency Shift Keyed

Audio frequencies - Mark - 1200Hz

Space - 2200Hz

Soft carrier turn-off - 900 Hz

Frequency Stability ± 1%

| PARTS LIST |                       | ITEM<br>NO. | REF.<br>DES. | PART. NO.     | DESCRIPTION  |
|------------|-----------------------|-------------|--------------|---------------|--------------|
| 1          | LINE DRIVER/ RECEIVER |             |              | DS1499A       |              |
| 2          | BT17046T-053          | 2           | IC-2         | BT17046T-053  | BT17046T-053 |
| 3          | DIP RELAY (1710P-5)   | 3           | IL-3         | 8135P001-3    |              |
| 4          | CAPACITOR (6101A)     | 4           | C-1          | ML3010A/1351  |              |
| 5          | RESISTOR (220Ω)       | 5           | R-1          | RC47621038    |              |
| 6          | LED & HADLIC          | 6           | D-1          | 6917P002-0083 |              |
| 7          | WIGE (316) (12FT)     | 7           |              | —             |              |
| 8          | VECTOR BOARD (15X17)  | 8           |              | —             |              |
| 9          | 6-32 SCREW            | 9           |              | —             |              |
| 10         | LOCK WASHER           | 10          |              | —             |              |
| 11         | FLAT WASHER           | 11          |              | —             |              |
| 12         | 6-32 1/4" SPACER      | 12          |              | —             |              |
| 13         | SOCKET                | 13          |              | BT17000E-4    |              |
| 14         | TERMINAL              | 14          |              | T-12          |              |

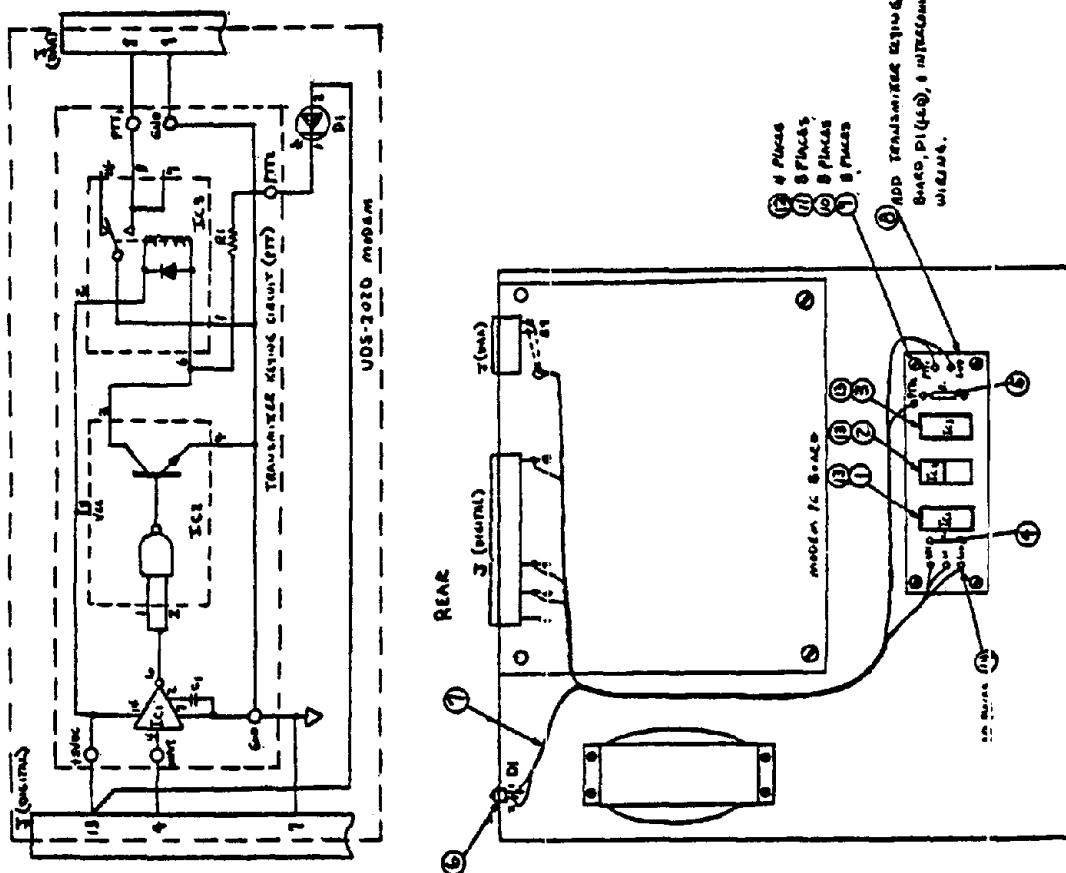
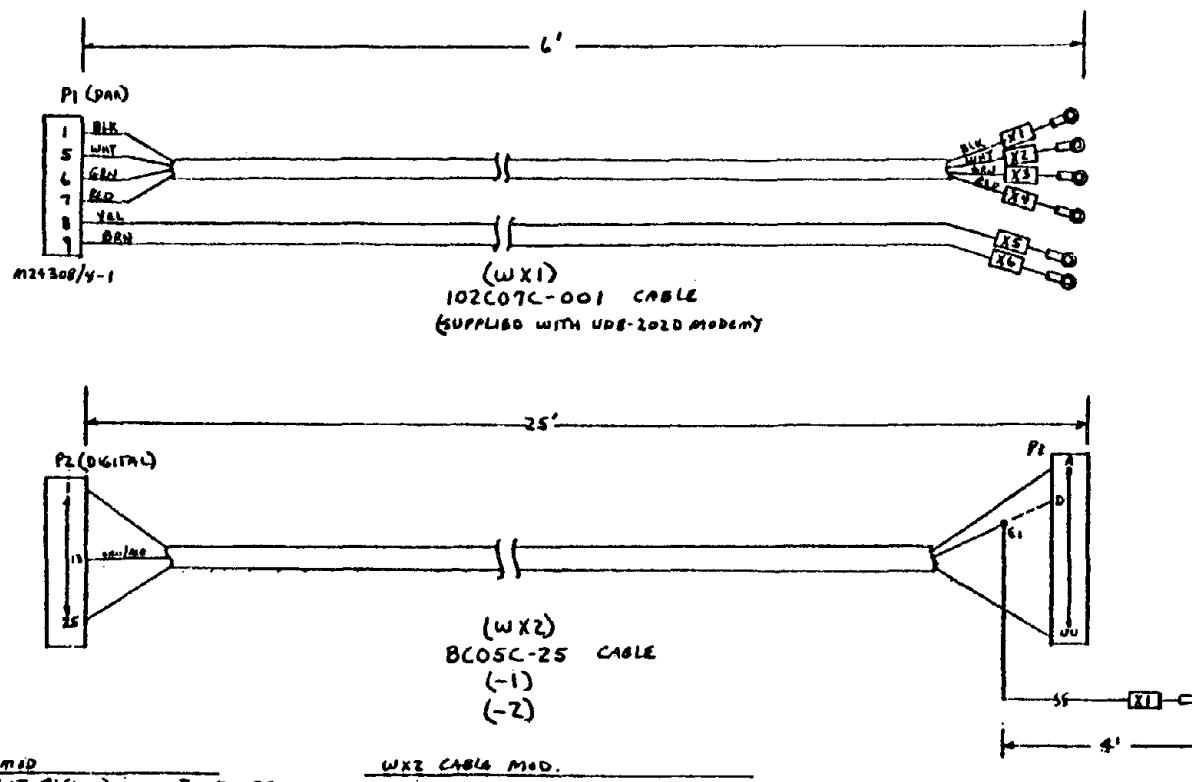




Figure Z-10. Modification to Data Modem  
33

Figure 2-11. Data Modem Cable  
34



WX1 CABLE MOD

1. REMOVE PRESENT PI (D/A) CONNECTOR DEC-7P  
(REPLACE WITH M24308/4-1 CONNECTOR, WIRE TO  
THE ABOVE DWG.)

2. MAKE BAND TABLE I

| MARKER<br>BOARD | TABLE   |
|-----------------|---------|
| X1              | T81-1   |
| X2              | T81-2   |
| X3              | T8901-2 |
| X4              | T8901-3 |
| X5              | T8901-4 |
| X6              | T8901-5 |

3. TIE WRAP THE TWO ADDED WIRES  
TO THE OUTSIDE OF CABLE.

WX2 CABLE MOD.

1. REMOVE WIRE FROM PI-D. AND CUT OFF  
THE EXISTING PIN.

2. SPLIC 4' OF WIRE TO EI AND INSTALL A  
TERMINAL AT THE OTHER END PER TABLE II.

3. MAKE BAND TABLE II

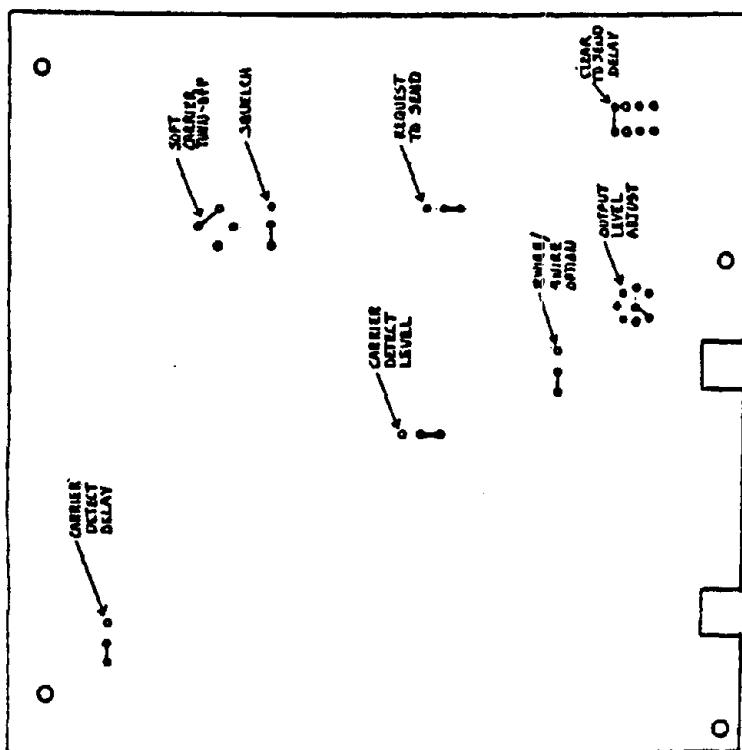
| MARKER<br>BOARD | MIN. STRG.<br>SPLICED POSITION (-1) | DRAGLINE<br>CONNECTOR POSITION (-2) |
|-----------------|-------------------------------------|-------------------------------------|
| X1              | (POWER SUPPLY)<br>T8-4              | T81-3                               |

TRANSMITTER / RECEIVER MODIFICATION.

MODIFY DC REMOTE CONTROL BOARD PER TABLE III

| JUMPER     | RESULTS |
|------------|---------|
| H32 TO H33 | REMOVE  |
| H34 TO H35 | REMOVE  |
| H33 TO H35 | ADD     |

TABLE III


| McDONNELL DOUGLAS ELECTRONICS COMPANY<br>St. Louis, Missouri 63126<br>A Division of McDonnell Douglas |            |            |
|-------------------------------------------------------------------------------------------------------|------------|------------|
| REF.                                                                                                  | INSTRUMENT | DATE       |
| 1                                                                                                     | WIRE TABLE | 11/11/81   |
| 2                                                                                                     | WATER      | 11/11/81   |
| 3                                                                                                     | WATER      | 11/11/81   |
| 4                                                                                                     | WATER      | 11/11/81   |
| 5                                                                                                     | WATER      | 11/11/81   |
| 6                                                                                                     | WATER      | 11/11/81   |
| 7                                                                                                     | WATER      | 11/11/81   |
| 8                                                                                                     | WATER      | 11/11/81   |
| 9                                                                                                     | WATER      | 11/11/81   |
| 10                                                                                                    | WATER      | 11/11/81   |
| 11                                                                                                    | WATER      | 11/11/81   |
| 12                                                                                                    | WATER      | 11/11/81   |
| 13                                                                                                    | WATER      | 11/11/81   |
| 14                                                                                                    | WATER      | 11/11/81   |
| 15                                                                                                    | WATER      | 11/11/81   |
| 16                                                                                                    | WATER      | 11/11/81   |
| 17                                                                                                    | WATER      | 11/11/81   |
| 18                                                                                                    | WATER      | 11/11/81   |
| 19                                                                                                    | WATER      | 11/11/81   |
| 20                                                                                                    | WATER      | 11/11/81   |
| 21                                                                                                    | WATER      | 11/11/81   |
| 22                                                                                                    | WATER      | 11/11/81   |
| 23                                                                                                    | WATER      | 11/11/81   |
| 24                                                                                                    | WATER      | 11/11/81   |
| 25                                                                                                    | WATER      | 11/11/81   |
| 26                                                                                                    | WATER      | 11/11/81   |
| 27                                                                                                    | WATER      | 11/11/81   |
| 28                                                                                                    | WATER      | 11/11/81   |
| 29                                                                                                    | WATER      | 11/11/81   |
| 30                                                                                                    | WATER      | 11/11/81   |
| 31                                                                                                    | WATER      | 11/11/81   |
| 32                                                                                                    | WATER      | 11/11/81   |
| 33                                                                                                    | WATER      | 11/11/81   |
| 34                                                                                                    | WATER      | 11/11/81   |
| 35                                                                                                    | WATER      | 11/11/81   |
| 36                                                                                                    | WATER      | 11/11/81   |
| 37                                                                                                    | WATER      | 11/11/81   |
| 38                                                                                                    | WATER      | 11/11/81   |
| 39                                                                                                    | WATER      | 11/11/81   |
| 40                                                                                                    | WATER      | 11/11/81   |
| 41                                                                                                    | WATER      | 11/11/81   |
| 42                                                                                                    | WATER      | 11/11/81   |
| 43                                                                                                    | WATER      | 11/11/81   |
| 44                                                                                                    | WATER      | 11/11/81   |
| 45                                                                                                    | WATER      | 11/11/81   |
| 46                                                                                                    | WATER      | 11/11/81   |
| 47                                                                                                    | WATER      | 11/11/81   |
| 48                                                                                                    | WATER      | 11/11/81   |
| 49                                                                                                    | WATER      | 11/11/81   |
| 50                                                                                                    | WATER      | 11/11/81   |
| 51                                                                                                    | WATER      | 11/11/81   |
| 52                                                                                                    | WATER      | 11/11/81   |
| 53                                                                                                    | WATER      | 11/11/81   |
| 54                                                                                                    | WATER      | 11/11/81   |
| 55                                                                                                    | WATER      | 11/11/81   |
| 56                                                                                                    | WATER      | 11/11/81   |
| 57                                                                                                    | WATER      | 11/11/81   |
| 58                                                                                                    | WATER      | 11/11/81   |
| 59                                                                                                    | WATER      | 11/11/81   |
| 60                                                                                                    | WATER      | 11/11/81   |
| 61                                                                                                    | WATER      | 11/11/81   |
| 62                                                                                                    | WATER      | 11/11/81   |
| 63                                                                                                    | WATER      | 11/11/81   |
| 64                                                                                                    | WATER      | 11/11/81   |
| 65                                                                                                    | WATER      | 11/11/81   |
| 66                                                                                                    | WATER      | 11/11/81   |
| 67                                                                                                    | WATER      | 11/11/81   |
| 68                                                                                                    | WATER      | 11/11/81   |
| 69                                                                                                    | WATER      | 11/11/81   |
| 70                                                                                                    | WATER      | 11/11/81   |
| 71                                                                                                    | WATER      | 11/11/81   |
| 72                                                                                                    | WATER      | 11/11/81   |
| 73                                                                                                    | WATER      | 11/11/81   |
| 74                                                                                                    | WATER      | 11/11/81   |
| 75                                                                                                    | WATER      | 11/11/81   |
| 76                                                                                                    | WATER      | 11/11/81   |
| 77                                                                                                    | WATER      | 11/11/81   |
| 78                                                                                                    | WATER      | 11/11/81   |
| 79                                                                                                    | WATER      | 11/11/81   |
| 80                                                                                                    | WATER      | 11/11/81   |
| 81                                                                                                    | WATER      | 11/11/81   |
| 82                                                                                                    | WATER      | 11/11/81   |
| 83                                                                                                    | WATER      | 11/11/81   |
| 84                                                                                                    | WATER      | 11/11/81   |
| 85                                                                                                    | WATER      | 11/11/81   |
| 86                                                                                                    | WATER      | 11/11/81   |
| 87                                                                                                    | WATER      | 11/11/81   |
| 88                                                                                                    | WATER      | 11/11/81   |
| 89                                                                                                    | WATER      | 11/11/81   |
| 90                                                                                                    | WATER      | 11/11/81   |
| 91                                                                                                    | WATER      | 11/11/81   |
| 92                                                                                                    | WATER      | 11/11/81   |
| 93                                                                                                    | WATER      | 11/11/81   |
| 94                                                                                                    | WATER      | 11/11/81   |
| 95                                                                                                    | WATER      | 11/11/81   |
| 96                                                                                                    | WATER      | 11/11/81   |
| 97                                                                                                    | WATER      | 11/11/81   |
| 98                                                                                                    | WATER      | 11/11/81   |
| 99                                                                                                    | WATER      | 11/11/81   |
| 100                                                                                                   | WATER      | 11/11/81   |
| 101                                                                                                   | WATER      | 11/11/81   |
| 102                                                                                                   | WATER      | 11/11/81   |
| 103                                                                                                   | WATER      | 11/11/81   |
| 104                                                                                                   | WATER      | 11/11/81   |
| 105                                                                                                   | WATER      | 11/11/81   |
| 106                                                                                                   | WATER      | 11/11/81   |
| 107                                                                                                   | WATER      | 11/11/81   |
| 108                                                                                                   | WATER      | 11/11/81   |
| 109                                                                                                   | WATER      | 11/11/81   |
| 110                                                                                                   | WATER      | 11/11/81   |
| 111                                                                                                   | WATER      | 11/11/81   |
| 112                                                                                                   | WATER      | 11/11/81   |
| 113                                                                                                   | WATER      | 11/11/81   |
| 114                                                                                                   | WATER      | 11/11/81   |
| 115                                                                                                   | WATER      | 11/11/81   |
| 116                                                                                                   | WATER      | 11/11/81   |
| 117                                                                                                   | WATER      | 11/11/81   |
| 118                                                                                                   | WATER      | 11/11/81   |
| 119                                                                                                   | WATER      | 11/11/81   |
| 120                                                                                                   | WATER      | 11/11/81   |
| 121                                                                                                   | WATER      | 11/11/81   |
| 122                                                                                                   | WATER      | 11/11/81   |
| 123                                                                                                   | WATER      | 11/11/81   |
| 124                                                                                                   | WATER      | 11/11/81   |
| 125                                                                                                   | WATER      | 11/11/81   |
| 126                                                                                                   | WATER      | 11/11/81   |
| 127                                                                                                   | WATER      | 11/11/81   |
| 128                                                                                                   | WATER      | 11/11/81   |
| 129                                                                                                   | WATER      | 11/11/81   |
| 130                                                                                                   | WATER      | 11/11/81   |
| 131                                                                                                   | WATER      | 11/11/81   |
| 132                                                                                                   | WATER      | 11/11/81   |
| 133                                                                                                   | WATER      | 11/11/81   |
| 134                                                                                                   | WATER      | 11/11/81   |
| 135                                                                                                   | WATER      | 11/11/81   |
| 136                                                                                                   | WATER      | 11/11/81   |
| 137                                                                                                   | WATER      | 11/11/81   |
| 138                                                                                                   | WATER      | 11/11/81   |
| 139                                                                                                   | WATER      | 11/11/81   |
| 140                                                                                                   | WATER      | 11/11/81   |
| 141                                                                                                   | WATER      | 11/11/81   |
| 142                                                                                                   | WATER      | 11/11/81   |
| 143                                                                                                   | WATER      | 11/11/81   |
| 144                                                                                                   | WATER      | 11/11/81   |
| 145                                                                                                   | WATER      | 11/11/81   |
| 146                                                                                                   | WATER      | 11/11/81   |
| 147                                                                                                   | WATER      | 11/11/81   |
| 148                                                                                                   | WATER      | 11/11/81   |
| 149                                                                                                   | WATER      | 11/11/81   |
| 150                                                                                                   | WATER      | 11/11/81   |
| 151                                                                                                   | WATER      | 11/11/81   |
| 152                                                                                                   | WATER      | 11/11/81   |
| 153                                                                                                   | WATER      | 11/11/81   |
| 154                                                                                                   | WATER      | 11/11/81   |
| 155                                                                                                   | WATER      | 11/11/81   |
| 156                                                                                                   | WATER      | 11/11/81   |
| 157                                                                                                   | WATER      | 11/11/81   |
| 158                                                                                                   | WATER      | 11/11/81   |
| 159                                                                                                   | WATER      | 11/11/81   |
| 160                                                                                                   | WATER      | 11/11/81   |
| 161                                                                                                   | WATER      | 11/11/81   |
| 162                                                                                                   | WATER      | 11/11/81   |
| 163                                                                                                   | WATER      | 11/11/81   |
| 164                                                                                                   | WATER      | 11/11/81   |
| 165                                                                                                   | WATER      | 11/11/81   |
| 166                                                                                                   | WATER      | 11/11/81   |
| 167                                                                                                   | WATER      | 11/11/81   |
| 168                                                                                                   | WATER      | 11/11/81   |
| 169                                                                                                   | WATER      | 11/11/81   |
| 170                                                                                                   | WATER      | 11/11/81   |
| 171                                                                                                   | WATER      | 11/11/81   |
| 172                                                                                                   | WATER      | 11/11/81   |
| 173                                                                                                   | WATER      | 11/11/81   |
| 174                                                                                                   | WATER      | 11/11/81   |
| 175                                                                                                   | WATER      | 11/11/81   |
| 176                                                                                                   | WATER      | 11/11/81   |
| 177                                                                                                   | WATER      | 11/11/81   |
| 178                                                                                                   | WATER      | 11/11/81   |
| 179                                                                                                   | WATER      | 11/11/81   |
| 180                                                                                                   | WATER      | 11/11/81   |
| 181                                                                                                   | WATER      | 11/11/81   |
| 182                                                                                                   | WATER      | 11/11/81   |
| 183                                                                                                   | WATER      | 11/11/81   |
| 184                                                                                                   | WATER      | 11/11/81   |
| 185                                                                                                   | WATER      | 11/11/81   |
| 186                                                                                                   | WATER      | 11/11/81   |
| 187                                                                                                   | WATER      | 11/11/81   |
| 188                                                                                                   | WATER      | 11/11/81   |
| 189                                                                                                   | WATER      | 11/11/81   |
| 190                                                                                                   | WATER      | 11/11/81   |
| 191                                                                                                   | WATER      | 11/11/81   |
| 192                                                                                                   | WATER      | 11/11/81   |
| 193                                                                                                   | WATER      | 11/11/81   |
| 194                                                                                                   | WATER      | 11/11/81   |
| 195                                                                                                   | WATER      | 11/11/81   |
| 196                                                                                                   | WATER      | 11/11/81   |
| 197                                                                                                   | WATER      | 11/11/81   |
| 198                                                                                                   | WATER      | 11/11/81   |
| 199                                                                                                   | WATER      | 11/11/81   |
| 200                                                                                                   | WATER      | 11/11/81   |
| 201                                                                                                   | WATER      | 11/11/81   |
| 202                                                                                                   | WATER      | 11/11/81   |
| 203                                                                                                   | WATER      | 11/11/81   |
| 204                                                                                                   | WATER      | 11/11/81   |
| 205                                                                                                   | WATER      | 11/11/81   |
| 206                                                                                                   | WATER      | 11/11/81   |
| 207                                                                                                   | WATER      | 11/11/81   |
| 208                                                                                                   | WATER      | 11/11/81   |
| 209                                                                                                   | WATER      | 11/11/81   |
| 210                                                                                                   | WATER      | 11/11/81   |
| 211                                                                                                   | WATER      | 11/11/81   |
| 212                                                                                                   | WATER      | 11/11/81   |
| 213                                                                                                   | WATER      | 11/11/81   |
| 214                                                                                                   | WATER      | 11/11/81   |
| 215                                                                                                   | WATER      | 11/11/81   |
| 216                                                                                                   | WATER      | 11/11/81   |
| 217                                                                                                   | WATER      | 11/11/81   |
| 218                                                                                                   | WATER      | 11/11/81   |
| 219                                                                                                   | WATER      | 11/11/81   |
| 220                                                                                                   | WATER      | 11/11/81   |
| 221                                                                                                   | WATER      | 11/11/81   |
| 222                                                                                                   | WATER      | 11/11/81   |
| 223                                                                                                   | WATER      | 11/11/81   |
| 224                                                                                                   | WATER      | 11/11/81   |
| 225                                                                                                   | WATER      | 11/11/81   |
| 226                                                                                                   | WATER      | 11/11/81   |
| 227                                                                                                   | WATER      | 11/11/81   |
| 228                                                                                                   | WATER      | 11/11/81   |
| 229                                                                                                   | WATER      | 11/11/81   |
| 230                                                                                                   | WATER      | 11/11/81   |
| 231                                                                                                   | WATER      | 11/11/81   |
| 232                                                                                                   | WATER      | 11/11/81   |
| 233                                                                                                   | WATER      | 11/11/81   |
| 234                                                                                                   | WATER      | 11/11/81   |
| 235                                                                                                   | WATER      | 11/11/81   |
| 236                                                                                                   | WATER      | 11/11/81   |
| 237                                                                                                   | WATER      | 11/11/81   |
| 238                                                                                                   | WATER      | 11/11/81   |
| 239                                                                                                   | WATER      | 11/11/81   |
| 240                                                                                                   | WATER      | 11/11/81   |
| 241                                                                                                   | WATER      | 11/11/81   |
| 242                                                                                                   | WATER      | 11/11/81   |
| 243                                                                                                   | WATER      | 11/11/81   |
| 244                                                                                                   | WATER      | 11/11/81   |
| 245                                                                                                   | WATER      | 11/11/81   |
| 246                                                                                                   | WATER      | 11/11/81   |
| 247                                                                                                   | WATER      | 11/11/81   |
| 248                                                                                                   | WATER      | 11/11/81   |
| 249                                                                                                   | WATER      | 11/11/81   |
| 250                                                                                                   | WATER      | 11/11/81   |
| 251                                                                                                   | WATER      | 11/11/81   |
| 252                                                                                                   | WATER      | 11/11/81   |
| 253                                                                                                   | WATER      | 11/11/81   |
| 254                                                                                                   | WATER      | 11/11/81   |
| 255                                                                                                   | WATER      | 11/11/81   |
| 256                                                                                                   | WATER      | 11/11/81   |
| 257                                                                                                   | WATER      | 11/11/81   |
| 258                                                                                                   | WATER      | 11/11/81   |
| 259                                                                                                   | WATER      | 11/11/81   |
| 260                                                                                                   | WATER      | 11/11/81   |
| 261                                                                                                   | WATER      | 11/11/81   |
| 262                                                                                                   | WATER      | 11/11/81   |
| 263                                                                                                   | WATER      | 11/11/81   |
| 264                                                                                                   | WATER      | 11/11/81   |
| 265                                                                                                   | WATER      | 11/11/81   |
| 266                                                                                                   | WATER      | 11/11/81   |
| 267                                                                                                   | WATER      | 11/11/81   |
| 268                                                                                                   | WATER      | 11/11/81   |
| 269                                                                                                   | WATER      | 11/11/81   |
| 270                                                                                                   | WATER      | 11/11/81   |
| 271                                                                                                   | WATER      | 11/11/81   |
| 272                                                                                                   | WATER      | 11/11/81   |
| 273                                                                                                   | WATER      | 11/11/81   |
| 274                                                                                                   | WATER      | 11/11/81   |
| 275                                                                                                   | WATER      | 11/11/81   |
| 276                                                                                                   | WATER      | 11/11/81   |
| 277                                                                                                   | WATER      | 11/11/81   |
| 278                                                                                                   | WATER      | 11/11/81   |
| 279                                                                                                   | WATER      | 11/11/81   |
| 280                                                                                                   | WATER      | 11/11/81   |
| 281                                                                                                   | WATER      | 11/11/81   |
| 282                                                                                                   | WATER      | 11/11/81   |
| 283                                                                                                   | WATER      | 11/11/81   |
| 284                                                                                                   | WATER      | 11/11/81</ |

|                                                |                                                                                           |
|------------------------------------------------|-------------------------------------------------------------------------------------------|
| Transmitter Output Level<br>(Strap Selectable) | 0, -2, -4, -6, -8, -10,<br>-12 dbm                                                        |
| Receiver Input Level                           | 0 to -48 dbm                                                                              |
| Carrier Detect Level<br>(Strap Selectable)     | 0 to -30dbm<br>-12 to -48dbm                                                              |
| Carrier Detect Delay<br>Operate<br>Release     | 6 $\pm$ 1 ms or 23 $\pm$ 3 ms<br>6 $\pm$ 1 ms                                             |
| Line Impedance                                 | 600 ohm, balanced                                                                         |
| Operating Modes                                | Half Duplex (2 wire)<br>Full Duplex (4 wire)                                              |
| Test                                           | Remove and local                                                                          |
| Digital Interface                              | EIA STD RS-232C                                                                           |
| Clear to Send Delay<br>(Strap Selectable)      | 8.5 $\pm$ 1 ms, 30 $\pm$ 3 ms<br>60 $\pm$ 6 ms, 200 $\pm$ 20ms                            |
| Receiver and Call Turn<br>Around Squelch       | Squelch Receiver during<br>local transmission and for 110<br>ms after end of transmission |
| Soft Carrier Turn off                          | 900 HZ tone for 25 ms                                                                     |
| Front Panel Switchs                            | Local/Operate/Remote select<br>Power On                                                   |

The UDS-2020 data modem can be configured for various applications by shorting strap placement. The strap or jumper configuration as used with the data link are shown in Figure 2-12. The data modems are used in the four wire full duplex mode even though the data link system is half duplex. This allows use of convenient local and remote loop back from the computer terminal. Test selection is switchable from the modem front panel as shown in Figure 2-13. The modem timing is setup as follows: The local modem receives a request to send (RTS) commands from the computer. The transmitter is keyed and a mark frequency of 1200 HZ applied. After a 200 millisecond delay the clear to send (CTS) is enabled and data is transmitted. When data transmission is completed the RTS is removed by the computer. The transmitter maintains transmission of a 900HZ signal for an additional 25 milliseconds under modem control. This soft carrier turn-off prevents erratic reception by the receiving modem at the end of transmission. The remote modem receives the mark frequency and after 25 milliseconds sets the carrier detect (CD). Data can now be received. The carrier detect signal is maintained for an additional 23 milliseconds after the data transmission is completed to avoid early termination of data reception. The modem is returned to its neutral state awaiting another request to send from the computer or a carrier detect from the receiver. The receiver input level is set at zero dBm. The carrier detect level is set at -30dBm.

| JUMPER                | FUNCTION IMPLEMENTED                            |
|-----------------------|-------------------------------------------------|
| CARRIER DETECT DELAY  | C/D WIRED FOR 25MSEC DELAY                      |
| SOFT FAIRVIEW TURN-ON | SC70 WIRED FOR 25MSEC DELAY                     |
| SEARCH                | SEARCH WIRED DUT                                |
| CARRIER DETECT LEVEL  | C/D WIRED FOR -30dB LEVEL                       |
| REQUEST TO SEND       | RTS WIRED FOR COMPUTER CONTROL.                 |
| SWING/QUIET CONTROL   | SWING WIRED FOR 4 WIRE (FULL-DUPLEX) OPERATION. |
| OUTPUT LEVEL ADJUST   | DL. WIRED FOR 0.4dB                             |
| CLEAR TO SEND DELAY   | CTS WIRED FOR 200 MSEC DELAY                    |

| SK10937 |    |
|---------|----|
| 1       | 2  |
| 3       | 4  |
| 5       | 6  |
| 7       | 8  |
| 9       | 10 |
| 11      | 12 |
| 13      | 14 |
| 15      | 16 |
| 17      | 18 |
| 19      | 20 |
| 21      | 22 |
| 23      | 24 |
| 25      | 26 |
| 27      | 28 |
| 29      | 30 |
| 31      | 32 |
| 33      | 34 |
| 35      | 36 |
| 37      | 38 |
| 39      | 40 |



WWS-2020 MODEM PC BOARD  
(INSTALL JUMPERS AS SHOWN)

Figure 2-T2. Data Modem Strap Configuration

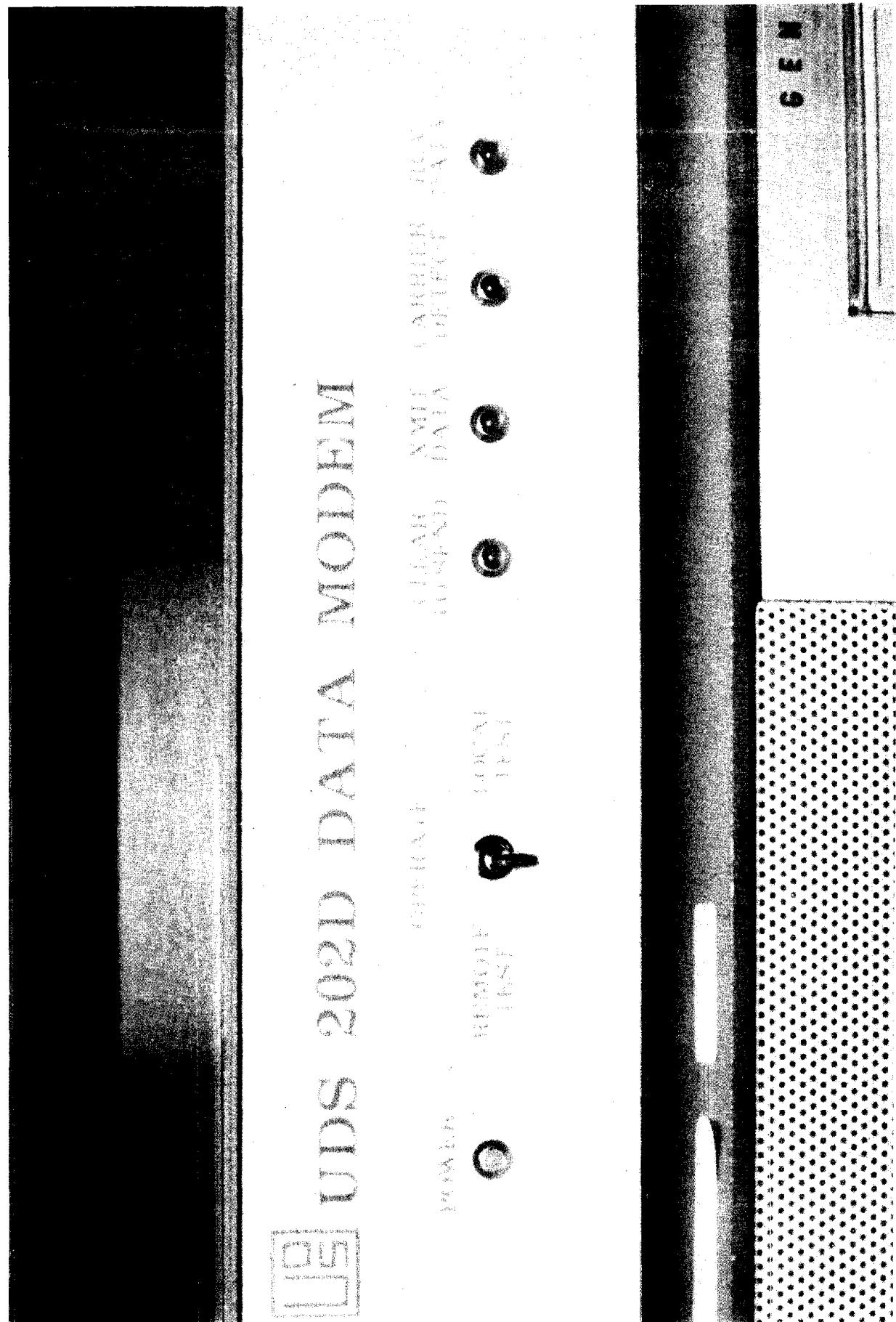



Figure 2-13

2.4.4 Radio. The MASTR Executive II transmitter-receiver manufactured by General Electric was chosen for the dragline data link. Although larger than its mobile radio counterpart it has the advantage of a built-in power supply for 115VAC operation and the proper interface for direct connection to the data modem. The radio, part number F156KAULLA, is a desk top station. Its dimensions are 6 x 20.25 x 13.75 inches and weigh 46 lbs. Power requirements are 121/242 volts, 50/60 HZ at 260 watts transmit, 45 watts receive and 20 watts standby. The operating temperature range is -30 to 60°C. The transmitter specifications are:

|                                                               |                                                                                       |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------|
| RF Power Output                                               | 35 Watts<br>(Adjustable from 10 to 35 watts)                                          |
| Crystal Multiplication Factor                                 | 12                                                                                    |
| Frequency Stability                                           | ± .0005%                                                                              |
| Spurious and Harmonic Emission<br>at 150.8 to 174 Mhz         | At least 80 dB below maximum<br>rated power output.                                   |
| Modulation                                                    | Adjustable from 0 to ±5 KHZ Swing                                                     |
| Modulation Sensitivity                                        | 75 to 120 millivolts                                                                  |
| Audio Frequency Characteristics                               | Within +1 to -3dB of a 6-dB/octave<br>preemphasis from 300 to 3000 HZ<br>per EIA STD. |
| Distortion                                                    | Less than 5%                                                                          |
| Deviation Symmetry                                            | 0.5 KHZ maximum                                                                       |
| Maximum Freq Spread<br>Full Specification<br>1 dB Degradation | 2 MHZ<br>2.5 MHZ                                                                      |
| Duty Cycle                                                    | EIA 20 Intermittent                                                                   |
| RF Output Impedance                                           | 50 Ohms.                                                                              |

|                                     |                                                                                       |
|-------------------------------------|---------------------------------------------------------------------------------------|
| Control                             | Local or Remote                                                                       |
| Frequency Transmit                  | 154.46375 MHZ                                                                         |
| Option                              | Channel Guard at 203 HZ                                                               |
| Receiver Specifications             |                                                                                       |
| Sensitivity (-20 dB Quieting)       | .50 Microvolts                                                                        |
| Selectivity (EIA Two Signal Method) | -90 dB                                                                                |
| Spurious Response                   | -100dB                                                                                |
| Intermodulation (EIA)               | -85dB                                                                                 |
| Frequency Stability                 | ± .0005%                                                                              |
| Modulation Acceptance               | ± 7KHZ                                                                                |
| Squelch Sensitivity                 | 4 dB SINAD                                                                            |
| Maximum Frequency Separation        |                                                                                       |
| Full Specification                  | 1.0 MHZ                                                                               |
| 3dB Degradation                     | 1.8 MHZ                                                                               |
| Frequency Response                  | Within ± and -8dB of a standard 6 -dB per octave deemphasis curve from 300 to 3000 HZ |
| RF Input Impedance                  | 50 Ohm                                                                                |
| RF Frequency                        | 154.46375 MHZ                                                                         |

The radio panel contains a volume and squelch control and a channel guard defeat switch. The band select switch is disabled since only a single frequency is used. Figure 2-7 shows the radio interconnection to the modem. The microphone usually connected to TB901 is removed and the transmit function of the modem tied in to this interconnect. The press to talk switch is also interconnected to TP901.

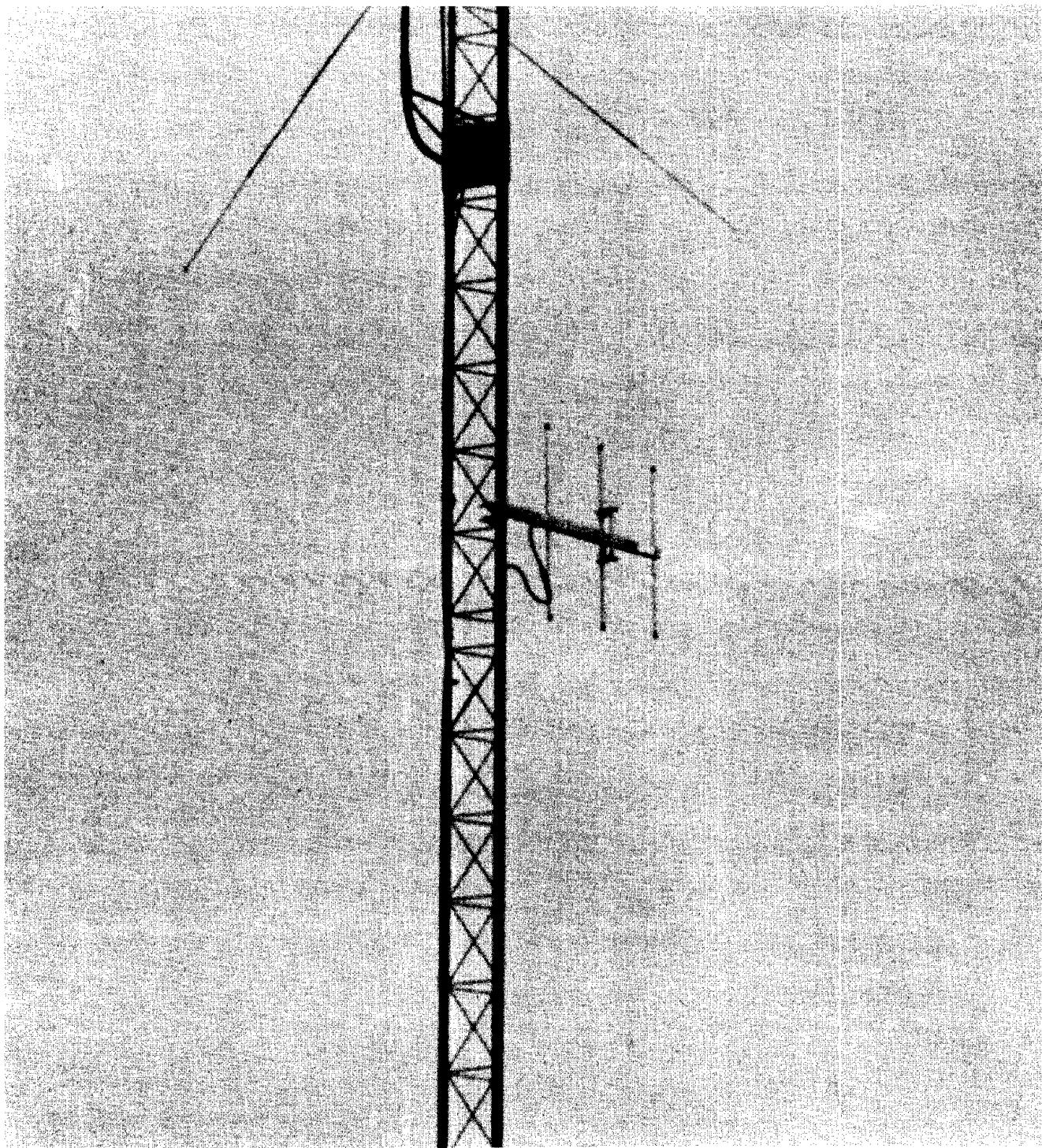
The General Electric MASTR Executive II stations contain DC control boards for direct application of remote control. On the data link system this feature has been configured for a four wire telephone line hook-up. Specifications for the remote control board are:

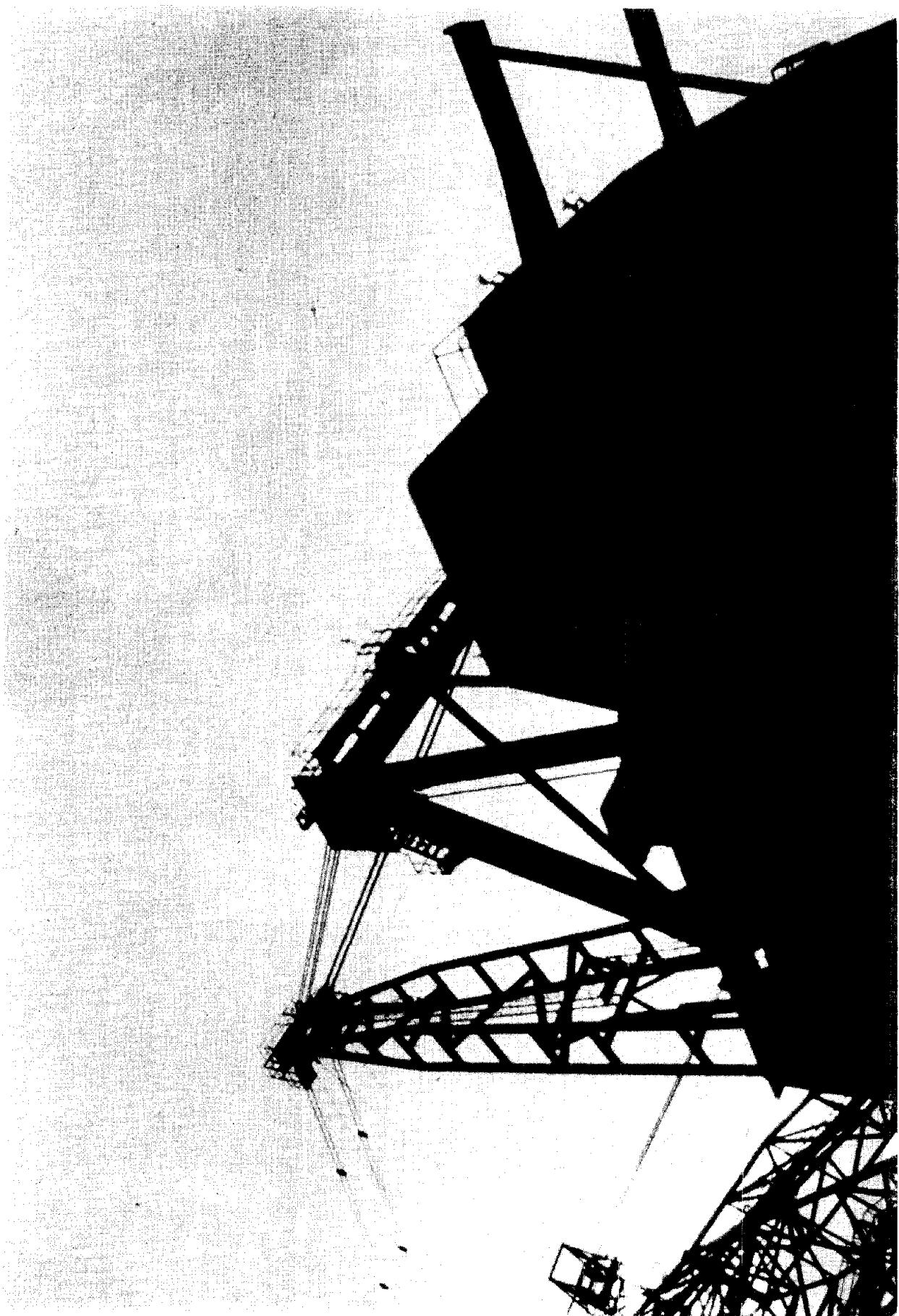
|                            |                          |
|----------------------------|--------------------------|
| Line Terminating Impedance | 600 Ohms                 |
| Line Loop Impedance        | 11000 Ohms maximum       |
| Audio Line Output          | -20 to +11 dBm           |
| Frequency Response         | ±3dB from 300 to 3000 Hz |
| Distortion                 | Less than 3%             |

The radios installed at Old Ben Coal Company were adjusted for 15 watt output. Frequency deviation was set at 3.6KHZ. Audio output to the modem is 5V peak to peak.

2.4.5 Antenna: The antenna installed at the mine office shown in Figure 2-14 is a Model DB-230 Broad Directional Antenna manufactured by Decibel Products Inc. The DB-203 is a three element Yagi having a forward gain of 7db over half wave dipole. Gain is provided over a relatively broad horizontal pattern so that mounting is not critical. It can be mounted to the top or side of the tower. Pertinent specifications are:

|                                                     |                                                                 |
|-----------------------------------------------------|-----------------------------------------------------------------|
| Frequency Range                                     | 148 to 174 MHZ<br>(Tuned to transmit frequency at installation) |
| VSWR                                                | 1.5 to or less at .7 MHZ Bandwidth                              |
| Nominal Impedance                                   | 500 Ohms                                                        |
| Maximum Midband Gain<br>(over half wave dipole)     | 7dB                                                             |
| Maximum Power Input                                 | 500 Watts                                                       |
| Horizontal Pattern Beamwidth<br>(half power points) | 76°                                                             |
| Front to Back Ratio                                 | 22dB                                                            |
| Lightning Protection                                | Direct Ground                                                   |





Figure 2-14

|                           |         |
|---------------------------|---------|
| Height                    | 6.6 Ft. |
| Length                    | 6.5 Ft. |
| Weight W/Clamps, Brackets | 27 Lbs. |
| Wind Rating               |         |
| Survival W/O Ice          | 110 MPH |
| Survival With 0.5 In. Ice | 75 MPH  |

The dragline mounted antenna is a Decibel Products Inc. Model DB-201. This ground plane antenna is omnidirectional with a unity gain with respect to a half wave dipole. It is designed to mount on top of a tower or pole. Its installation of Old Ben Coal Co. is shown in Figure 2-15 and 2-16. Its specifications are:

|                                |                  |
|--------------------------------|------------------|
| Frequency Range                | 144-174 MHZ      |
| Bandwidth                      | 2% of Frequency  |
| VSWR                           | 1.5 to 1 or less |
| Nominal Impedance              | 50 ohms          |
| Gain (over half wave dipole)   | Unity            |
| Maximum Power Input            | 500 Watts        |
| Vertical Pattern Beamwidth     | 78°              |
| Lightning Protection           | Direct Ground    |
| Height (above base plate)      | 18 Inches        |
| Overall Length                 | 30 Inches        |
| Maximum Width                  | 49 Inches        |
| Net Weight (with Clamps)       | 10 Lbs.          |
| Wind Rating                    |                  |
| Survival/Without Ice           | Over 125 MPH     |
| Survival (1/2 Inch Radial Ice) | Over 125 MPH     |

Figure 2-15



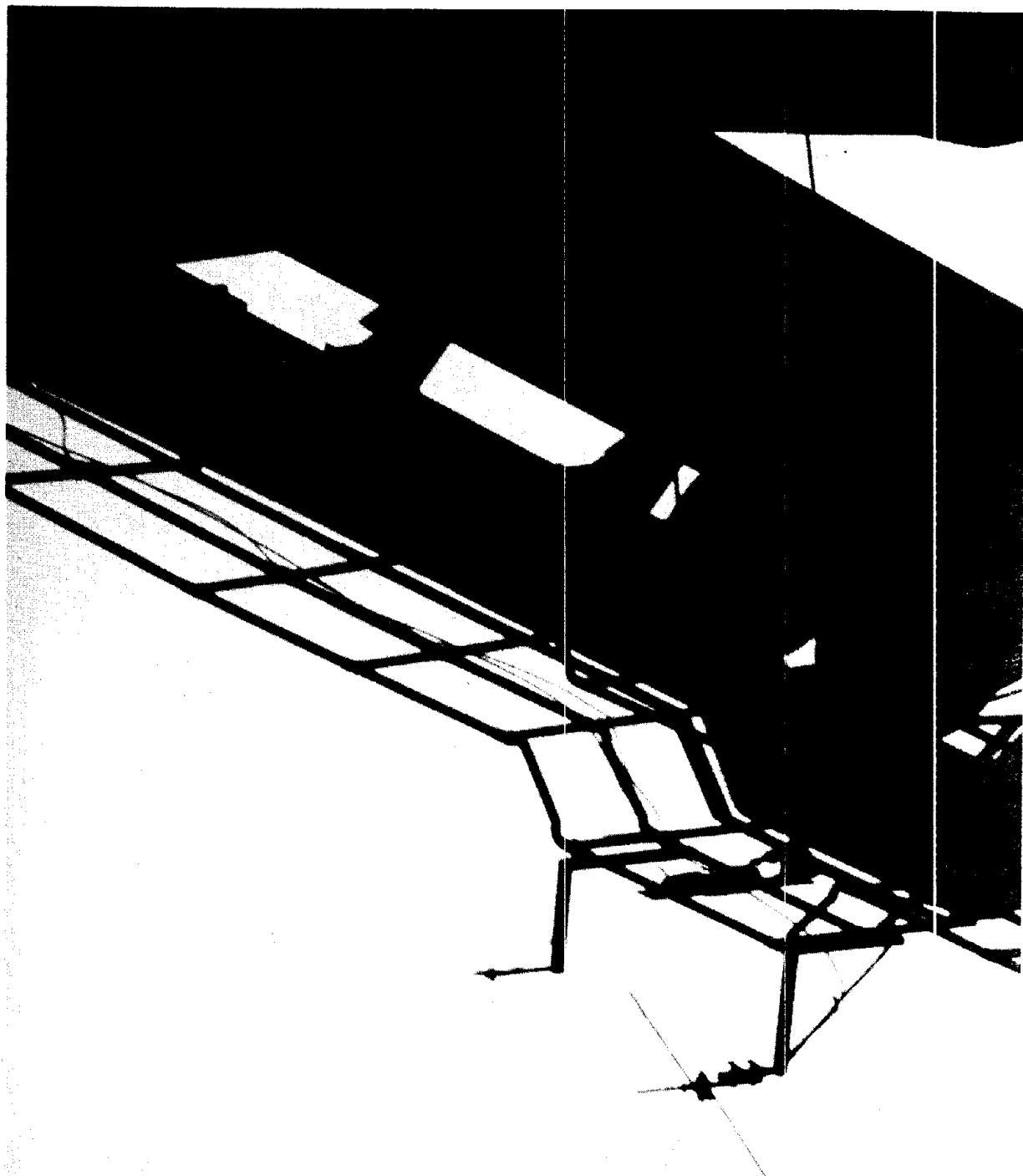



Figure 2-16

The base antenna is mounted to the existing tower at Old Ben Coal Co. Mine No. 2 Mine approximately 50 feet above ground level. It is positioned with its forward lobe pointing north. The dragline antenna is mounted on the "A" frame approximately 90 feet above bench level.

2.5 Computer Program. The data link computer programs, like the DIGS programs, run on the Digital Equipment Corporation Model PDP 11V03 Computer under the RT-11 operating system. File and device names in the following discussion follow the RT-11 convention.

The computer program, BSRPRT, runs in the mine office computer and operates one end of the radio link. It will, on command, initiate transfers of data files from the dragline to the office. BSRPRT also contains the report writing subroutines necessary to produce all the DIGS printouts.

2.5.1 Operating Instructions: To obtain data from the dragline via radio, the radio transceivers and modems must be powered. A diskette containing the file BSRPRT.SAV, plus space for the files which will be obtained from the dragline: CMPRS.DAT, CANDR.DAT, and CRACCU.DAT must be loaded in the disk drive which is assigned to be DK:. One disk in the system should be assigned to be CYC: and should have 125 free blocks to receive KWH.DAT.

Run BSRPRT. The computer will explain the responses needed. It will type:

TO OBTAIN DATA FROM THE DRAGLINE VIA RADIO

TYPE "DIGGING", "ROPES", OR "POWER".

TO PRINT A REPORT, TYPE "RPRT".

TYPE "SEND" FOR TWX MODE.

Before a report can be printed, the appropriate data file will need to be transferred. Type "DIGGING" to transfer CMPRS.DAT, type "ROPES" to transfer CANDR.DAT and CRACCU.DAT, or type "POWER" to transfer KWH.DAT. The computer will send the appropriate signal to the dragline to initiate the transfer. The requested data file will be sent in packets of 256 bytes each. After each packet of data, the office computer will check its validity and either acknowledge its receipt or request retransmission. If all data is received correctly, a message for the file transferred will be printed and the program will be restarted. If no response is received from the dragline within a fixed time interval, the message "TIME OUT. THE DRAGLINE DOESNT ANSWER." will be printed and the program will print the original message.

The procedure for printing a report is the same as used on the dragline DIGS.

If you type "SEND" and a one line message, the message will be printed on the other end of the radio link. Messages can be sent from the office to the dragline or from the dragline to the office. When a message is received, the bell on the typewriter rings 3 times and the message is preceded by the character ">".

## 2.5.2 Description of Data Link Programs

### DLINK--Radio Interface Handlers

Data is transmitted and received over the radio by means of special assembly language interface handler routines contained in the module DLINK. There are three independent subroutines in DLINK: XMIT, Figure 2-17, is called from a FORTRAN program to initiate a transmission. XISR, Figure 2-18, executes upon a transmitter interrupt and outputs one byte of data to the radio, and RISR, Figures 2-19 and 2-20, inputs one byte of data from the radio when a receiver interrupt occurs.

XMIT sets up the transmission of a message with length of up to 256 bytes. The starting address of the message, the number of bytes in it, the call letters of the station to which the message is directed and a status flag are passed as arguments to XMIT by the calling program. The call letters are two bytes which are unique for each station in the communication system. The status flag indicates to the calling program if it was impossible to transmit the message because of traffic on the air or if the message length exceeded the limit of 256 bytes.

The interface between the computer and the radio complies to the RS-232 standard. Besides turning on the carrier in the modem, the RS-232 "request to send" signal also keys the radio transmitter. When XMIT is invoked to send a message, it first checks the length of the message. Then it checks to see if a transmission is already in progress. When these checks pass, the message pointer, byte count and call letters are stored for the interrupt service routine and the

XMIT IS CALLED BY A FORTRAN PROGRAM TO INITIATE TRANSMISSION OF MESSAGE NAMED MSG WITH LENGTH N BYTES, USING CALL LETTERS, ID

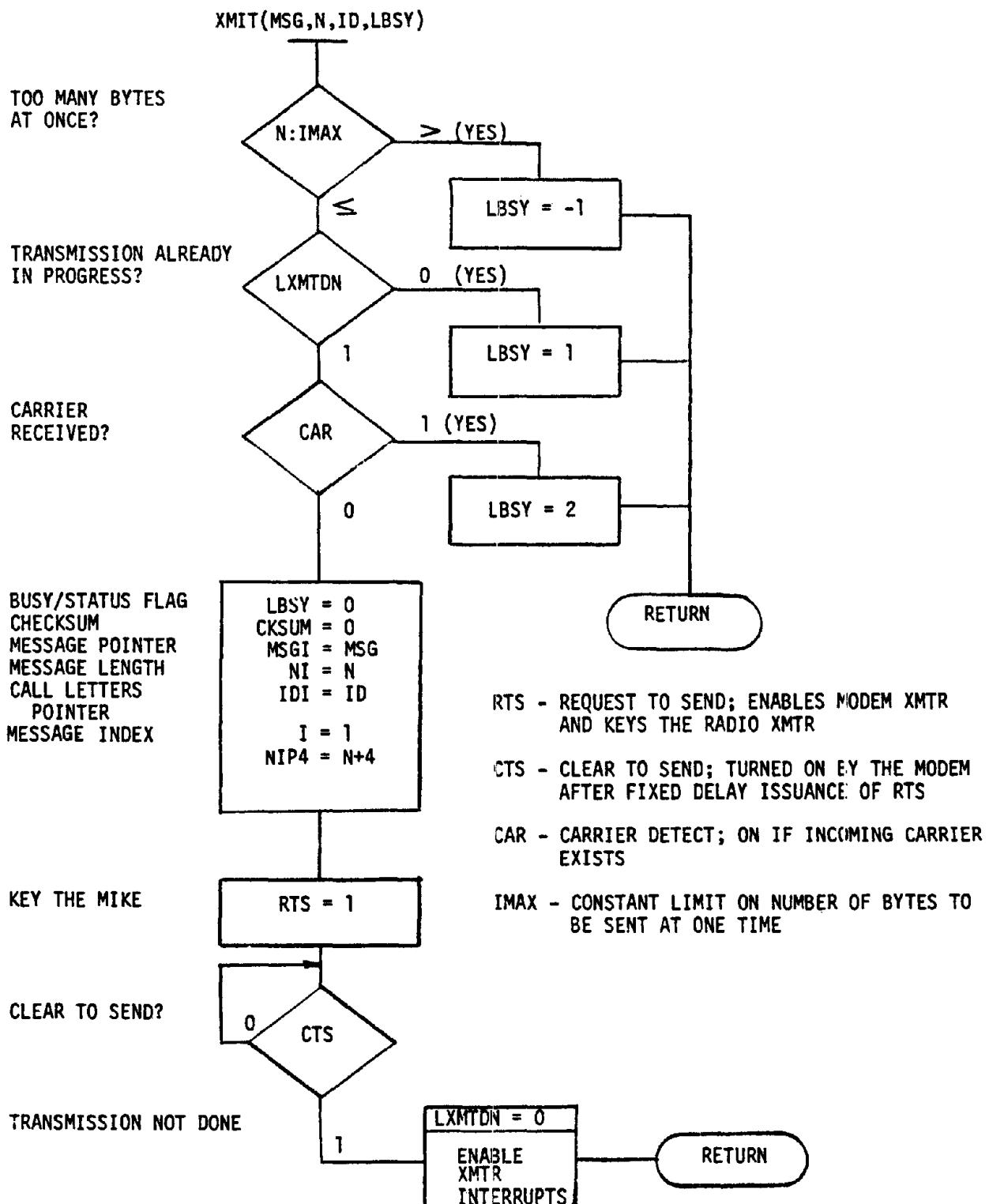



Figure 2-17. Program Diagram - XMIT  
49

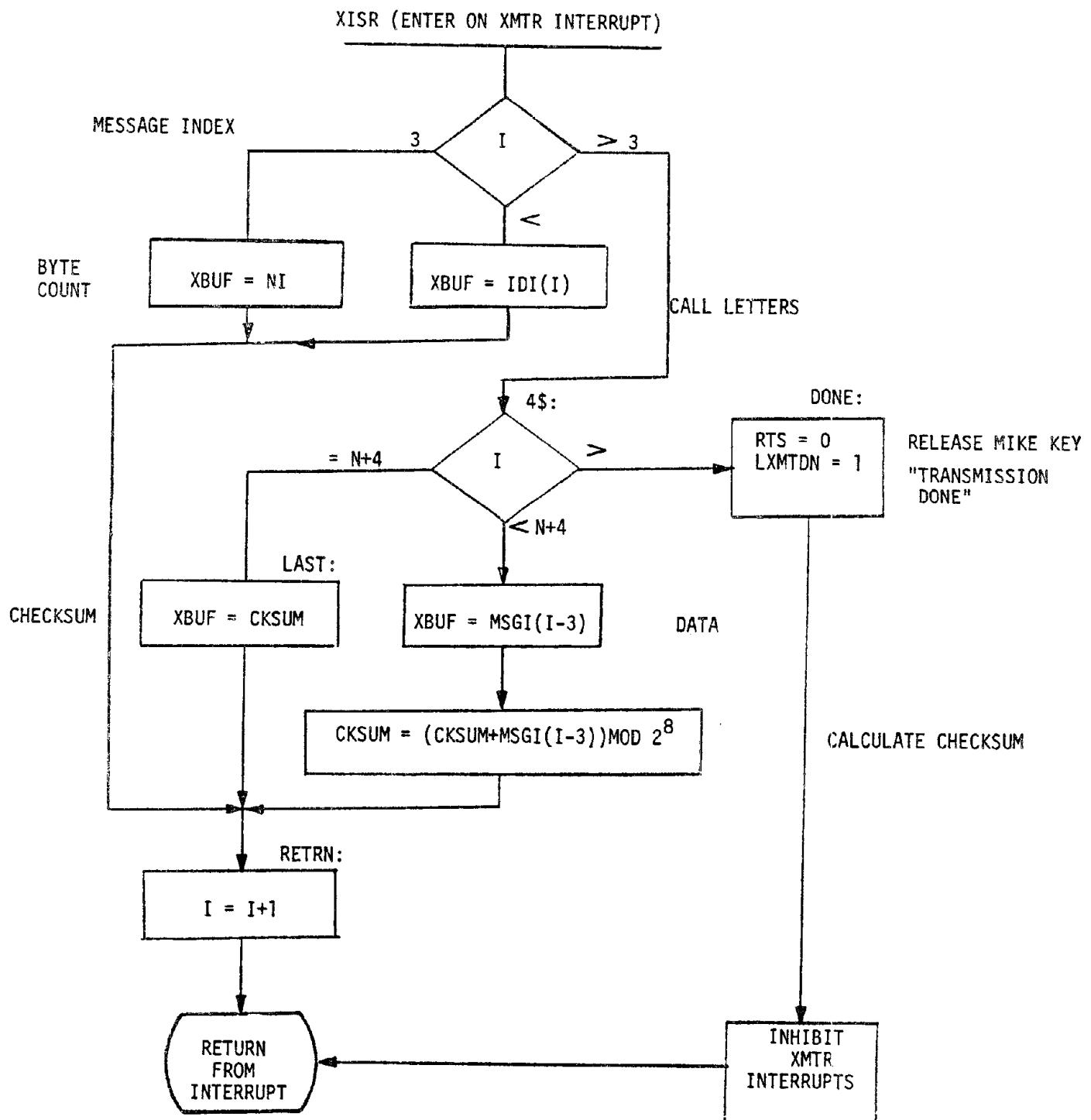



Figure 2-18. Program Diagram - XISR

Figure 2-19. Program Diagram - RISR

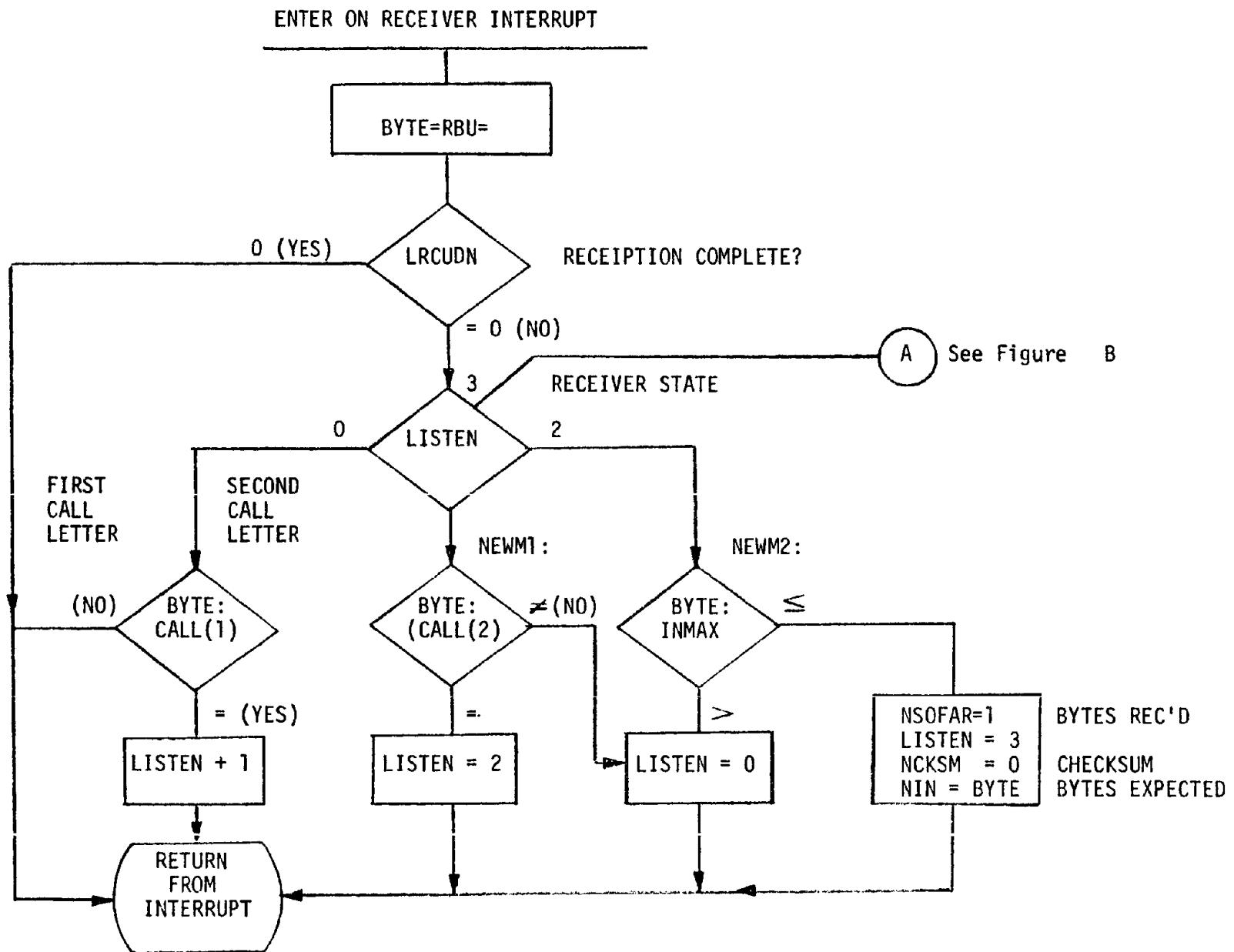
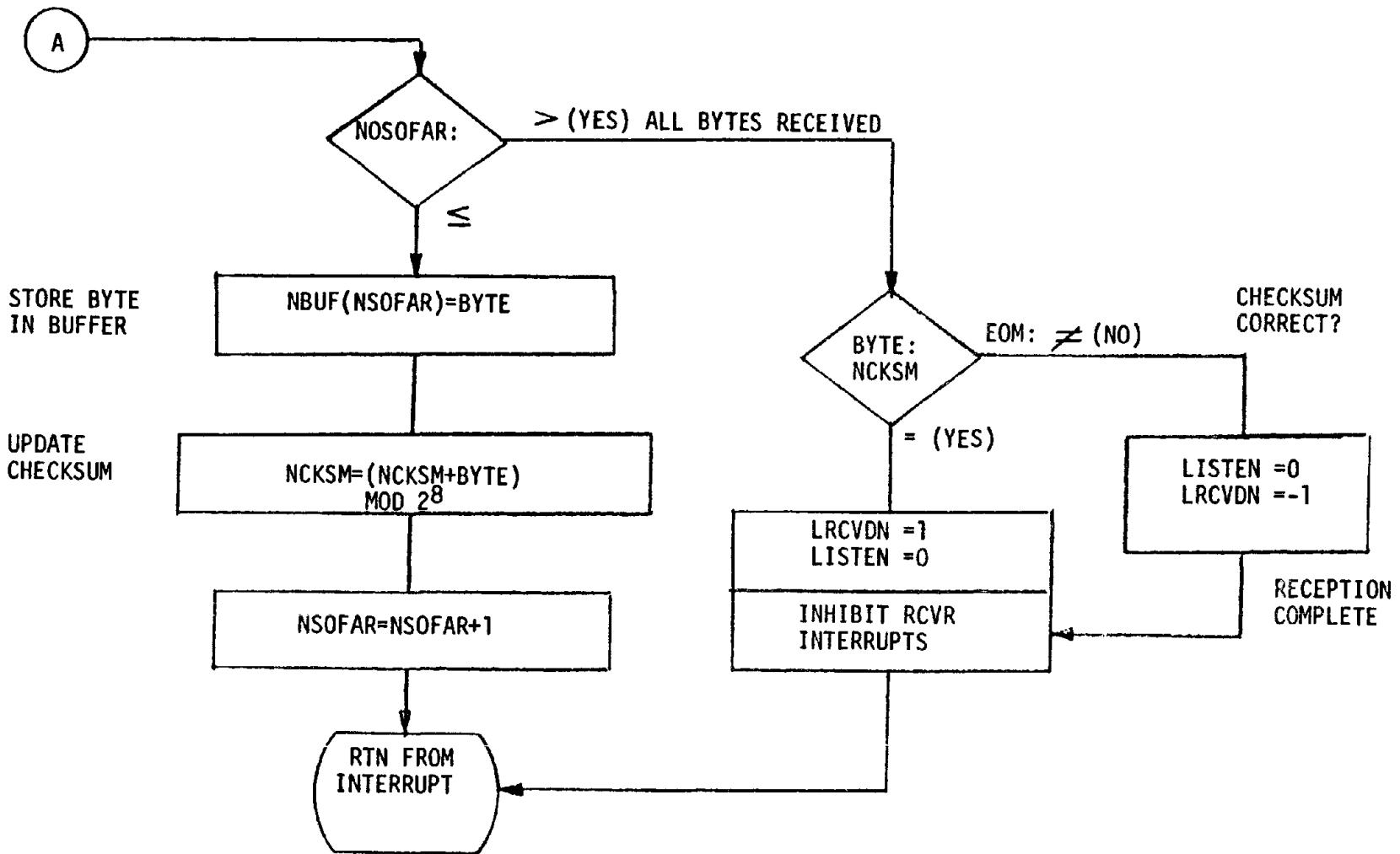



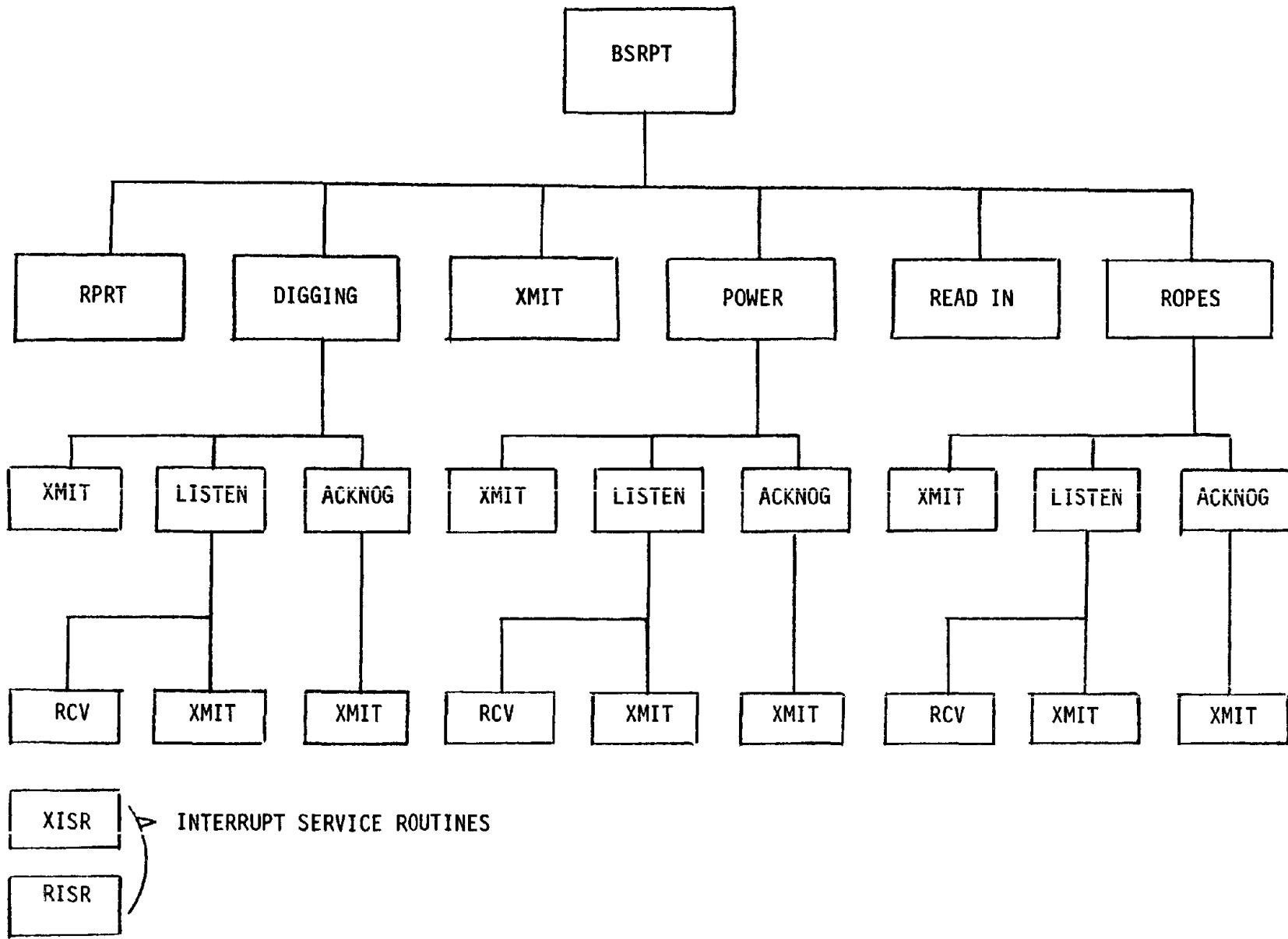

Figure 2-20. Program Diagram - RISR (Continued)



"request to send" signal is issued. The routine loops while waiting for the "clear to send" signal from the modem to become true and then enables the transmitter interface interrupts. When a message is transmitted, it is preceded by the two call letter bytes and a byte which contains the number of bytes in the message. The message is followed by a check sum which is formed by adding all the bytes of the message and allowing the sum to overflow. The least significant byte of the sum is the checksum byte.

XISR is the transmitter interrupt service routine. It is executed when the transmitter interface is ready to transmit the next byte and performs an interrupt. The checksum is computed from each byte as it is transmitted. After the call letters, byte count, message and checksum have been transmitted, XISR turns off the transmitter by clearing "request to send" and inhibits further transmitter interface interrupts.

RISR is the receiver interrupt service routine. It is executed each time a new byte is passed by the modem to the receiver interface. Bytes are ignored by RISR until the two bytes of its station's call letters are received in order. The next byte received is then regarded as the count of bytes to follow. (A count of 0 is interpreted as 256--no zero length messages should be sent.) That many bytes are then stored (one for each receiver interrupt) in the array NBUF. The checksum is computed as each byte is received. The byte after the message is then compared to the computed checksum. The flag LRCVDN is set to +1 if they are equal. LRCVDN is set to -1 if the checksums do not agree.


BSRPRT--Base Station file transfer programs. BSRPT program heirarchy is shown in Figure 2-21. When a command is given to the BSRPRT program to obtain a data file from the dragline, it executes one of the subroutines DIGGING, ROPES, or POWER.

DIGGING obtains the primary DIGS data file, 'CMPRS.DAT', from the dragline. That file contains the dragline's digging performance information. Rather than having the entire file sent each time, the routine requests the "earliest date of interest" to be entered at the keyboard, and then sends that date to the dragline. The dragline then returns only those data sections of 'CMPRS.DAT' with dates following the entered date. DIGGING builds a base station copy of 'CMPRS.DAT' from the received packets of data. After receipt of each packet, the routine ACKNOG is called to acknowledge it. Receipt of a message with length equal 1 byte signals the end of transmission. Receipt of a message with length equal to 2 bytes signals that a bad block exists in the 'CMPRS.DAT' file on board the dragline and the transmission is aborted. When the end of data message is received, the number of 'CMPRS.DAT' records transmitted is printed on the typewriter.

POWER obtains the 'KWH.DAT' data file, Old Ben's special power monitor data file, from the dragline. Complete transmission of the file takes about one half hour under normal conditions. When the file has been transmitted 'KWH.DAT RECEIVED' is printed at the typewriter.

ROPES obtains Old Ben's special rope and chain report files, 'CANDR.DAT' and 'CRACCU.DAT'. Each packet of data is received by the subroutine 'LISTEN' and is acknowledged by the routine ACKNOG. The message 'CANDR.DAT and CRACCU.DAT RECEIVED' follows receipt of both files.

Figure 2-21. Program Heirarchy, Base Station



LISTEN, an integer function, monitors the receipt of a packet of data from the dragline. It requests retransmission of the packet if a checksum error occurred in its original transmission, or if no packet is received within 30 seconds. After 3 requests for retransmissions due to time out, it prints 'TIME OUT. THE DRAGLINE DOESN'T ANSWER.' at the typewriter.

#### RADIO--Dragline Half of Data Link

The main loop of the DIGS program, HIMAIN, Figure 2-22, receives messages from the DIGS typewriter or from the radio data link via the routine READIN. If the first four characters of a message are "RDIO", the subroutine RADIO is called to transmit a data file.

The second group of 4 characters following "RDIO" determine which data file is to be transmitted. "CMPR" causes the normal digging data file, "CMPRS.DAT" to be sent. RADIO sends the power data file, KWH.DAT, if it sees "POWR", and the rope data files, CANDR.DAT and CRACCU.DAT when "ROPE" is received.

If "CMPR" is the message, the two bytes following the message comprise an integer date. Only that data in CMPRS.DAT following that date are transmitted. The other data files are always transmitted in their entirety.

RADIO calls the subroutine ITALK to transmit blocks of 256 bytes. ITALK invokes XMIT and then monitors the receive done flag, LRCVDN. If the acknowledgement message is received from the base station, ITALK returns to the caller. If the base station sends anything other than the acknowledgement, then the data block is retransmitted. If nothing is heard from the base station within 100

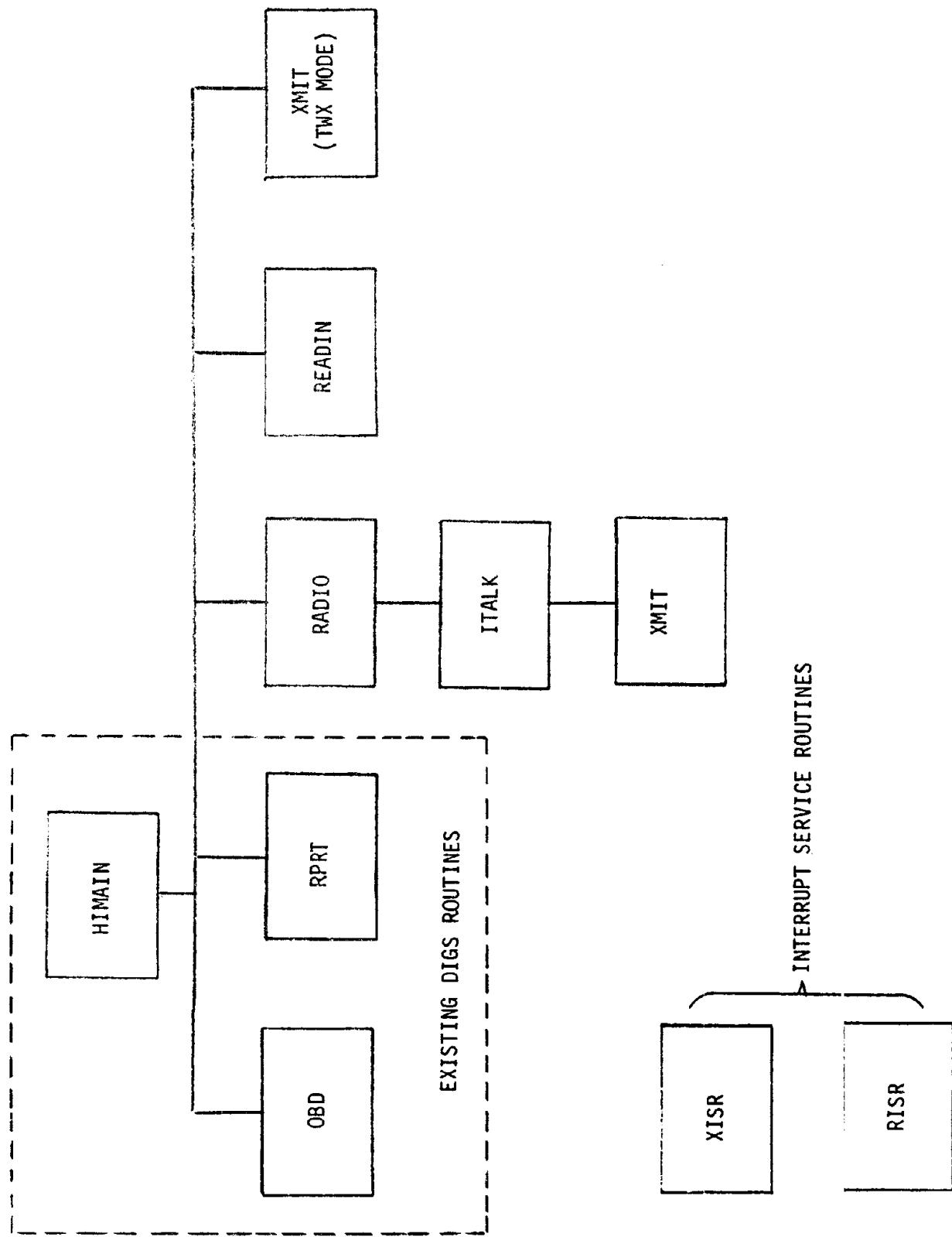
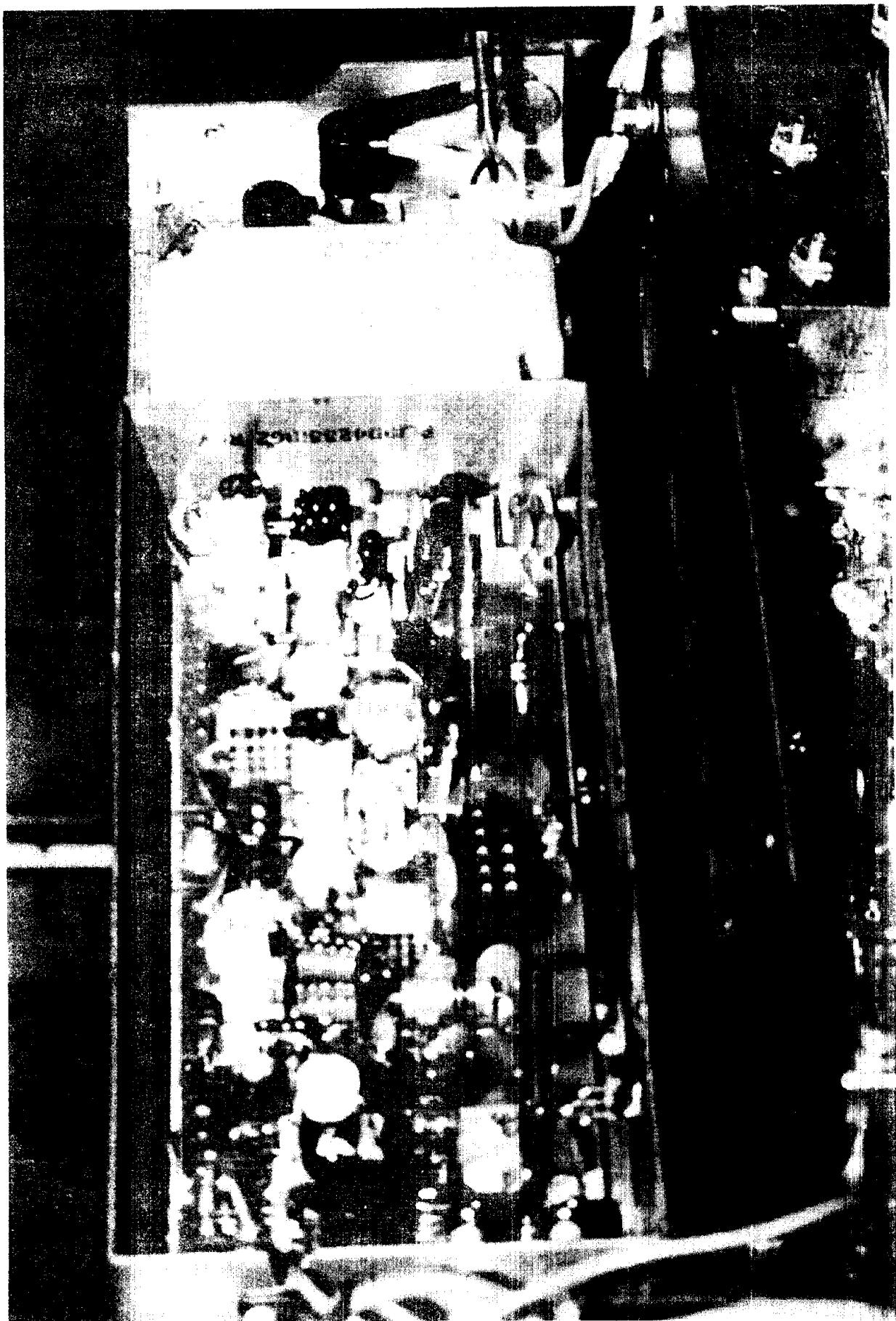



Figure 2-22. Program Hierarchy - Dragline Data Link With DIGS

seconds, RADIO sets a time out flag, rings the typewriter bell and returns.

RCV prepares the system to receive a new message by resetting the reception complete flag and the receiver buffer index.


The DIGS Radio Data Link Program and Handlers are listed in the Appendix.

### 3.0 DEVELOPMENT AND LABORATORY TESTING

The Dragline Data Link System component less antennas were received and functionally tested by MDEC prior to delivery to the mine site. Each component was operationally checked against its specifications and assembled in the functional configuration for system developmental tests. Two test set-ups were used. The first set-up used the data link computer, a similar computer, to simulate the DIGS computer, and the data modems interconnecting the computers directly. This test configuration was used mainly during the software development phase. The second test configuration simulated the field installation except radio were coupled through attenuators. Antennas were not used nor were any radiation tests made. The system configuration was used to verify operation of the system at predetermined timing and signal level.

**3.1 Radio:** The transmitters were operated into a dummy loads and power output levels checked. Power adjustments range from less than 1 watt to about 43 watts. Power levels were set at 15 watts for bench tests. Figure 3-1 shows the opened power chassis and power adjustment potentiometer.

Receiver sensitivities were checked using a Hewlett Packard HP 8640B signal generator, with the frequency set at 154.46375 MHZ, modulation frequencies at 900,1200 and 2200 HZ, and peak deviation at 3.6 KHZ usable signals were obtained with inputs varied from 20 to -130 dBm.



Peak deviation was checked using the procedure above to determine a reference output. The HP8640B signal generator was set at the licensed frequency with the modulation frequency at 2200 HZ, peak deviation at 3600 HZ and input level at -60 dBm. The receiver output was measured at 8V peak to peak. The transmitter to be checked was substituted for the RF signal generator and coupled to the reference receiver through attenuators. A Wave Tek Model 114 audio signal generator provided 2200HZ modulation to the transmitter. The receiver output with the transmitter keyed was measured at 8V peak to peak. The roles of the two radios were interchanged in this test with duplicate results. Tests were performed at 5 and 15 watt RF output levels of the transmitters.

3.2 Modem: The data modems were configured as described in paragraph 2.4.3. Carrier detect level was set by selectable strap at -30 dBm. Transmitter output level of Zero dBm was selected. Modem tests were conducted in a system test configuration. The pair of modems were used to interconnect two computer systems. The capability of the modems to transmit data and to satisfactorily pass local and remote loop back tests were criteria for acceptance.

3.3 Computer: The PDP 1103 computer system used with data link is basically identical to the DIGS computer. These devices are tested upon receipt by a Digital Equipment Corp. representative using established diagnostic programs. The test is witnessed by a MDEC representative. The device is then operated for a minimum of 100 hours and retested using diagnostic routines.

**3.4 System Tests:** The data link system and a computer simulating the DIGS were configured as shown in Figure 3-2. The functional interconnection is identical to that shown in Figure 2-7 except the radio interconnection was accomplished using attenuators providing 70dB attenuation. Power levels are set at 5 and 15 watts. End to end tests using both the teletype and data transfer modes were repeated over a period of two weeks. During this period only minor changes were required to the software. The receiver outputs of both radios were adjusted to 5V peak to peak and the soft carrier delay was increased to 25 milliseconds from 8 milliseconds.

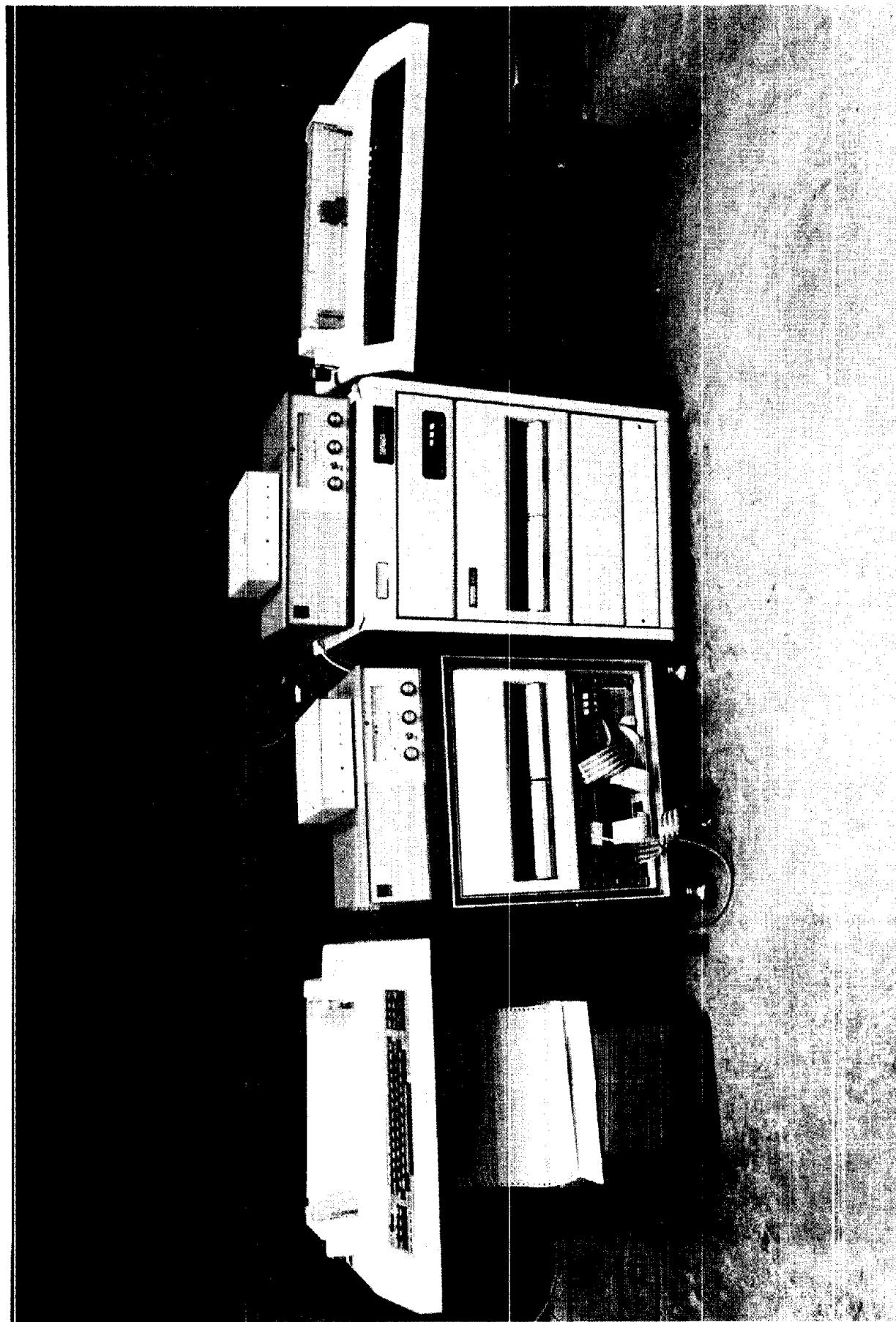



Figure 3-2

#### 4.0 FIELD INSTALLATION AND TEST

DIGS Data Link System was installed and went on the air at Old Ben Coal Co. Mine No. 2 on 25 November 1980. The radio communication of data files worked without problem from the start. The first transmission used the teletype mode. These results are shown in Figure 4-1. A minor software problem in the base station was corrected. A more serious problem with the DIGS as modified by Data Link was discovered. When a report was being printed with the dragline was in operation, the computer memory was insufficient for all the input/output buffers. An additional disk overlay was created to reduce the main memory requirement to an acceptable level.

4.1 Dragline System. Installation of the dragline system amounted to stacking the radio and modem on the DIGS computer and installing two modem interconnecting cables. The antenna had previously been installed by a subcontractor, Tri-State Communications, Inc. of Evansville, Indiana. The antenna was trimmed to the assigned frequency and secured to the "A" frame of the dragline. Figure 2-18 shows the antenna installation. RG-8U coaxial cable was routed through cable ways to the DIGS computer room. The DIGS and Dragline Data Link installation are shown in Figures 2-4 and 2-5.

4.2 Mine Office Installation. The mine office data link installation is shown in Figure 2-3. The computer and teletypewriter were placed in the mine engineering office. The radio and modem were stacked on top of the computer. The mine office antenna was secured to an existing mast adjacent to the mine office by Tri State Communications, Inc. Figure 4-2 is a view of the Old Ben No. 2 mine office showing the radio mast.

Figure 4-1. The First Data Link Transmission

4.3 System Tests. Test of the data link system at the system level included transmission and comparison of reports from data generated by the operational dragline. Various RF power level settings from less than 1.0 to 15 watts were used during transmission tests. Figure 4-2 is a typical "ROPES" report as used by Old Ben Coal Co. This report was transmitted to the mine office via the data link with the transmitters adjusted to 5 watts RF power. Identical reports were transmitted at 2 and 15 watts RF power. The "rope and chains" report consists of 5730 bytes of data. This requires approximately 26 transmissions to transfer this report by data link. The total time required to transfer this report was measured at one minute and forty nine seconds. At two seconds per transmission and a 50% duty cycle the theoretical transmission time is one minute and forty four seconds. The "power" report consists of 80,000 bytes or 303 transmissions. This report required 23 minutes to transmit. Two extra transmissions were noted during this run. Transmissions are repeated (up to three times) if a transmission of 256 bytes fails the parity or checksum tests. The "digging" report can vary, depending upon the length of time data is acquired, up to 64000 bytes. A full record would require 250 transmissions and require 16 minutes and 40 seconds. The "digging" report requested contained 13,200 bytes and required 5 minutes and 24 seconds to complete. The average transmission time as measured over these timed runs is 1.91 seconds. Repeated transmissions were made without loss of data with RF power settings at less than 1 watt, 5 watts, 7.5 watts, 10 watts and 15 watts. Some distortion was noted at the lower power settings (less than 5 watt) but not to the extent to cause loss of data. The transmitter has a specified power range of 10 to 35 watts. On several occasions during early tests some interference was noted. Since it was infrequent and random, no analysis was possible. It appeared on the audio as heard through the speaker as data, not voice. It did not abort report transmission, but since it did not occur during timed runs its effect on byte retransmission was not determined. The system has been in operation from

ROPEs

CANDR.DAT AND CRACCU.DAT RECIEVED

TO GET DATA FROM THE DRAGLINE VIA RADIO  
TYPE 'DIGGING', 'POWER', OR 'ROPEs';  
TYPE 'RPRT' TO PRINT A REPORT  
TYPE 'SEND' FOR TWX MODE

SEND REPORT HAS BEEN TRANSMITTED AS HAS BEEN RECIEVED....  
SEND WILL NOW RUN  
RPRT

IF YOU WANT...  
A CHRONOLOGICAL REPORT, ENTER 1;  
TOTALS BY OPERATOR, ENTER 2;  
TOTALS, ENTER 3;  
A DRAGLINE OPERATING SUMMARY, ENTER 4;  
A CURRENT ROPE AND CHAIN REPORT, ENTER 5;  
A PAST ROPE AND CHAIN REPORT, ENTER 6.  
POWER USE, ENTER 7.  
5

FIND THE TOP OF THE PAGE AND HIT RETURN

Figure 4.2. Typical Old Ben Ropes Report (Sheet 1 of 7)

5 WATT

|                                 | WIRE ROPES  |             |             | CHAINS      |            |       |
|---------------------------------|-------------|-------------|-------------|-------------|------------|-------|
|                                 | -----       |             |             | -----       |            |       |
|                                 | DRAG        | HOIST       | DRAG        | UPPER       | LOWER      | HOIST |
| ACTIVITY                        | 40          | 55          | 60          | 70          | 80         |       |
| DATE OF ACTIVITY                | 18-DEC-1980 | 11-DEC-1980 | 18-SEP-1980 | 11-OCT-1979 | 7-JUN-1979 |       |
| DATE INSTALLED                  | 18-DEC-1980 | 31-JUL-1980 | 18-SEP-1980 | 11-OCT-1979 | 7-JUN-1979 |       |
| YARDS SINCE INSTALLED           | 690883.     | 3357825.    | 1437936.    | 9622451.    | 11907172.  |       |
| YARDS SINCE ACTIVITY            | 690883.     | 955199.     | 1437936.    | 9622451.    | 11907172.  |       |
| CYCLES SINCE ACTIVITY           | 11692.      | 16633.      | 25395.      | 165301.     | 205586.    |       |
| HOURS OF DIGGING SINCE ACTIVITY | 223.        | 321.        | 510.        | 3450.       | 4306.      |       |

END OF REPORT

TO GET DATA FROM THE DRAGLINE VIA RADIO  
TYPE 'DIGGING', 'POWER', OR 'ROPES';  
TYPE 'RPRT' TO PRINT A REPORT  
TYPE 'SEND' FOR TWX MODE

RPRT

IF YOU WANT...  
A CHRONOLOGICAL REPORT, ENTER 1;  
TOTALS BY OPERATOR, ENTER 2;  
TOTALS, ENTER 3;  
A DRAGLINE OPERATING SUMMARY, ENTER 4;  
A CURRENT ROPE AND CHAIN REPORT, ENTER 5;  
A PAST ROPE AND CHAIN REPORT, ENTER 6.  
POWER USE, ENTER 7.  
6

FIND THE TOP OF THE PAGE AND HIT RETURN

Figure 4-2. Typical Old Ben Ropes Report (Sheet 2 of 7)

|                                 | WIRE ROPES  |             |             | CHAINS         |                |
|---------------------------------|-------------|-------------|-------------|----------------|----------------|
|                                 | DRAG        | HOIST       | DRAG        | UPPER<br>HOIST | LOWER<br>HOIST |
| ACTIVITY                        | 43          | 52          | 60          | 70             | 80             |
| DATE OF ACTIVITY                | 14-MAY-1979 | 24-MAY-1979 | 7-JUN-1979  | 7-JUN-1979     | 7-JUN-1979     |
| YARDS SINCE ACTIVITY            | 208632.     | 1005011.    | 250311.     | 1988602.       | 11907172.      |
| CYCLES SINCE ACTIVITY           | 3055.       | 17356.      | 3645.       | 35203.         | 205586.        |
| HOURS OF DIGGING SINCE ACTIVITY | 63.         | 368.        | 75.         | 744.           | 4306.          |
| ACTIVITY                        | 44          | 53          | 61          | 70             |                |
| DATE OF ACTIVITY                | 11-JUN-1979 | 29-JUN-1979 | 12-JUN-1979 | 4-OCT-1979     |                |
| YARDS SINCE ACTIVITY            | 232064.     | 0.          | 23745.      | 0.             |                |
| CYCLES SINCE ACTIVITY           | 3508.       | 0.          | 323.        | 0.             |                |
| HOURS OF DIGGING SINCE ACTIVITY | 76.         | 0.          | 7.          | 0.             |                |
| ACTIVITY                        | 44          | 53          | 62          | 70             |                |
| DATE OF ACTIVITY                | 15-JUN-1979 | 29-JUN-1979 | 12-JUN-1979 | 4-OCT-1979     |                |
| YARDS SINCE ACTIVITY            | 509975.     | 308555.     | 310351.     | 296011.        |                |
| CYCLES SINCE ACTIVITY           | 9697.       | 5493.       | 5175.       | 5082.          |                |
| HOURS OF DIGGING SINCE ACTIVITY | 207.        | 119.        | 113.        | 112.           |                |
| ACTIVITY                        | 46          | 50          | 63          | 70             |                |
| DATE OF ACTIVITY                | 27-JUN-1979 | 12-JUL-1979 | 18-JUN-1979 | 11-OCT-1979    |                |
| YARDS SINCE ACTIVITY            | 0.          | 675035.     | 73787.      | 9622451.       |                |
| CYCLES SINCE ACTIVITY           | 0.          | 12354.      | 1390.       | 165301.        |                |
| HOURS OF DIGGING SINCE ACTIVITY | 0.          | 258.        | 29.         | 3450.          |                |
| ACTIVITY                        | 40          | 50          | 64          |                |                |
| DATE OF ACTIVITY                | 27-JUN-1979 | 4-OCT-1979  | 19-JUN-1979 |                |                |
| YARDS SINCE ACTIVITY            | 0.          | 253765.     | 824740.     |                |                |
| CYCLES SINCE ACTIVITY           | 0.          | 4372.       | 16102.      |                |                |
| HOURS OF DIGGING SINCE ACTIVITY | 0.          | 98.         | 335.        |                |                |
| ACTIVITY                        | 40          | 50          | 65          |                |                |
| DATE OF ACTIVITY                | 27-JUN-1979 | 10-OCT-1979 | 24-JUL-1979 |                |                |
| YARDS SINCE ACTIVITY            | 679247.     | 5882.       | 473727.     |                |                |
| CYCLES SINCE ACTIVITY           | 13145.      | 101.        | 7996.       |                |                |
| HOURS OF DIGGING SINCE ACTIVITY | 275.        | 2.          | 174.        |                |                |
| ACTIVITY                        | 43          | 50          | 60          |                |                |
| DATE OF ACTIVITY                | 7-AUG-1979  | 10-OCT-1979 | 3-OCT-1979  |                |                |
| YARDS SINCE ACTIVITY            | 0.          | 0.          | 31944.      |                |                |
| CYCLES SINCE ACTIVITY           | 0.          | 0.          | 572.        |                |                |
| HOURS OF DIGGING SINCE ACTIVITY | 0.          | 0.          | 11.         |                |                |

Figure 4.2. Typical Old Ben Ropes Report (Sheet 3 of 7)

|                                 | WIRE ROPES |             |             | CHAINS |      |                |                |
|---------------------------------|------------|-------------|-------------|--------|------|----------------|----------------|
|                                 |            |             | DRAG        | HOIST  | DRAG | UPPER<br>HOIST | LOWER<br>HOIST |
|                                 | DRAG       | HOIST       |             |        |      |                |                |
| ACTIVITY                        | 43         | 50          | 60          |        |      |                |                |
| DATE OF ACTIVITY                | 7-AUG-1979 | 10-OCT-1979 | 4-OCT-1979  |        |      |                |                |
| YARDS SINCE ACTIVITY            | 0.         | 0.          | 8480444.    |        |      |                |                |
| CYCLES SINCE ACTIVITY           | 0.         | 0.          | 144988.     |        |      |                |                |
| HOURS OF DIGGING SINCE ACTIVITY | 0.         | 0.          | 3051.       |        |      |                |                |
| ACTIVITY                        | 43         | 50          | 60          |        |      |                |                |
| DATE OF ACTIVITY                | 7-AUG-1979 | 10-OCT-1979 | 18-SEP-1980 |        |      |                |                |
| YARDS SINCE ACTIVITY            | 3310.      | 0.          | 1437936.    |        |      |                |                |
| CYCLES SINCE ACTIVITY           | 57.        | 0.          | 25395.      |        |      |                |                |
| HOURS OF DIGGING SINCE ACTIVITY | 1.         | 0.          | 510.        |        |      |                |                |
| ACTIVITY                        | 43         | 56          |             |        |      |                |                |
| DATE OF ACTIVITY                | 7-AUG-1979 | 10-OCT-1979 |             |        |      |                |                |
| YARDS SINCE ACTIVITY            | 0.         | 0.          |             |        |      |                |                |
| CYCLES SINCE ACTIVITY           | 0.         | 0.          |             |        |      |                |                |
| HOURS OF DIGGING SINCE ACTIVITY | 0.         | 0.          |             |        |      |                |                |
| ACTIVITY                        | 43         | 50          |             |        |      |                |                |
| DATE OF ACTIVITY                | 7-AUG-1979 | 10-OCT-1979 |             |        |      |                |                |
| YARDS SINCE ACTIVITY            | 500.       | 59490.      |             |        |      |                |                |
| CYCLES SINCE ACTIVITY           | 10.        | 1048.       |             |        |      |                |                |
| HOURS OF DIGGING SINCE ACTIVITY | 0.         | 21.         |             |        |      |                |                |
| ACTIVITY                        | 43         | 50          |             |        |      |                |                |
| DATE OF ACTIVITY                | 7-AUG-1979 | 11-OCT-1979 |             |        |      |                |                |
| YARDS SINCE ACTIVITY            | 322933.    | 6241449.    |             |        |      |                |                |
| CYCLES SINCE ACTIVITY           | 5159.      | 106624.     |             |        |      |                |                |
| HOURS OF DIGGING SINCE ACTIVITY | 111.       | 2252.       |             |        |      |                |                |
| ACTIVITY                        | 40         | 50          |             |        |      |                |                |
| DATE OF ACTIVITY                | 3-OCT-1979 | 31-JUL-1980 |             |        |      |                |                |
| YARDS SINCE ACTIVITY            | 31944.     | 1520931.    |             |        |      |                |                |
| CYCLES SINCE ACTIVITY           | 572.       | 26767.      |             |        |      |                |                |
| HOURS OF DIGGING SINCE ACTIVITY | 11.        | 552.        |             |        |      |                |                |
| ACTIVITY                        | 40         | 51          |             |        |      |                |                |
| DATE OF ACTIVITY                | 4-OCT-1979 | 11-SEP-1980 |             |        |      |                |                |
| YARDS SINCE ACTIVITY            | 0.         | 881686.     |             |        |      |                |                |
| CYCLES SINCE ACTIVITY           | 0.         | 14838.      |             |        |      |                |                |
| HOURS OF DIGGING SINCE ACTIVITY | 0.         | 316.        |             |        |      |                |                |

Figure 4.2. Typical Old Ben Ropes Report (Sheet 4 of 7)

|                                 | WIRE ROPES  |             | CHAINS |       |       |
|---------------------------------|-------------|-------------|--------|-------|-------|
|                                 | DRAG        | HOIST       | DRAG   | UPPER | LOWER |
|                                 |             |             |        | HOIST | HOIST |
| ACTIVITY                        | 40          | 55          |        |       |       |
| DATE OF ACTIVITY                | 4-OCT-1979  | 11-DEC-1980 |        |       |       |
| YARDS SINCE ACTIVITY            | 0.          | 955199.     |        |       |       |
| CYCLES SINCE ACTIVITY           | 0.          | 16633.      |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 0.          | 321.        |        |       |       |
| ACTIVITY                        | 40          |             |        |       |       |
| DATE OF ACTIVITY                | 4-OCT-1979  |             |        |       |       |
| YARDS SINCE ACTIVITY            | 259647.     |             |        |       |       |
| CYCLES SINCE ACTIVITY           | 4473.       |             |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 100.        |             |        |       |       |
| ACTIVITY                        | 43          |             |        |       |       |
| DATE OF ACTIVITY                | 10-OCT-1979 |             |        |       |       |
| YARDS SINCE ACTIVITY            | 59446.      |             |        |       |       |
| CYCLES SINCE ACTIVITY           | 1047.       |             |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 21.         |             |        |       |       |
| ACTIVITY                        | 43          |             |        |       |       |
| DATE OF ACTIVITY                | 11-OCT-1979 |             |        |       |       |
| YARDS SINCE ACTIVITY            | 572380.     |             |        |       |       |
| CYCLES SINCE ACTIVITY           | 9794.       |             |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 204.        |             |        |       |       |
| ACTIVITY                        | 41          |             |        |       |       |
| DATE OF ACTIVITY                | 26-OCT-1979 |             |        |       |       |
| YARDS SINCE ACTIVITY            | 2374422.    |             |        |       |       |
| CYCLES SINCE ACTIVITY           | 40393.      |             |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 845.        |             |        |       |       |
| ACTIVITY                        | 41          |             |        |       |       |
| DATE OF ACTIVITY                | 1-MAY-1980  |             |        |       |       |
| YARDS SINCE ACTIVITY            | 0.          |             |        |       |       |
| CYCLES SINCE ACTIVITY           | 0.          |             |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 0.          |             |        |       |       |
| ACTIVITY                        | 41          |             |        |       |       |
| DATE OF ACTIVITY                | 1-MAY-1980  |             |        |       |       |
| YARDS SINCE ACTIVITY            | 1636493.    |             |        |       |       |
| CYCLES SINCE ACTIVITY           | 23516.      |             |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 532.        |             |        |       |       |

Figure 4.2. Typical Old Ben Ropes Report (Sheet 5 of 7)

| WIRE ROPES                      |             | CHAINS |       |       |
|---------------------------------|-------------|--------|-------|-------|
|                                 |             | DRAG   | HOIST | DRAG  |
|                                 |             |        |       | UPPER |
|                                 |             |        |       | LOWER |
|                                 |             |        |       | HOIST |
| ACTIVITY                        | 43          |        |       |       |
| DATE OF ACTIVITY                | 4-JUN-1980  |        |       |       |
| YARDS SINCE ACTIVITY            | 173641.     |        |       |       |
| CYCLES SINCE ACTIVITY           | 3045.       |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 63.         |        |       |       |
| ACTIVITY                        | 44          |        |       |       |
| DATE OF ACTIVITY                | 7-JUN-1980  |        |       |       |
| YARDS SINCE ACTIVITY            | 590309.     |        |       |       |
| CYCLES SINCE ACTIVITY           | 11013.      |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 226.        |        |       |       |
| ACTIVITY                        | 44          |        |       |       |
| DATE OF ACTIVITY                | 21-JUN-1980 |        |       |       |
| YARDS SINCE ACTIVITY            | 0.          |        |       |       |
| CYCLES SINCE ACTIVITY           | 0.          |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 0.          |        |       |       |
| ACTIVITY                        | 43          |        |       |       |
| DATE OF ACTIVITY                | 21-JUN-1980 |        |       |       |
| YARDS SINCE ACTIVITY            | 840395.     |        |       |       |
| CYCLES SINCE ACTIVITY           | 16699.      |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 340.        |        |       |       |
| ACTIVITY                        | 41          |        |       |       |
| DATE OF ACTIVITY                | 28-JUL-1980 |        |       |       |
| YARDS SINCE ACTIVITY            | 875400.     |        |       |       |
| CYCLES SINCE ACTIVITY           | 18187.      |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 374.        |        |       |       |
| ACTIVITY                        | 41          |        |       |       |
| DATE OF ACTIVITY                | 18-AUG-1980 |        |       |       |
| YARDS SINCE ACTIVITY            | 397651.     |        |       |       |
| CYCLES SINCE ACTIVITY           | 6238.       |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 124.        |        |       |       |
| ACTIVITY                        | 43          |        |       |       |
| DATE OF ACTIVITY                | 5-SEP-1980  |        |       |       |
| YARDS SINCE ACTIVITY            | 1183532.    |        |       |       |
| CYCLES SINCE ACTIVITY           | 19345.      |        |       |       |
| HOURS OF DIGGING SINCE ACTIVITY | 413.        |        |       |       |

Figure 4.2. Typical Old Ben Ropes Report (Sheet 6 of 7)

| WIRE ROPES            |             | CHAINS |                |                |
|-----------------------|-------------|--------|----------------|----------------|
| DRAG                  | HOIST       | DRAG   | UPPER<br>HOIST | LOWER<br>HOIST |
| ACTIVITY              | 41          |        |                |                |
| DATE OF ACTIVITY      | 11-DEC-1980 |        |                |                |
| YARDS SINCE ACTIVITY  | 264313.     |        |                |                |
| CYCLES SINCE ACTIVITY | 4941.       |        |                |                |
| HOURS OF DIGGING      | 98.         |        |                |                |
| SINCE ACTIVITY        |             |        |                |                |
| ACTIVITY              | 40          |        |                |                |
| DATE OF ACTIVITY      | 18-DEC-1980 |        |                |                |
| YARDS SINCE ACTIVITY  | 690883.     |        |                |                |
| CYCLES SINCE ACTIVITY | 11692.      |        |                |                |
| HOURS OF DIGGING      | 223.        |        |                |                |
| SINCE ACTIVITY        |             |        |                |                |

THE FOLLOWING AMOUNTS 119 59 35 15 3  
HAVE BEEN USED FROM THE ROPE AND CHAIN RECORDS OUT OF 281 POSSIBLE FOR EACH ONE

END OF REPORT

Figure 4.2. Typical Old Ben Ropes Report (Sheet 7 of 7)

25 November 1980 through the completion without problem. Data transmitted and reports obtained through the data link system have been consistently reliable when compared with reports generated on the prime DIGS.

## 5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Design Goals. Goals of the Dragline Data Link program have been fully achieved with respect to operation and data transfer fidelity. Test performed at the evaluation site demonstrated that the data link system can be applied to the surface mining environment. The evaluation site provided a test range that met the criteria of the design model with the exception of range. The design model established a conservative five mile range as a typical maximum distance between the base and remote station. An equally conservative path loss analysis established a RF power requirement at 30 watts. Old Ben Coal Co. provided a 1.3 mile range. Transmission tests using as low as one watt of RF power demonstrated the feasibility of longer range operation and the validity of the path loss analysis.

5.2 Operational Goals: The ultimate goal of DIGS as enhanced by the data link system is to increase mining productivity. As determined from proprietary data obtained from DIGS users, a minimum of 3% increase in productivity is noted. The added effects attributable to data link are not yet as clearly determined. The DIGS statistics required years of data gathering to assure adequate normalization. The short evaluation time could not provide the cause and effect relationships and the necessary response by the mine operator to an over abundance of data to achieve measurable productivity improvement. The benefits noted by the mine operator are superficial at this time. The data link system provides convenient access to the data already available at the dragline DIGS. It eliminates time spent in travel to the dragline and the time spent awaiting report printouts. It encourages frequent collection of this data and more responsive use of available reports.

A more subtle but interesting benefit is being considered. The ready availability of data from the dragline provides for new and innovative uses for DIGS. More detailed reports such as cycle by cycle reports or real time reporting of detailed dragline activities could provide for more realistic and accurate time and productivity studies. The expansion of similar data acquisition and reporting systems to other draglines, shovels and material handling equipment of many types, serviced by a single data link system (some 676 system can presently be individually addressed) can lead to composite production reports and offer even greater mine management potential.

5.3 Recommendations: The value of a data link system as applied to DIGS and related data systems could not be verified in full during a two month evaluation period. It will require the innovative application by a progressive and dedicated mining operation over a long period of time to develop the methods and confidence to effect productivity improvements. To this end it is suggested that the evaluation of the dragline data link system be continued by a mine operator and that they be encouraged to try new and innovative techniques in data gathering, reporting and management for productivity.

The design of the data link system was predicated upon use of available equipment containing built-in options for direct integration into a data transmission system. The radio for example is a desk top unit with built-in power supply and DC remote interface board. The data modem is of a commercial design and provides for selectable interface options. This equipment is acceptable for the dragline where space and the environment are not critical factors. This equipment, however, would not be suitable for the more restraining space requirements and harsh environment of equipment such as a front end loader.

It is suggested that the data link design be evolved into a more rugged and smaller system utilizing a mobile radio and developing a dedicated interface and data modem peculiar to its restricted application. Size, power requirement and its ability to survive the harsh temperature, dust, humidity, vibration and shock environments should be considered. Interface with mine and microcomputer systems should also be addressed.

Additional system developments including full duplex operation and low power remote systems using repeater stations are recommended.



## APPENDIX A

DIGS RADIO DATA LINK HANDLERS MACRO V03.02B12-FEB-81 00:02:21  
TABLE OF CONTENTS

|    |    |      |
|----|----|------|
| 1- | 10 | RCV  |
| 1- | 16 | RISR |
| 2- | 74 | XMIT |
| 3- | 39 | XISR |

```
1 .TITLE DIGS RADIO DATA LINK HANDLERS
2     175610      RCSR=175610
3     175612      RBUF=175612
4     175614      XCSR=175614
5     175616      XBUF=175616
6 000000      .PSECT  RADIO,RW,D,LBL,REL,OVR
7 000000      NBUF:  .BLKB  256.
8 000400 000001      LRCVDN: .WORD  1
9 000402 000000      NIN:   .WORD  0
10          .SBTTL RCV
11 000000      .PSECT  RCV
12          .GLOBL RCV
13 000000 005067 000400'      RCV:   CLR  LRCVDN
14 000004 005067 000244'      CLR    LISTEN
15 000010 000207      RTS    PC
16          .SBTTL RISR
```

RISR

```

1 000000          .PSECT RISR
2
3
4 000000 000240          RISR: .GLOBL RISR
5 000002 005767 000402'      NOP
6 000006 001404          TST    LRCVDN      ;HAS THE PREVIOUS MESSAGE BEEN CONSIDERED?
7 000010 116767 175612 000236      BEQ    1$      ;YES, START LISTENING
8 000016 000002          MOVB   RBUF,BYTE
9
10 000020 116767 175612 000225 1$:      MOVB   RBUF,BYTE      ;INPUT BYTE FROM RADIO
11 000024 026727 000212 000001      CMP    LISTEN,$1      ;WHAT PART OF MESSAGE?
12 000034 002425          BLT    NEW
13 000036 001433          BEQ    NEWM1      ;FIRST BYTE
14 000040 026727 000200 000002      CMP    LISTEN,$2      ;NO., THEN IS THIS 3RD BYTE?
15 000046 001440          BEQ    NEWM2      ;YES. = NUMBER OF BYTES TO FOLLOW.

16
17          ; HEADER RECEIVED, MESSAGE IN PROGRESS
18 000050 026767 000174 000402'      CMP    NSOFAR,NIN      ;BYTE COUNT EXCEEDED?
19 000056 002056          BGE    EDM      ;YES. STOP LISTENING
20 000060 012746 000000'          MOV    #NBUF,-(SP)      ;BUFFER ADDRESS ON STACK
21 000064 066716 000160          ADD    NSOFAR,(SP)      ;ADD BUFFER INDEX
22 000070 116736 000160          MOVB   BYTE,(SP)+      ;STORE BYTE, RESTORE STACK
23 000074 005267 000150          INC    NSOFAR      ;INCREMENT BUFFER INDEX
24 000100 066767 000150 000140          ADD    BYTE,NCKSM      ;UPDATE CHECKSUM
25 000106 000002          RTI

26
27
28          ; FIRST BYTE OF A NEW MESSAGE
29
30 000110 126767 000140 000134  NEW:  CMPB   BYTE,IDI1      ;FIRST CALL LETTER?
31 000116 001002          BNE    1$      ;NO. IGNORE IT
32 000120 005267 000120          INC    LISTEN      ;YES! LISTEN FOR SECOND CALL LETTER
33 000124 000002          1$:      RTI

34
35
36          ; SECOND BYTE OF A MESSAGE
37
38 000126 005267 000112          NEWM1: INC    LISTEN
39 000132 126767 000116 000113          CMPB   BYTE,IDI2      ;SECOND CALL LETTER
40 000140 001402          BEQ    1$      ;YES, SET BYTE COUNT
41 000142 005067 000076          CLR    LISTEN      ;WRONG. START OVER
42 000146 000002          1$:      RTI

43
44
45          ; BYTE COUNT
46
47 000150 012767 000400 000402'  NEWM2: MOV    #256.,NIN
48 000156 005767 000072          TST    BYTE
49 000162 001402          BEQ    2$      ;NO
50 000164 005067 000402'          CLR    NIN
51 000170 005067 000054          2$:      CLR    NSOFAR
52 000174 005267 000044          INC    LISTEN
53 000200 005067 000042          CLR    NCKSM
54 000204 116767 000044 000402'  MOVB   BYTE,NIN
55 000212 000002          RTI
56
57

```

```
58 ; LAST BYTE OF MESSAGE
59 ;
60 000214 005067 000024 E0M: CLR LISTEN
61 000220 012767 000001 000400' MOV $1,LRCVDN
62 000226 126767 000022 000012 CMPB BYTE,NCKSM
63 000234 001402 BEQ 1$
64 000236 005167 000400' COM LRCVDN
65 000242 000002 1$: RTI
66 000244 000000 LISTEN: .WORD 0
67 000246 000000 NCKSM: .WORD 0
68 000250 000000 NSOFAR: .WORD 0
69 000252 101 ID1: .BYTE 'A
70 000253 102 ID2: .BYTE 'B
71 000254 000000 BYTE: .WORD 0
72 ;
73 ;
74 .SBTTL XMIT
```

XMIT

```

1 000000          .PSECT XMIT
2          .GLOBL XMIT
3          ;
4 000000 012500  XMIT: MOV  (RS)+,R0    ;ARGUMENT COUNT
5 000002 012500    MOV  (RS)+,R0    ;MSG
6 000004 012501    MOV  (RS)+,R1    ;IN
7 000006 012502    MOV  (RS)+,R2    ;ID
8 000010 021127 000400  CMP  (R1),#256.  ;TOO MANY BYTES AT ONCE?
9 000014 003403    BLE  1$          ;NO
10 000016 012735 177777  MOV  $-1,@(RS)+  ;LBSY=-1
11 000022 000207    RTS  PC
12 000024 005767 000155 1$:   TST  LXMTDN  ;TRANSMISSION ALREADY IN PROGRESS?
13 000030 001003    BNE  2$          ;NO
14 000032 012735 000001    MOV  $1,@(RS)+  ;LBSY=1
15 000036 000207    RTS  PC
16 000040 032767 010000 175610 2$:   BIT  $10000,RCNR  ;CARRIER DETECT?
17 000046 001403    BEQ  3$          ;NO, GO AHEAD
18 000050 012735 000002    MOV  $2,@(RS)+  ;LBSY=2
19 000054 000207    RTS  PC
20 000056 005035 3$:   CLR  @ (RS)+  ;
21 000060 005067 000144'    CLR  CKSUM  ;RESET CHECKSUM
22 000064 010067 000146'    MOV  R0,MSG1  ;MESSAGE POINTER
23 000070 011167 000150'    MOV  @R1,NI  ;BYTE COUNT
24 000074 012767 000004 000152'    MOV  $4,NIP4
25 000102 061167 000152'    ADD  @R1,NIP4
26 000106 011267 000154'    MOV  @R2,IDI  ;CALL LETTERS
27 000112 012767 000001 000160'    MOV  $1,I
28 000120 052767 000004 175610    BIS  $4,RCNR  ;ISSUE REQUEST TO SEND
29          ; (THE FOLLOWING TEST IS 10/SEC, NOT FREE RUNNING, ON DRAGLINE)
30 000126 032767 020000 175610 4$:   BIT  $20000,RCNR  ;CLEAR TO SEND?
31 000134 001774    BEQ  4$          ;NO, WAIT
32 000136 005067 000156'    CLR  LXMTDN
33 000142 106427 000200    MTPS $200  ;INHIBIT INTERRUPTS
34 000146 052767 000100 175614    BIS  $100,XCSR  ;ENABLE XMIT INTERRUPTS
35 000154 106427 000000    MTPS $0  ;ENABLE INTERRUPTS
36 000160 000207    RTS  PC
37          ;
38          ;
39          .SBTTL XISR

```

```

1 ;  

2 000000 .PSECT XISR  

3 .GLOBL XISR  

4 ;  

5 000000 000240 XISR: NOP ;THIS INSTRUCTION MIGHT NOT EXECUTE  

6 000002 010046 MOV R0,-(SP) ;PUSH R0  

7 000004 016700 000150 MOV I, R0 ;BYTE NUMBER  

8 000010 020027 000003 CMP R0,$3 ;ID AND COUNT TRANSMITTED  

9 000014 003011 BGT 4$ ;YES, SEND MESSAGE  

10 000016 001404 BEQ 3$ ;SEND BYTE COUNT  

11 000020 116067 000153' 175616 MOVB IDI-1(R0),XBUF ;SEND ID  

12 000026 000424 BR RETRN  

13 000030 116767 000114 175616 3$: MOVB NI,XBUF ;BYTE COUNT  

14 000036 000420 BR RETRN  

15 000040 020067 000106 4$: CMP R0,NIP4 ;MESSAGE, CHECKSUM, OR DONE?  

16 000044 001412 BEQ LAST ;CHECKSUM  

17 000046 003020 BGT DONE ;DONE  

18 000050 066700 000072 ADD MSGI,R0 ;OUTPUT  

19 000054 116000 177774 MOVB --4(R0),R0 ;MESSAGE BYTE  

20 000060 110067 175616 MOVB R0,XBUF ;TRANSMIT IT  

21 000064 060067 000054 ADD R0,CKSUM ;UPDATE CHECKSUM  

22 000070 000403 BR RETRN  

23 000072 116767 000046 175616 LAST: MOVB CKSUM,XBUF ;XMIT CHECKSUM  

24 000100 005267 000054 RETRN: INC I ;COUNT A BYTE  

25 000104 012600 MOV (SP)+,R0 ;PUSH R0  

26 000106 000002 RTI  

27 000110 005300 DONE: DEC R0 ;TRANSMIT  

28 000112 020067 000034 CMP R0,NIP4 ;CHECKSUM  

29 000116 001765 BEQ LAST ;TWICE  

30 000120 042767 000004 175610 BIC $4,RCSR ;RELEASE THE MIKE KEY  

31 000126 012767 000001 000022 MOV $1,LXMTDN  

32 000134 042767 000100 175614 BIC $100,XCSR ;INHIBIT XMTR INTERRUPT  

33 000142 000756 BR RETRN  

34 000144 000000 CKSUM: .WORD 0  

35 000146 000000 MSGI: .WORD 0  

36 000150 000000 NI: .WORD 0  

37 000152 000000 NIP4: .WORD 0  

38 000154 041101 IDI: .WORD 'AB  

39 000156 000001 LXMTDN: .WORD 1  

40 000160 000C00 I: .WORD 0  

41 000001 .END

```

## SYMBOL TABLE

|       |         |            |         |           |         |            |          |           |          |     |
|-------|---------|------------|---------|-----------|---------|------------|----------|-----------|----------|-----|
| BYTE  | 000254R | 004 ID2    | 000253R | 004 NBUF  | 000000R | 002 NIN    | 000402R  | 002 RETRN | 000100R  | 006 |
| CKSUM | 000144R | 006 LAST   | 000072R | 006 NCKSM | 000246R | 004 NIP4   | 000152R  | 006 RISR  | 000000RG | 004 |
| DONE  | 000110R | 006 LISTEN | 000244R | 004 NEW   | 000110R | 004 NSCFAR | 000250R  | 004 XBUF  | = 175616 |     |
| EDM   | 000214R | 004 LRCVDN | 000400R | 002 NEWM1 | 000126R | 004 RBUF   | = 175612 | XCSR      | = 175614 |     |
| I     | 000160R | 006 LXMTDN | 000156R | 006 NEWM2 | 000150R | 004 RCSR   | = 175610 | XISR      | 000000RG | 006 |
| ID1   | 000154R | 006 MSGI   | 000146R | 006 NI    | 000150R | 005 RCV    | 000300RG | 003 XMIT  | 000000RG | 005 |
| ID1   | 000252R | 004        |         |           |         |            |          |           |          |     |

|        |        |     |
|--------|--------|-----|
| , ABS, | 000000 | 000 |
|        | 000000 | 001 |

|       |        |     |
|-------|--------|-----|
| RADIO | 000494 | 002 |
|-------|--------|-----|

|     |        |     |
|-----|--------|-----|
| RCV | 000012 | 003 |
|-----|--------|-----|

|      |        |     |
|------|--------|-----|
| RISR | 000256 | 004 |
|------|--------|-----|

|      |        |     |
|------|--------|-----|
| XMIT | 000162 | 005 |
|------|--------|-----|

|      |        |     |
|------|--------|-----|
| XISR | 000162 | 006 |
|------|--------|-----|

|                  |   |
|------------------|---|
| ERRORS DETECTED: | 0 |
|------------------|---|

VIRTUAL MEMORY USED: 323 WORDS ( 2 PAGES)

DYNAMIC MEMORY AVAILABLE FOR 74 PAGES

;TT:DLINK=DK:BLINK

ERRORS DETECTED: 0

FOR/CODE:THR/LIST:TT:/NOOBJ BSRPRT

```
0001      PROGRAM BSRPRT
C
C  BSRPRT IS THE DIGS REPORT WRITING PROGRAM
C  USED AT THE MINE OFFICE.  DATA IS RECEIVED
C  FROM THE DRAGLINE VIA THE RADIO DATA LINK.
C
0002      EXTERNAL RISR,XISR
0003      LOGICAL#1 LS(80),NBUF
0004      EQUIVALENCE (S,LS(1))
0005      COMMON /RADIO/NBUF(256),LRCVDN,NIN
0006      DATA ID/'AB'
C
0007      IR=IADDR(RISR)
0008      IT=IADDR(XISR)
0009      CALL IPOKE(*172,'200')
0010      CALL IPOKE(*170,IR)
0011      CALL IPOKE(*176,'200')
0012      CALL IPOKE(*174,IT)
0013      CALL IPOKE(*175610,'100')
0014 1      WRITE(7,100)
0015 100     FORMAT(' TO GET DATA FROM THE DRAGLINE VIA
* RADIO'// ' TYPE 'DIGGING', 'POWER', OR 'ROPES'//'
* TYPE 'RPT' TO PRINT A REPORT'//
* TYPE 'SEND' FOR TXW MODE'//')
0016 2      CALL READIN(LS,N)
0017      IF(S.EQ.'DIGG') CALL DIGGING
0018      IF(S.EQ.'POWE') CALL POWER
0019      IF(S.EQ.'ROPE') CALL ROPES
0020      IF(S.EQ.'RPT') CALL RPT
0021      IF(S.EQ.'SEND') GO TO 3
0022      IF(S.EQ.'HARK') GO TO 4
0023
0024 29     GO TO 1
C
0025 3      S='HARK'
0026      CALL XMIT(LS,MIN0(256,N),'AB',LBSY)
0027      GO TO 2
0028 4      WRITE(7,200) 7,7,7,(LS(I),I=5,N),'12
0029 200     FORMAT(' >',7SA1//)
0030      GO TO 2
0031      END
BSRPRT
?FORTRAN-I-[BSRPRT] Errors: 0, Warnings: 1
```

FORTRAN IV        Storage Map for Program Unit BSRPRT

Local Variables, .PSECT \$DATA, Size = 000120 ( 49. words)

| Name | Type | Offset | Name | Type | Offset | Name | Type | Offset |
|------|------|--------|------|------|--------|------|------|--------|
| I    | I*2  | 000136 | ID   | I*2  | 000122 | IR   | I*2  | 000126 |
| IT   | I*2  | 000130 | LBSY | I*2  | 000134 | N    | I*2  | 000132 |
| S    | R*4  | 000002 | Eav  |      |        |      |      |        |

COMMON Block /RADIO/, Size = 000404 ( 130. words)

| Name | Type | Offset | Name   | Type | Offset | Name | Type | Offset |
|------|------|--------|--------|------|--------|------|------|--------|
| NBUF | L*1  | 000000 | LRCVDN | I*2  | 000400 | NIN  | I*2  | 000402 |

Local and COMMON Arrays:

| Name | Type | Section | Offset | -----Size----- | Dimensions |
|------|------|---------|--------|----------------|------------|
| LS   | L*1  | \$DATA  | 000002 | 000120 ( 40.)  | (80)       |
| NBUF | L*1  | RADIO   | 000000 | 000400 ( 128.) | (256)      |

Subroutines, Functions, Statement and Processor-Defined Functions:

| Name   | Type | Name  | Type | Name  | Type | Name | Type | Name  | Type |
|--------|------|-------|------|-------|------|------|------|-------|------|
| DIGGIN | R*4  | IADDR | I*2  | IPOKE | I*2  | MINO | I*2  | POWER | R*4  |
| READIN | R*4  | RISR  | R*4  | ROPES | R*4  | RPRT | R*4  | XISR  | R*4  |
| XMIT   | R*4  |       |      |       |      |      |      |       |      |

```
0001      SUBROUTINE DIGGING
C
C      DIGGING OBTAINS CMPRS.DAT DATA FROM THE DRAGLINE
C      VIA THE RADIO DATA LINK.  BSRPRT CALLS DIGGING.
C
0002      LOGICAL*1 NBUF
0003      COMMON /RADIO/NBUF(256),LRCVBN,NIN
0004      REAL CMSG(3)
0005      EQUIVALENCE (CMSG(3),IDATE)
0006      DATA CMSG/'RDIO','CMPR',0./
C
0007      CALL ASSIGN(3,'CMPRS.DAT',9)
0008      DEFINE FILE 3(8000,4,U,IAV)
0009      I=3
0010      WRITE(7,100)
0011 100  FORMAT('$ENTER EARLIEST DATE OF INTEREST (DDMMYY.)... ')
0012      READ(5,200) DATE
0013 200  FORMAT(F20.0)
0014      CALL DAY(IDATE,DATE)
0015 5     CALL XMIT(CMSG,10,'AB',LBSY)
0016      IF(LBSY.NE.0) GO TO 5
C
0017 1     K=LISTEN()
0018      IF(K.EQ.1) GO TO 9
0019      IF(K.EQ.0) GO TO 2
0020      CALL CLOSE(3)
0021      RETURN
0022 2     IF(NIN.EQ.2) GO TO 10
0023      DO 6 J=1,NIN/8
0024      WRITE(3'I) (NBUF(K),K=8*(J-1)+1,8*j)
0025      I=I+1
0026      IF(NBUF(8*(J-1)+1).EQ.-1) NDXOP=I
0027 6     NDXDT=I
0028      WRITE(3'I) NDXDT,NDXOP
0029      CALL ACKNOG
0030      GO TO 1
C
C
C
0031 9     WRITE (3'I) 0
0032      WRITE(7,400) I-2
0033 400  FORMAT(X,I4,' RECORDS RECEIVED FROM "CMPRS.DAT"')
0034      CALL ACKNOG
0035      CALL CLOSE (3)
0036      RETURN
0037 10    WRITE(7,500)
0038 500  FORMAT(' A BAD BLOCK EXISTS IN THE DRAGLINES "CMPRS.DAT"//'
0039      *' TRANSMISSION ABORTED.')
0040      CALL CLOSE(3)
0041      CALL ACKNOG
0042      RETURN
0043  END
0044      DIGGIN
```

FORTRAN IV Storage Map for Program Unit DIGGIN

Local Variables, .PSECT \$DATA, Size = 000050 ( 20. words)

| Name  | Type | Offset     | Name  | Type | Offset | Name  | Type | Offset     |
|-------|------|------------|-------|------|--------|-------|------|------------|
| DATE  | R*4  | 000024     | I     | I*2  | 000022 | IAV   | I*2  | 000020 Eav |
| IDATE | I*2  | 000012 Eav | J     | I*2  | 000034 | K     | I*2  | 000032     |
| LBSY  | I*2  | 000030     | NDXDT | I*2  | 000040 | NDXOP | I*2  | 000036     |

COMMON Block /RADIO /, Size = 000404 ( 130. words)

| Name | Type | Offset | Name   | Type | Offset | Name | Type | Offset |
|------|------|--------|--------|------|--------|------|------|--------|
| NBUF | L*1  | 000000 | LRCVDN | I*2  | 000400 | NIN  | I*2  | 000402 |

Local and COMMON Arrays:

| Name | Type | Section | Offset | -----Size-----       | Dimensions |
|------|------|---------|--------|----------------------|------------|
| CHSG | R*4  | \$DATA  | 000002 | 000014 ( 6.) (3)     |            |
| NBUF | L*1  | RADIO   | 000000 | 000400 ( 128.) (256) |            |

Subroutines, Functions, Statement and Processor-Defined Functions:

| Name   | Type | Name   | Type | Name  | Type | Name | Type | Name   | Type |
|--------|------|--------|------|-------|------|------|------|--------|------|
| ACKNOG | R*4  | ASSIGN | R*4  | CLOSE | R*4  | DAY  | R*4  | LISTEN | I*2  |
| XMIT   | R*4  |        |      |       |      |      |      |        |      |

```
0001      SUBROUTINE POWER
C
C      POWER OBTAINS KWH.DAT DATA FROM THE DRAGLINE
C      VIA THE RADIO DATA LINK.  BSRPRT CALLS POWER.
C
0002      LOGICAL*1 NBUF
0003      COMMON /RADIO/NBUF(256),LRCVDN,NIN
0004      REAL PMSG(2)
0005      DATA PMSG/'RDIO','POWR'/
C
0006      CALL ASSIGN(16,'KWH.DAT',7)
0007      DEFINE FILE 16(10000,4,U,IAV)
C
0008 1      CALL XMIT(PMSG,8,'AB',LBSY)
0009      IF(IBSY.NE.0) GO TO 1
C
0011      I=1
C
0012 3      K=LISTEN()
0013      IF(K.EQ.1) GO TO 9
0015      IF(K.EQ.0) GO TO 2
0017      CALL CLOSE(16)
0018      RETURN
0019 2      DO 5 J=1,NIN/8
0020      WRITE(16'I) (NBUF(K),K=8*(J-1)+1,8*j)
0021 5      I=I+1
0022      CALL ACKNOD
0023      GO TO 3
C
0024 9      WRITE(7,400)
0025 400  FORMAT(' KWH.DAT RECIEVED')
0026      CALL ACKNOD
0027      CALL CLOSE(16)
0028      RETURN
0029      END
POWER
```

## FORTRAN IV Storage Map for Program Unit POWER

Local Variables, .PSECT \$DATA, Size = 000032 ( 13. words)

| Name | Type | Offset | Name | Type | Offset | Name | Type | Offset |
|------|------|--------|------|------|--------|------|------|--------|
| I    | I*2  | 000020 | IAV  | I*2  | 000012 | EAV  | I*2  | 000016 |
| J    | I*2  | 000024 | K    | I*2  | 000022 | LBSY | I*2  | 000014 |

COMMON Block /RADIO/, Size = 000400 ( 130. words)

| Name | Type | Offset | Name   | Type | Offset | Name | Type | Offset |
|------|------|--------|--------|------|--------|------|------|--------|
| NBUF | L*1  | 000000 | LRCVDN | I*2  | 000400 | NIN  | I*2  | 000402 |

Local and COMMON Arrays:

| Name | Type | Section | Offset | -----Size----- | Dimensions    |
|------|------|---------|--------|----------------|---------------|
| NBUF | L*1  | RADIO   | 000000 | 000400         | ( 128.) (256) |
| PMSG | R*4  | \$DATA  | 000000 | 000010         | ( 4.) (2)     |

Subroutines, Functions, Statement and Processor-Defined Functions:

| Name   | Type | Name   | Type | Name  | Type | Name   | Type | Name | Type |
|--------|------|--------|------|-------|------|--------|------|------|------|
| ACKNOG | R*4  | ASSIGN | R*4  | CLOSE | R*4  | LISTEN | I*2  | XMIT | R*4  |

```
0001      FUNCTION LISTEN
0002      C  LISTEN FOR REPLY
0003      LOGICAL$1 NBUF
0004      COMMON /RADIO/NBUF(256),LRCVDN,NC
0005      INTEGER ITIME(2),IT1(2)
0006      DATA ITMOUT/1800/
0007      ITCNT=0
0008      1  CALL RCV
0009      CALL GTIM(ITIME)
0010      IF(LRCVDN.NE.0) GO TO 2
0011      CALL GTIM(IT1)
0012      IF(IABS(IT1(2)-ITIME(2)).GT.ITMOUT) GO TO 3
0013      GO TO 5
0014
0015      C
0016      2  IF(LRCVDN.EQ.-1) GO TO 3
0017      IF(NC.EQ.1) GO TO 9
0018      LISTEN=0
0019      RETURN
0020      3  IF(ITCNT.GT.2)GO TO 4
0021      ITCNT=ITCNT+1
0022      CALL XMIT('?',1,'AB',LBSY)
0023      IF(LBSY.NE.0) GO TO 3
0024      GO TO 1
0025
0026      C
0027      C
0028      4  WRITE(7,300)
0029      300 FORMAT(' TIME OUT.  THE DRAGLINE DOESNT ANSWER.')
0030      LISTEN=-1
0031      RETURN
0032
0033      C
0034      9  LISTEN=1
0035      RETURN
0036      END
0037
0038      LISTEN
```

FORTRAN IV        Storage Map for Program Unit LISTEN

Local Variables, .PSECT \$DATA, Size = 000022 ( 9. words)

| Name   | Type | Offset | Name   | Type | Offset | Name | Type | Offset |
|--------|------|--------|--------|------|--------|------|------|--------|
| ITCNT  | I*2  | 000014 | ITMOUT | I*2  | 000012 | LBSY | I*2  | 000016 |
| LISTEN | I*2  | 000010 | Eqv    |      |        |      |      |        |

COMMON Block /RADIO/, Size = 000404 ( 130. words)

| Name | Type | Offset | Name   | Type | Offset | Name | Type | Offset |
|------|------|--------|--------|------|--------|------|------|--------|
| NBUF | L*1  | 000000 | LRCVDN | I*2  | 000400 | NC   | I*2  | 000402 |

Local and COMMON Arrays:

| Name  | Type | Section | Offset | -----Size-----       | Dimensions |
|-------|------|---------|--------|----------------------|------------|
| ITIME | I*2  | \$DATA  | 000000 | 000004 ( 2.) (2)     |            |
| IT1   | I*2  | \$DATA  | 000004 | 000004 ( 2.) (2)     |            |
| NBUF  | L*1  | RADIO   | 000000 | 000400 ( 128.) (256) |            |

Subroutines, Functions, Statement and Processor-Defined Functions:

| Name | Type |
|------|------|------|------|------|------|------|------|------|------|
| GTIM | R*4  | IABS | I*2  | RCV  | R*4  | XMIT | R*4  |      |      |

```
0001      SUBROUTINE ACKNOG
0002      INTEGER I(2),J(2)
0003      CALL GTIM(I)
0004  2      CALL GTIM(J)
0005      IF(IABS(J(2)-I(2)).LT.60) GO TO 2
0007  1      CALL XMIT('R',1,'AB',LBSY)
0008      IF(LBSY.NE.0) GO TO 1
0010      RETURN
0011      END
ACKNOG
```

FORTRAN IV      Storage Map for Program Unit ACKNOG

Local Variables, .PSECT \$DATA, Size = 000014 ( 6. words)

| Name | Type | Offset | Name | Type | Offset | Name | Type | Offset |
|------|------|--------|------|------|--------|------|------|--------|
| LBSY | I*2  | 000010 |      |      |        |      |      |        |

Local and COMMON Arrays:

| Name | Type | Section | Offset | -----Size----- | Dimensions |
|------|------|---------|--------|----------------|------------|
| I    | I*2  | \$DATA  | 000000 | 000004         | ( 2.) (2)  |
| J    | I*2  | \$DATA  | 000004 | 000004         | ( 2.) (2)  |

Subroutines, Functions, Statement and Processor-Defined Functions:

| Name | Type |
|------|------|------|------|------|------|------|------|------|------|
| GTIM | R*4  | IABS | I*2  | XMIT | R*4  |      |      |      |      |

FPR/CODE:THR/LIST"U  
FOR/CODE:THR/LIST:TT:/NOOBJ ROPES

```
0001      SUBROUTINE ROPES
C
C  ROPES OBTAINS CANDR.DAT AND CRACCU.DAT
C  FROM THE DRAGLINE VIA THE RADIO DATA LINK.
C  BSRPRT CALLS ROPES.
C
0002      LOGICAL *1 NBUF
0003      COMMON /RADIO/NBUF(256),LRCVDN
0004      REAL RMSG(2)
0005      DATA RMSG/'RADIO','ROPE'/
C
0006      CALL ASSIGN(10,'CANDR.DAT',9)
0007      DEFINE FILE 10(5,11,U,IAV)
C
0008 1      CALL XMIT(RMSG,8,'AB',LBSY)
0009      IF(LBSY.NE.0) GO TO 1
C
0011      K=LISTEN()
0012      IF(K.EQ.0) GO TO 2
0014      CALL CLOSE(10)
0015      RETURN
C
0016 2      DO 3 I=1,5
0017 3      WRITE(10'I') (NBUF(J),J=22*(I-1)+1,22*I)
0018      CALL CLOSE(10)
0019      CALL ACKNOG
0020      IF(LISTEN(),NE.1) RETURN
0022      CALL ACKNOG
0023 10     CONTINUE
C
C
C  NOW GET CRACCU.DAT
C
0024 11     CALL ASSIGN(11,'CRACCU.DAT',10)
0025     DEFINE FILE 11(281,10,U,IAV)
0026     J=1
0027 13     K=LISTEN()
0028     IF(K.EQ.1) GO TO 19
0030     IF(K.EQ.0) GO TO 12
0032     CALL CLOSE(11)
0033     RETURN
C
0034 12     DO 14 I=1,12
0035     IF(12*(J-1)+I.GT.281) GO TO 15
0037 14     WRITE(11'I') (NBUF(K),K=20*(I-1)+1,20*I)
0038 15     J=J+1
0039     CALL ACKNOG
0040     GO TO 13
C
0041 19     CALL CLOSE(11)
0042     WRITE(7,100)
0043 100    FORMAT(' CANDR.DAT AND CRACCU.DAT RECEIVED')
0044     CALL ACKNOG
0045     RETURN
```

FORTRAN IV

V02.04

Thu 12-Feb-81 00:06:31

PAGE 002

0046 END

ROPE\$

?FORTRAN-I-[ROPE\$ ] Errors: 0, Warnings: 1

FORTRAN IV      Storage Map for Program Unit ROPES

Local Variables, .PSECT \$DATA, Size = 000034 ( 14. words)

| Name | Type | Offset | Name | Type | Offset | Name | Type | Offset |
|------|------|--------|------|------|--------|------|------|--------|
| I    | I*2  | 000022 | IAV  | I*2  | 000014 | EAV  | I*2  | 000024 |
| K    | I*2  | 000020 | LBSY | I*2  | 000016 |      |      |        |

COMMON Block /RADIO /, Size = 000402 ( 129. words)

| Name | Type | Offset | Name   | Type | Offset | Name | Type | Offset |
|------|------|--------|--------|------|--------|------|------|--------|
| NBUF | L*1  | 000000 | LRCVDN | I*2  | 000400 |      |      |        |

Local and COMMON Arrays:

| Name | Type | Section | Offset | -----Size----- | Dimensions    |
|------|------|---------|--------|----------------|---------------|
| NBUF | L*1  | RADIO   | 000000 | 000400         | ( 128.) (256) |
| RMSG | R*4  | \$DATA  | 000000 | 000010         | ( 4.) (2)     |

Subroutines, Functions, Statement and Processor-Defined Functions:

| Name   | Type | Name   | Type | Name  | Type | Name   | Type | Name | Type |
|--------|------|--------|------|-------|------|--------|------|------|------|
| ACKNOG | R*4  | ASSIGN | R*4  | CLOSE | R*4  | LISTEN | I*2  | XMIT | R*4  |

FOR/ODE:THR/LIST:TT:/NOOBJ RADIO

```
0001      SUBROUTINE RADIO
C   DATA LINK BACKGROUND ON BOARD DRAGLINE
C   OCCUPIES A REPORT OVERLAY
C
0002      LOGICAL*1 FILE,XBUF(256),NBUF
0003      COMMON /RADIO/FILE(256),LRCVDN
0004      EQUIVALENCE (X,FILE(5)),(NDATE,FILE(9))
0005      DATA NOGOOD//NG'/NG/2/ID//AB//'
C
0006      IF(X.EQ.'CMFR') GO TO 1
0008      IF(X.EQ.'POWR') GO TO 1000
0010      IF(X.EQ.'ROPE') GO TO 2000
0012      RETURN
C
C   TRANSMIT CMFRS.DAT SECTIONS SINCE REQUEST DATE
C
0013 1      CALL A8SIGN(12,'CMFRS.DAT',9,'OLD')
0014      DEFINE FILE 12(8000,4,U,L)
0015      READ(12'1,ERR=999) NDXDT
0016      L=3
0017 2      READ(12'L,ERR=3) IDATE
0018      L=L-1
0019      IF(IDATE.GE.NDATE) GO TO 4
0021 3      IF(INCBLK(L,NDXDT).EQ.0) GO TO 2
0023      GO TO 10
C
0024 4      DO 6 I=1,32
0025      READ(12'L,ERR=999) (XBUF(J),J=8*(I-1)+1,8*I)
0026      IF(L.GE.NDXDT) GO TO 9
0028 6      CONTINUE
0029      I=I-1
0030 9      IF(ITALK(XBUF,8*I,ID).NE.-1) GO TO 11
0032 10     CALL CLOSE (12)
0033     RETURN
C
0034 11     IF(L.LT.NDXDT) GO TO 4
C
C   SIGNAL END OF DATA
C
0036      I=ITALK(0,1,ID)
0037      GO TO 10
C
C   BAD BLOCK--GIVE IT UP
C
0038 999    I=ITALK(NOGOOD,NG,ID)
0039      GO TO 10
C
C   POWER FILE
C
0040 1000    CALL ASSIGN(12,'CYC:KWH.DAT',11)
```

```
0041      DEFINE FILE 12(10000,4,U,IAV)
C
0042      LP=1
0043      DO 1010 I=1,313
0044      DO 1009 J=1,32
0045      READ(12'LP)(XBUF(K),K=8*(J-1)+1,8*j)
0046      LP=LP+1
0047      IF(LP.GT.10000) GO TO 1007
0048 1009  CONTINUE
C
0050      J=J-1
0051 1007  IF(ITALK(XBUF,8*j,10).NE.-1) GO TO 1006
0053 1008  CALL CLOSE(12)
0054      RETURN
C
0055 1006  IF(LP.LT.10000) GO TO 1010
0057      I=ITALK(0,1,10)
0058      CALL CLOSE(12)
0059      RETURN
0060 1010  CONTINUE
0061      CALL CLOSE(12)
0062      RETURN
C
C
C      CANDR/CRACCU -- OLD BEN'S ROPE FILES
C
0063 2000  CALL ASSIGN(10,'CANDR.DAT',9,'OLD')
0064      DEFINE FILE 10(5,11,U,IAV)
0065      DO 2001 I=1,5
0066      READ(10'I) (XBUF(J),J=22*(I-1)+1,22*I)
0067 2001  CONTINUE
C
0068      IF(ITALK(XBUF,110,10).NE.-1) GO TO 2002
0070      CALL CLOSE(10)
0071      RETURN
C
0072 2002  I=ITALK(0,1,10)
0073      CALL CLOSE(10)
C
C
0074      CALL ASSIGN(11,'CRACCU.DAT',10,'OLD')
0075      DEFINE FILE 11(281,10,U,IAV)
0076      DO 2010 I=1,24
0077      DO 2009 J=1,12
0078      IF((12*(I-1)+J).GT.281) GO TO 2011
0079 2009  READ(11'12*(I-1)+J) (XBUF(K),K=20*(J-1)+1,20*j)
0080 2011  IF(ITALK(XBUF,240,10).NE.-1) GO TO 2008
0081      CALL CLOSE(11)
0082      RETURN
0083 2008  CONTINUE
0084 2010  CONTINUE
C
0085 2007  I=ITALK(0,1,10)
0086      CALL CLOSE(11)
```

FORTRAN IV

V02.04

Thu 12-Feb-81 00:09:02

PAGE 003

0089 RETURN

0090 END

RADIO

?FORTRAN-I-[RADIO ] Errors: 0, Warnings: 2

## FORTRAN IV Storage Map for Program Unit RADIO

Local Variables, .PSECT \$DATA, Size = 000456 ( 151. words)

| Name  | Type | Offset | Name | Type | Offset | Name   | Type   | Offset |        |
|-------|------|--------|------|------|--------|--------|--------|--------|--------|
| I     | I*2  | 000426 | IAV  | I*2  | 000432 | Eav    | ID     | I*2    | 000404 |
| IDATE | I*2  | 000424 | J    | I*2  | 000430 |        | K      | I*2    | 000436 |
| L     | I*2  | 000420 | Eav  | LP   | I*2    | 000434 | NBUF   | L*1    | 000416 |
| NDXDT | I*2  | 000422 | NG   | I*2  | 000402 |        | NOGOOD | I*2    | 000400 |

COMMON Block /RADIO/, Size = 000402 ( 129. words)

| Name  | Type | Offset | Name | Type   | Offset | Name   | Type | Offset |        |     |
|-------|------|--------|------|--------|--------|--------|------|--------|--------|-----|
| FILE  | L*1  | 000000 | Eav  | LRCVON | I*2    | 000100 | X    | R*1    | 000004 | Eav |
| NDATE | I*2  | 000010 | Eav  |        |        |        |      |        |        |     |

Local and COMMON Arrays:

| Name | Type | Section | Offset | -----Size----- | Dimensions    |
|------|------|---------|--------|----------------|---------------|
| FILE | L*1  | RADIO   | 000000 | 000400         | ( 128.) (256) |
| XBUF | L*1  | \$DATA  | 000000 | 000400         | ( 128.) (256) |

Subroutines, Functions, Statement and Processor-Defined Functions:

| Name   | Type | Name  | Type | Name   | Type | Name  | Type | Name | Type |
|--------|------|-------|------|--------|------|-------|------|------|------|
| ASSIGN | R*4  | CLOSE | R*4  | INCBLK | I*2  | ITALK | I*2  |      |      |

```
0001      FUNCTION ITALK(MSG,N,ID)
C
0002      INTEGER VECT,RING,DSPN,FAZE,FC,FNMP,STEP
0003      LOGICAL*DNTM,OPR,DSPY,DISF,DMPF,CYFLG,DIGF,DIGS
0004      LOGICAL*D1 DOWN,WALKF,PRPLP,PULSE
0005      INTEGER DTR,DTS,DTF,TWALK
0006      COMMON RING(16,30'),CYFLG,DIGF,REF(4),DC(3),A(3),V(3)
0007      COMMON DCMIN(3),DCMAX(3),VECT,DSPN,FAZE,FC,FNMP,NF,TF
0008      COMMON T,P,W,DISF,DMPF,SFZ,ZD,ZDP,NP,NHP
0009      COMMON DOWN,WALKF,DTR,DTS,DTF,TWALK,IANG,STEP,PRPLP,PULSE,SW
0010      LOGICAL*D1 NBUF,IOK
0011      COMMON/RADIO/NBUF(256),LRCVDN
0012      DATA TIMOUT/1000./
0013      DATA IOK/'R'/
C
0014 1      CALL XMIT(MSG,N,ID,LBSY)
0015  IF(LBSY.NE.0) GO TO 1
0017  TT=T
0018  LRCVDN=0
0019 2      IF(LRCVDN.EQ.1) GO TO 3
0021  IF(ABS(T-TT).GE.TIMOUT) GO TO 4
0023  CALL OBD
0024  GO TO 2
C
0025 3      IF(NBUF(1).NE.IOK) GO TO 1
0027  ITALK=0
0028  RETURN
C
0029 4      ITALK=-1
0030  I=ITTOUR(7)
0031  RETURN
0032  END
ITALK
```

**FORTRAN IV Storage Map for Program Unit ITALK**

**Local Variables, .PSECT \$DATA, Size = 000036 ( 15. words)**

| Name  | Type | Offset  | Name | Type | Offset   | Name   | Type | Offset |          |
|-------|------|---------|------|------|----------|--------|------|--------|----------|
| DIGS  | L\$1 | 000020  | DNTM | L\$1 | 000015   | DSPY   | L\$1 | 000017 |          |
| I     | I*2  | 000030  | ID   | I*2  | 0 000004 | IOK    | L\$1 | 000014 |          |
| ITALK | I*2  | 000006  | Eav  | LBSY | I*2      | 000022 | MSG  | I*2    | 0 000000 |
| N     | I*2  | 0 00002 | OPR  | L\$1 | 000016   | TIMOUT | R\$4 | 000010 |          |
| TT    | R\$4 | 000024  |      |      |          |        |      |        |          |

**COMMON Block / /, Size = 002120 ( 552. words)**

| Name  | Type | Offset | Name  | Type | Offset | Name  | Type | Offset |
|-------|------|--------|-------|------|--------|-------|------|--------|
| RING  | I*2  | 000000 | CYFLG | L\$1 | 001700 | DIGF  | L\$1 | 001701 |
| REF   | R\$4 | 001702 | DC    | R\$4 | 001722 | A     | R\$4 | 001736 |
| V     | R\$4 | 001752 | DCMIN | R\$4 | 001766 | DCMAX | R\$4 | 002002 |
| VECT  | I*2  | 002016 | DSPN  | I*2  | 002020 | FAZE  | I*2  | 002022 |
| FC    | I*2  | 002024 | FNMP  | I*2  | 002026 | NP    | I*2  | 002030 |
| TF    | R\$4 | 002032 | T     | R\$4 | 002036 | P     | R\$4 | 002042 |
| W     | R\$4 | 002046 | DISF  | L\$1 | 002052 | DMPF  | L\$1 | 002053 |
| SFZ   | R\$4 | 002054 | ZD    | R\$4 | 002060 | ZDP   | R\$4 | 002064 |
| NP    | I*2  | 002070 | NMP   | I*2  | 002072 | DOWN  | L\$1 | 002074 |
| WALKF | L\$1 | 002075 | DTR   | I*2  | 002076 | DTS   | I*2  | 002100 |
| DTF   | I*2  | 002102 | TWALK | I*2  | 002104 | IANG  | I*2  | 002106 |
| STEP  | I*2  | 002110 | PRPLP | L\$1 | 002112 | PULSE | L\$1 | 002113 |
| SW    | R\$4 | 002114 |       |      |        |       |      |        |

**COMMON Block /RADIO /, Size = 000402 ( 129. words)**

| Name | Type | Offset | Name   | Type | Offset | Name | Type | Offset |
|------|------|--------|--------|------|--------|------|------|--------|
| NBUF | L\$1 | 000000 | LRCVDN | I*2  | 000400 |      |      |        |

**Local and COMMON Arrays:**

| Name  | Type | Section   | Offset | -----Size-----         | Dimensions |
|-------|------|-----------|--------|------------------------|------------|
| A     | R\$4 | \$\$\$\$. | 001736 | 000014 ( 6.) (3)       |            |
| DC    | R\$4 | \$\$\$\$. | 001722 | 000014 ( 6.) (3)       |            |
| DCMAX | R\$4 | \$\$\$\$. | 002002 | 000014 ( 6.) (3)       |            |
| DCMIN | R\$4 | \$\$\$\$. | 001766 | 000014 ( 6.) (3)       |            |
| NBUF  | L\$1 | RADIO     | 000000 | 000400 ( 128.) (256)   |            |
| REF   | R\$4 | \$\$\$\$. | 001702 | 000020 ( 8.) (4)       |            |
| RING  | I*2  | Vec       | 000000 | 001700 ( 480.) (16,30) |            |
| V     | R\$4 | \$\$\$\$. | 001752 | 000014 ( 6.) (3)       |            |

**Subroutines, Functions, Statement and Processor-Defined Functions:**

| Name | Type | Name   | Type | Name | Type | Name | Type | Name | Type |
|------|------|--------|------|------|------|------|------|------|------|
| ABS  | R\$4 | ITTOUR | I*2  | OBD  | R\$4 | XMIT | R\$4 |      |      |



