

FINAL PROGRESS REPORT

Obesity and Body Segment Parameters in Working Adults
NIOSH 1 R01 OH010106
November 24, 2017

Rakié Cham, PhD (Principal Investigator)
rcham@pitt.edu
Tel. 412-624-7227

Department of Bioengineering, University of Pittsburgh
4420 Bayard St, Suite #305, Pittsburgh, PA 15213

Table of Contents

I.	List of Terms and Abbreviations	3
II.	Abstract	4
III.	Section 1: Key Findings, Translation & Research Outcomes/Impact	5
A.	Significant or Key Findings	5
B.	Translation of Findings	5
C.	Research Outcomes/Impact	5
IV.	Section 2: Scientific Report	6
A.	Background	6
B.	Aim 1	7
	“Quantify the Impact of Obesity and Aging on Normalized Body Segment Parameters”	7
1.	Methods	7
2.	Results	9
	Discussion	16
C.	Aim 2	17
	“Develop regression models to predict BSPs that include BMI”	17
1.	Methods	17
2.	Results	17
D.	References	20
V.	Publications	22
A.	Peer-Reviewed Journal Papers	22
B.	Conference Proceedings	22
VI.	Other	23
A.	Cumulative Inclusion Enrollment and Gender and Minority Inclusion Table	23
B.	Inclusion of Children	24

I. List of Terms and Abbreviations

Abbreviation	Definition
BMI	Body mass index
BSP	Body segment parameter
COM	Center of mass
DXA	Dual-energy X-ray absorptiometry

II. Abstract

Sources of anthropometric data, specifically body segment inertial parameters, are of critical importance in ergonomics and occupational biomechanics. Current models predicting such anthropometric variables are developed based on data collected in normal-weight young adults. Yet, over 60% of all US workers are either overweight or obese and this obesity epidemic worsens with increasing age with more than 75% of workers over the age of 60 years old being overweight or obese. Thus, there is a need to generate new models to predict body segment parameters that better reflect the working population. In this project, we developed new datasets of body segment parameters that include body mass index (BMI) as a factor across the age span of working adults using Dual Energy X-Ray Absorption (DXA) methods. More specifically, our goal in this project was two-fold: (1) quantify the impact of obesity on body segment parameters in full-time workers aged 21 to 70 years old (Aim #1), and (2) develop BMI-specific regression models for the prediction of body segment parameters in the same population (Aim #2).

To achieve these aims, full-time workers between the ages of 21 and 70 years old were recruited for participation in this project. They were asked to come in for one visit. During this visit, a whole-body DXA scan was collected to derive in-vivo measures of body segment parameters. Body measurements were also collected. Standard multivariate regression models were used to achieve the aims of the proposed project.

In Aim #1, the results indicate that there are several statistically and practically significant linear and quadratic effects of age, BMI, and the interaction between age and BMI on a number of BSPs in the working male and female population. Thus, it is important to consider BMI and age effects when deriving BSPs in men and women. In Aim 2, the findings indicate that the accuracy of BSPs predictions can be significantly improved (14-47%) by considering body shape, i.e. including key body measurements relevant to the BSP of interest in the prediction models.

In summary, the proposed project addressed a gap in the ergonomics and occupational biomechanics literature by developing validated models that accurately predict body segment parameters in working adults, taking into account body mass, age, gender and body shape.

III. Section 1: Key Findings, Translation & Research Outcomes/Impact

A. Significant or Key Findings

In Aim #1, the results indicate that there are a number of statistically and practically significant linear and quadratic effects of age, BMI, and the interaction between age and BMI on several BSPs in the working male and female population.

In Aim 2, the findings indicate that the accuracy of BSPs predictions can be significantly improved (14-47%) by considering body shape, i.e. including key body measurements relevant to the BSP of interest in the prediction models.

B. Translation of Findings

Findings in Aim 1 suggest that it is important to consider BMI and age effects when deriving BSPs in adult male and female workers.

Prediction models generated in this project will improve the estimates of BSPs, by using BMI, age and key anthropometric body measurements.

C. Research Outcomes/Impact

Intermediate outcome: In this project, we quantified the impact of obesity on body segment parameters (BSPs). BSPs are required in occupational biomechanics to estimate stresses and loads on the body and thus to predict the risk of musculoskeletal injuries on the body

End outcome: If BSPs prediction models developed in this project are used, we believe the assessment of the risk of musculoskeletal injuries in obese workers will be more accurate.

IV. Section 2: Scientific Report

A. Background

Body segment parameters (BSPs), including the length, mass, center of mass, and radius of gyration of body parts, are used in many ergonomic applications, including the design of tools, protective clothing, equipment and workstations [1]. BSPs are also necessary to develop biomechanical tools and models required to understand and to prevent musculoskeletal injuries while performing occupational activities like lifting, locomotion, and falling [2-5]. These parameters are typically estimated using anthropometric models based upon data collected from normal-weight young adults, however, they do not accurately represent the wide range of body mass index (BMI) and age across the working American population, indicating the need for new, accurate BSP data sets.

Some of the specific applications utilizing BSPs are the 3D Static Strength Prediction Model, and inverse dynamics calculations. Both of these models can be used to calculate joint forces and moments during a specified task, as well as determine the fraction of the population capable of safely completing a task. These types of modeling use measured inputs such as subject stature and mass, applied forces, and positioning, as well as any dynamic data in the case of inverse dynamics modeling. Additionally, they also use assumed inputs such as mass distribution and individual anthropometry, which may not be representative of individuals in the workplace. This can lead to errors in the outputs of static modeling due to inaccurate segment masses and center of mass [6]. Inverse dynamics models, specifically those calculating L5/S1 joint loading and related injury risk, have been shown to be sensitive to parameter estimations such as center of mass position, joint rotation center location, length, and mass [7-9]. Other dynamic analyses, such as those used for knee and hip kinetic calculations during gait produce varying results between different standard anthropometry sets in normal and overweight adults, with deviations as high as 60% [10-11]. Such large differences in calculated values can greatly decrease the accuracy of predicted injury risk during specific tasks, and indicate that more accurate, representative sets of BSP estimation are needed.

Some of the previous BSP sets have been estimated with regression equations from data collected in cadaver studies [12-13], imaging techniques [14], and geometric modeling of the body [15]. Between these different methods, there are differences in BSP predictions as high as 40% [10], with minimal validation of the predicted parameters. Additionally, data used to predict these BSPs are often collected from healthy normal weight adults, and do not account for differences in age, physical fitness and body shape, or obesity status [2,5], meaning that they are likely not representative of the American workforce.

Previous investigation of traditional regression equations for BSPs has shown that they are inaccurate for older adults, with the errors being functions of gender and mass distribution, and vary with the type of parameter of interest [16]. In large segments, such as the torso and thigh, parameters in older adults differ by 20-50% when compared to the deLeva predicted equations [16], which can lead to errors in L5/S1 peak moment calculations of 15-25%.

There is a need to develop more accurate BSP models that better reflect the diversity of the American workforce, particularly as related to weight and age. Over 60% of US workers are either overweight ($25.0 \leq \text{BMI} < 30.0$) or obese ($\text{BMI} \geq 30.0$) [17], and rates of obesity worsen with increasing age, with more than 75% of workers over the age of 60 years old being

overweight or obese [17]. The obesity epidemic is also a growing problem in the U.S. workforce, with an increase of 44% in the prevalence rate of obesity among US workers was found when comparing the data of the National Health and Nutrition Examination Surveys in the last two decades [17].

The overall goal of this project was to develop BSP models based on a set of full time workers across wide age and BMI ranges. In this report, we will focus on calculating three BSPs, including segment mass, center of mass, and radius of gyration for major body segments such as the torso, thigh, shank, upper arm, and forearm

B. Aim 1

“Quantify the Impact of Obesity and Aging on Normalized Body Segment Parameters”

The following three specific objectives, related to Aim 1, were achieved:

- Objective 1: Investigate the impact of BMI on segment parameters, using models including BMI and BMI2 as predictors for BSPs in order to account for nonlinearity.
- Objective 2: Determine the significance of the impact of age predictors including age and age2 being added to the initial model using only BMI predictors.
- Objective 3: Determine the significance of the impact of the interaction terms between age and BMI predictors.

1. Methods

A total of 280 working adults (148 female) ages 21-70 (mean: 44.9 ± 13.4 years) participated in this study. Participants were recruited according to gender, age, and BMI, in order to attempt to enroll equal numbers in four BMI categories (normal weight: $18.5 \leq \text{BMI} < 25.0$, overweight: $25.0 \leq \text{BMI} < 30.0$, obese: $30.0 \leq \text{BMI} < 40.0$, and morbidly obese $\text{BMI} \geq 40.0 \text{ kg m}^{-2}$) across three age groups ($21 \leq \text{age} < 40$), middle ($40 \leq \text{age} < 55$), and old ($55 \leq \text{age} < 70$).

After obtaining informed written consent, each participant had his or her height and mass recorded in order to confirm eligibility based on BMI. Female participants of child bearing age were then required to complete a pregnancy test, with a negative result being required for eligibility. A whole body DXA scan (Hologic QDR 1000/W, Bedford, MA, USA) of each participant was then collected using the same methods used in prior studies [16,18], with the participant lying supine as shown in Figure 1.

The analysis consisted of each scan being split into each major body segment of interest (torso, upper arm, forearm, thigh, and shank), defined using bony landmarks and anatomically defined planes [14], as shown in Figure 2. Each segment was then split into 3.9 cm tall slices, perpendicular to the long axes of the bones for the arms and legs, and horizontal for the torso, in a similar method as described by Ganley and Powers (19). Pixel densities had assumed values of $2.5\text{-}3.0 \text{ g cm}^{-3}$ for bone, 0.9 g cm^{-3} for fat, and 1.08 g cm^{-3} for lean tissue. The segment mass, center of mass (COM) and radius of gyration (RG) were then calculated from the known slice heights and masses using a custom MATLAB script (Mathworks, Natick, MA, USA). The scan analyses were all performed by trained researchers who had proven to be reliable to within 2% of each other for calculated parameters.

Figure 1: Example of a whole body DXA scan.

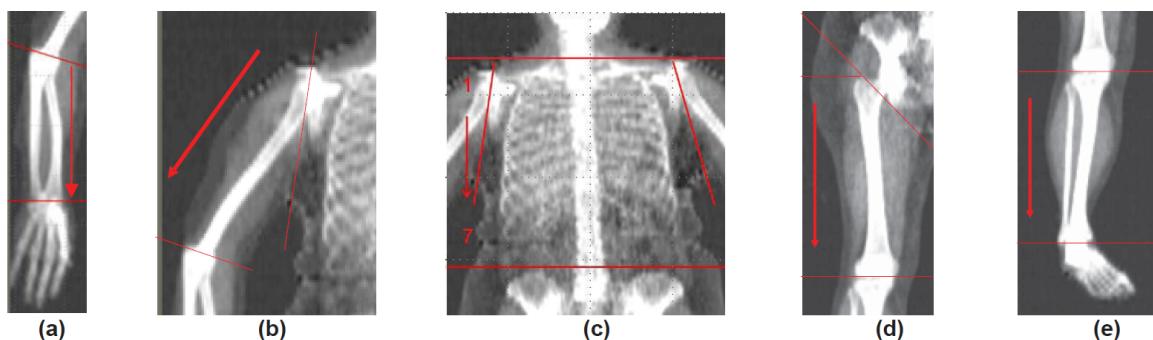


Figure 2: Segmental boundaries of interest: (a) forearm, (b) upper arm, (c) torso, (d) thigh, (e) shank

All reported data for the forearm, upper arm, thigh, and shank were analyzed on the participants' self-reported dominant side. Values for segment mass were reported as percent of the total body mass. COM locations were reported as percent of the segment length, where a higher value indicates that the COM is located further in the distal (inferior for the torso) direction. The RG values were also reported as percent of the segment length, with the RG location being measured from the calculated COM.

The statistical analysis was divided into multiple steps in order to closely examine the impacts of age, gender, and BMI on segment parameters, and to present the resulting models in a useful manner. All parameters were checked for normality, and log transformed as necessary before any further analysis. For all analyses, statistical significance was set at $\alpha = 0.05$. All analyses were performed in JMP Pro 12 (SAS Institute, Cary, NC, USA).

Preliminary analyses. All data were reported stratified by gender and age. All subjects were then analyzed with a model including BMI, age, and gender as predictors. Due to the significance of gender interactions in several of the models, the subjects were then split by gender, and analyzed separately for the remainder of the analysis. Next, a linear regression model was fitted to both gender categories using age, BMI, and the age x BMI interaction term in order to quantify the general effect sizes and significance of the two predictors.

Main analyses. The analysis for Objective 1 used a linear regression model for all segment parameters using BMI and BMI^2 as predictors, with all subject separated by gender. For Objective 2, age and age^2 were added as predictors to the model already using BMI and BMI^2 . The significance of adding the age predictors was determined using a nested F-test. For Objective 3, the interaction terms between age and BMI ($age \times BMI$, $age^2 \times BMI$, $age \times BMI^2$, and $age^2 \times BMI^2$) were added to the second model, using only age and BMI predictors. The significance of the collective age x BMI interaction terms was determined using a nested F-test.

Following the analyses for the three objectives, the subjects were then split into the three age groups for which they were recruited. An analysis similar to Objective 1 was then performed on each of the gender and age separated groups, using BMI and BMI^2 as segment parameter predictors, in order to specifically quantify how BMI affects the parameters at different age stratifications

2. Results

Preliminary Analysis. All data were compiled and initially reported stratified by gender and age groups (Table 1). Each parameter was checked for normality using a Shapiro-Wilk test, and log transformed if the distribution was determined to be not normal. All subsequent analysis used the transformed data where necessary.

In order to determine the general impact of age, gender, and BMI, a regression analysis was performed on all participants using these three predictors, as well as all first order interactions. Due to the statistical significance of several interaction terms involving gender (Table 2), all further analysis was performed with the participants separated by gender.

Next, a linear regression was performed on the gender stratified data, using age, BMI, and the age x BMI interaction as predictors for each segment parameter in order to investigate the general effects of age and BMI on the measures, as well as how they interact as predictors. Again, there were several significant effects of age, BMI, and their interaction on the measured parameters (Table 3).

Table 1: Descriptive statistics for all participants, stratified by gender and age group. Values are given as mean \pm standard deviation.

	All Subjects	All Female	All Male	Female			Male		
				Young	Middle	Old	Young	Middle	Old
N	280	148	132	51	44	53	45	49	38
Thigh COM (%SL)	46.2 \pm 1.8	45.8 \pm 1.6	46.5 \pm 1.9	45.7 \pm 1.5	45.4 \pm 1.7	46.2 \pm 1.6	46.2 \pm 1.2	46.6 \pm 2.5	46.9 \pm 1.5
Thigh Mass (%BW)	11.5 \pm 1.4	11.8 \pm 1.5	11.1 \pm 1.3	12.3 \pm 1.4	11.6 \pm 1.5	11.6 \pm 1.4	11.7 \pm 0.8	11.1 \pm 1.5	10.3 \pm 0.8
Thigh Rg (%SL)	25.5 \pm 0.5	25.7 \pm 0.5	25.3 \pm 0.4	25.6 \pm 0.4	25.7 \pm 0.5	25.8 \pm 0.6	25.2 \pm 0.4	25.2 \pm 0.4	25.5 \pm 0.4
Torso COM (%SL)	53.7 \pm 1.4	54.4 \pm 1.3	53.0 \pm 1.3	53.9 \pm 1.0	54.3 \pm 1.1	54.9 \pm 1.4	52.4 \pm 1.1	53.1 \pm 1.3	53.7 \pm 1.2
Torso Mass (%BW)	43.5 \pm 3.3	43.5 \pm 3.5	43.6 \pm 3.2	42.2 \pm 2.7	44.0 \pm 3.6	44.4 \pm 3.8	42.4 \pm 2.9	43.5 \pm 3.3	45.0 \pm 2.8
Torso Rg (%SL)	27.3 \pm 0.7	27.3 \pm 0.7	27.3 \pm 0.7	27.5 \pm 0.7	27.3 \pm 0.6	27.2 \pm 0.6	27.5 \pm 0.7	27.2 \pm 0.6	27.0 \pm 0.6
Upper Arm COM (%SL)	49.4 \pm 2.3	49.6 \pm 2.3	49.2 \pm 2.3	49.8 \pm 1.9	50.0 \pm 2.5	49.2 \pm 2.6	49.4 \pm 2.3	48.8 \pm 2.3	49.4 \pm 2.4
Upper Arm Mass (%BW)	3.6 \pm 0.4	3.5 \pm 0.4	3.8 \pm 0.4	3.4 \pm 0.4	3.5 \pm 0.5	3.6 \pm 0.4	3.9 \pm 0.5	3.9 \pm 0.3	3.7 \pm 0.4
Upper Arm Rg (%SL)	25.3 \pm 0.9	25.4 \pm 0.9	25.3 \pm 0.9	25.4 \pm 0.9	25.3 \pm 1.0	25.4 \pm 0.8	25.2 \pm 0.9	25.3 \pm 1.0	25.3 \pm 0.8
Forearm COM (%SL)	41.4 \pm 1.2	41.3 \pm 1.4	41.5 \pm 0.9	41.4 \pm 1.0	41.0 \pm 1.3	41.5 \pm 1.7	41.5 \pm 0.8	41.3 \pm 0.8	41.8 \pm 1.1
Forearm Mass (%BW)	1.5 \pm 0.3	1.4 \pm 0.2	1.6 \pm 0.3	1.4 \pm 0.2	1.4 \pm 0.2	1.3 \pm 0.2	1.7 \pm 0.2	1.6 \pm 0.4	1.6 \pm 0.2
Forearm Rg (%SL)	26.6 \pm 0.4	26.7 \pm 0.5	26.5 \pm 0.3	26.6 \pm 0.5	26.6 \pm 0.4	26.7 \pm 0.6	26.5 \pm 0.3	26.5 \pm 0.2	26.6 \pm 0.3
Shank COM (%SL)	40.4 \pm 1.2	40.1 \pm 1.3	40.7 \pm 0.9	40.4 \pm 1.1	40.0 \pm 1.2	39.9 \pm 1.6	40.7 \pm 0.9	40.5 \pm 1.0	41.0 \pm 0.9
Shank Mass (%BW)	4.1 \pm 0.5	4.2 \pm 0.6	4.1 \pm 0.5	4.4 \pm 0.5	4.1 \pm 0.7	4.1 \pm 0.5	4.2 \pm 0.5	4.0 \pm 0.5	4.0 \pm 0.4
Shank Rg (%SL)	26.3 \pm 0.6	26.1 \pm 0.6	26.4 \pm 0.6	26.1 \pm 0.5	26.2 \pm 0.5	26.2 \pm 0.6	26.4 \pm 0.6	26.4 \pm 0.5	26.4 \pm 0.6

Table 2: P and R² values for the analysis using age, BMI, and gender as segment parameter predictors. NS: non-significant, p > 0.05.

	Thigh COM	Thigh M	Thigh Rg	Torso COM	Torso M	Torso Rg	Upper Arm COM	Upper Arm M	Upper Arm Rg	Forearm COM	Forearm M	Forearm Rg	Shank COM	Shank M	Shank Rg
P _{Age}	0.035	<0.001	<0.001	<0.001	<0.001	<0.001	NS	NS	NS	NS	NS	NS	NS	<0.001	NS
P _{BMI}	NS	NS	0.039	<0.001	<0.001	<0.001	NS	<0.001	0.002	0.006	<0.001	0.003	<0.001	<0.001	<0.001
P _{Gender}	<0.001	<0.001	<0.001	<0.001	NS	0.001	NS	<0.001	NS	NS	<0.001	0.004	<0.001	<0.001	<0.001
P _{Age x BMI}	0.408	NS	NS	0.037	NS	NS	NS	NS	NS	0.018	NS	NS	NS	NS	NS
P _{Age x Gender}	NS	NS	NS	NS	NS	NS	0.003	NS	NS	NS	NS	NS	0.021	NS	NS
P _{BMI x Gender}	<0.001	NS	0.019	<0.001	<0.001	NS	NS	NS	NS	0.005	<0.001	NS	NS	0.007	NS
R ²	0.102	0.180	0.241	0.468	0.226	0.526	0.027	0.254	0.054	0.110	0.382	0.084	0.223	0.291	0.135

Table 3: Parameter values and P values for age, BMI, and age x BMI interaction stratified by gender. NS: non-significant, p > 0.05.

Female	Thigh COM	Thigh M	Thigh Rg	Torso COM	Torso M	Torso Rg	Upper Arm COM	Upper Arm M	Upper Arm Rg	Forearm COM	Forearm M	Forearm Rg	Shank COM	Shank M	Shank Rg
Mean ± SD	45.8 ± 1.6	11.8 ± 1.5	25.7 ± 0.5	54.4 ± 0.3	43.5 ± 3.5	27.3 ± 0.7	49.6 ± 2.3	3.5 ± 0.4	25.4 ± 0.9	41.3 ± 1.4	1.4 ± 0.2	26.7 ± 0.5	40.1 ± 1.3	4.2 ± 0.6	26.1 ± 0.6
P _{Age}	NS	0.005	NS	<0.001	0.002	<0.001	NS	0.006	NS	NS	NS	NS	0.029	0.014	NS
P _{BMI}	0.019	0.027	NS	0.013	NS	<0.001	NS	<0.001	0.001	<0.001	<0.001	0.003	<0.001	<0.001	0.003
P _{Age x BMI}	NS	NS	NS	NS	NS	0.044	NS	NS	NS	NS	NS	NS	NS	NS	NS
Male	Thigh COM	Thigh M	Thigh Rg	Torso COM	Torso M	Torso Rg	Upper Arm COM	Upper Arm M	Upper Arm Rg	Forearm COM	Forearm M	Forearm Rg	Shank COM	Shank M	Shank Rg
Mean ± SD	46.5 ± 1.9	11.1 ± 1.3	25.3 ± 0.4	53.0 ± 1.3	43.6 ± 3.2	27.3 ± 0.7	49.2 ± 2.3	3.8 ± 0.4	25.3 ± 0.9	41.5 ± 0.9	1.6 ± 0.3	26.5 ± 0.3	40.7 ± 0.9	4.1 ± 0.5	26.4 ± 0.6
P _{Age}	NS	<0.001	<0.001	<0.001	<0.001	<0.001	NS	0.047	NS	NS	NS	NS	NS	0.008	NS
P _{BMI}	0.003	NS	0.002	<0.001	<0.001	<0.001	NS	NS	NS	NS	<0.001	NS	<0.001	<0.001	<0.001
P _{Age x BMI}	NS	NS	NS	0.016	NS	NS	0.012	0.038	NS	0.007	NS	NS	0.043	NS	NS

Objective 1 results. The analysis for Objective 1 showed several significant effects of both BMI and BMI^2 on the gender stratified segment parameters (Table 4), particularly in the radius of gyration locations in both genders.

Objective 2 results. Objective 2 analysis, which employed a regression model using BMI, BMI^2 , age, and age^2 as the predictors, showed that the age terms had significant effects on the parameters of interest (Table 5). Additionally, the nested F-test indicated that where the age or age^2 terms did not have a significant impact individually, when added together to the initial model from Objective 1, they have a significant effect, as indicated by the P1 values.

Objective 3 results. Objective 3 examined the impact of adding the $age \times BMI$ interaction terms to the model used for Objective 2, which did not provide any insight into how age and BMI interact in predicting segment parameters. Again, the interaction terms had significant effects on segment parameter prediction both individually, and as a whole, as represented by the P2 values, determined by another nested F-test (Table 5).

After stratifying each gender by age group, and performing the same analysis as in Objective 1, several significant effects of BMI appeared (Table 6), indicating that within age groups, BMI still has an effect on segment parameters.

Table 4: P, R^2 , and β values for BMI and BMI^2 for each segment parameter, separated by gender. β values are provided as mean \pm standard error.

FEMALE			Thigh M			Thigh COM			Thigh Rg		
	P	R^2	$\beta \pm SE$		P	R^2	$\beta \pm SE$		P	R^2	$\beta \pm SE$
BMI		0.118	0.168 \pm 0.107		0.107		-0.189 \pm 0.117		0.086		-0.060 \pm 0.035
BMI^2		0.187	0.039	-0.002 \pm 0.002	0.052	0.065	0.003 \pm 0.002		0.076	0.022	0.001 \pm 0.0005
Torso M			Torso COM			Torso Rg					
BMI		0.126	0.391 \pm 0.254		0.041		-0.186 \pm 0.090		<0.001		-0.194 \pm 0.036
BMI^2		0.188	0.032	-0.005 \pm 0.004	0.016	0.084	0.003 \pm 0.001		<0.001	0.492	0.002 \pm 0.001
Upper Arm M			Upper Arm COM			Upper Arm Rg					
BMI		0.275	0.032 \pm 0.029		0.292		0.168 \pm 0.173		0.001		-0.174 \pm 0.062
BMI^2		0.649	0.146	-0.0001 \pm 0.0004	0.333	0.01	-0.003 \pm 0.002		0.006	0.132	0.003 \pm 0.001
Forearm M			Forearm COM			Forearm Rg					
BMI		0.309	-0.012 \pm 0.012		0.002		0.236 \pm 0.093		0.741		-0.012 \pm 0.037
BMI^2		0.838	0.216	0.00004 \pm 0.0002	0.012	0.161	-0.004 \pm 0.001		0.962	0.056	-0.00003 \pm 0.001
Shank M			Shank COM			Shank Rg					
BMI		0.066	-0.074 \pm 0.040		<0.001		-0.295 \pm 0.087		0.002		-0.124 \pm 0.039
BMI^2		0.197	0.126	0.001 \pm 0.001	0.008	0.208	0.003 \pm 0.001		0.005	0.105	0.002 \pm 0.001

MALE			Thigh M			Thigh COM			Thigh Rg		
	P	R^2	$\beta \pm SE$		P	R^2	$\beta \pm SE$		P	R^2	$\beta \pm SE$
BMI		0.049	0.243 \pm 0.131		0.076		-0.344 \pm 0.192		0.076		-0.077 \pm 0.043
BMI^2		0.065	0.037	-0.004 \pm 0.002	0.142	0.071	0.004 \pm 0.003		0.127	0.055	0.001 \pm 0.001
Torso M			Torso COM			Torso Rg					
BMI		0.455	0.206 \pm 0.276		0.133		-0.663 \pm 0.110		<0.001		-0.204 \pm 0.050
BMI^2		0.875	0.322	0.001 \pm 0.004	0.546	0.325	0.002 \pm 0.002		0.006	0.506	0.002 \pm 0.001
Upper Arm M			Upper Arm COM			Upper Arm Rg					
BMI		0.015	0.101 \pm 0.041		0.056		-0.462 \pm 0.239		0.519		-0.044 \pm 0.093
BMI^2		0.02	0.051	-0.001 \pm 0.001	0.084	0.045	0.006 \pm 0.004		0.635	0.019	0.001 \pm 0.001
Forearm M			Forearm COM			Forearm Rg					
BMI		0.152	-0.041 \pm 0.029		0.754		-0.025 \pm 0.097		<0.001		-0.123 \pm 0.030
BMI^2		0.532	0.282	0.0003 \pm 0.0004	0.796	0.002	0.0005 \pm 0.001		<0.001	0.122	0.002 \pm 0.0005
Shank M			Shank COM			Shank Rg					
BMI		0.236	-0.043 \pm 0.036		0.017		-0.222 \pm 0.092		<0.001		-0.241 \pm 0.053
BMI^2		0.994	0.454	-3.8E-6 \pm 0.001	0.049	0.126	0.003 \pm 0.001		<0.001	0.202	0.003 \pm 0.001

Table 5: P values for BMI, age, and BMI x age interaction terms, as well as nested P values for adding age and interaction terms. P1 represents the significance of adding age and age^2 terms to the initial model only using BMI terms, and P2 represents the significance of adding the BMI x age interaction terms to the model only using BMI and age terms.

FEMALE	Thigh M	Thigh COM	Thigh Rg	Torso M	Torso COM	Torso Rg	Upper Arm M	Upper Arm COM	Upper Arm Rg	Forearm M	Forearm COM	Forearm Rg	Shank M	Shank COM	Shank Rg
BMI	0.028	0.066	0.105	0.157	0.006	<0.001	0.202	0.359	0.007	0.355	0.025	0.438	0.078	<0.001	0.005
BMI^2	0.053	0.027	0.097	0.230	0.002	<0.001	0.489	0.293	0.002	0.907	0.009	0.626	0.218	0.001	0.015
Age	0.030	0.082	0.675	0.072	0.225	0.984	0.967	0.263	0.798	0.614	0.216	0.395	0.537	0.301	0.587
Age^2	0.070	0.053	0.831	0.152	0.068	0.622	0.773	0.229	0.724	0.458	0.210	0.297	0.737	0.199	0.490
Age x BMI	0.191	0.429	0.581	0.788	0.034	0.334	0.799	0.886	0.074	0.266	0.388	0.707	0.201	0.046	0.778
$Age^2 \times BMI$	0.139	0.327	0.576	0.961	0.017	0.465	0.792	0.986	0.095	0.188	0.659	0.541	0.213	0.029	0.726
$Age \times BMI^2$	0.149	0.539	0.646	0.881	0.040	0.337	0.766	0.960	0.100	0.217	0.379	0.809	0.196	0.032	0.812
$Age^2 \times BMI^2$	0.103	0.420	0.641	0.957	0.020	0.454	0.775	0.912	0.129	0.153	0.065	0.626	0.206	0.019	0.755
P1 (Age only)	<0.001	0.036	0.185	<0.001	<0.001	<0.001	0.009	0.423	0.905	0.167	0.645	0.171	0.015	0.014	0.382
P2 (Age x BMI)	0.106	0.446	0.942	0.212	0.038	0.245	0.726	0.505	0.089	0.121	0.007	0.309	0.786	0.020	0.970

MALE	Thigh M	Thigh COM	Thigh Rg	Torso M	Torso COM	Torso Rg	Upper Arm M	Upper Arm COM	Upper Arm Rg	Forearm M	Forearm COM	Forearm Rg	Shank M	Shank COM	Shank Rg
BMI	0.005	0.054	0.008	0.919	0.180	<0.001	0.004	0.056	0.645	0.369	0.221	<0.001	0.554	0.006	<0.001
BMI^2	0.005	0.113	0.017	0.489	0.032	0.017	0.007	0.082	0.536	0.841	0.198	<0.001	0.620	0.020	<0.001
Age	0.665	0.714	0.005	0.172	0.260	0.580	0.535	0.096	0.986	0.087	0.018	0.002	0.250	0.067	0.251
Age^2	0.707	0.533	<0.001	0.509	0.823	0.967	0.276	0.085	0.911	0.122	0.007	0.002	0.451	0.037	0.194
Age x BMI	0.417	0.515	0.016	0.073	0.945	0.958	0.221	0.718	0.721	0.037	0.080	0.007	0.730	0.322	0.799
$Age^2 \times BMI$	0.319	0.598	0.022	0.069	0.863	0.900	0.202	0.655	0.625	0.023	0.062	0.012	0.641	0.236	0.615
$Age \times BMI^2$	0.570	0.441	0.013	0.114	0.885	0.892	0.389	0.751	0.662	0.071	0.086	0.006	0.812	0.372	0.883
$Age^2 \times BMI^2$	0.440	0.521	0.018	0.099	1.000	0.839	0.340	0.666	0.556	0.043	0.074	0.010	0.728	0.266	0.696
P1 (Age only)	<0.001	0.176	<0.001	<0.001	<0.001	<0.001	0.001	0.013	0.959	0.530	0.002	<0.001	<0.001	0.003	0.034
P2 (Age x BMI)	0.229	0.748	0.119	0.063	0.125	0.913	0.031	0.414	0.277	0.025	0.002	0.035	0.704	0.287	0.447

Table 6: Effect of BMI and BMI^2 on segment parameters stratified by gender and age group.

Young Female	Thigh M	Thigh COM	Thigh Rg	Torso M	Torso COM	Torso Rg	Upper Arm M	Upper Arm COM	Upper Arm Rg	Forearm M	Forearm COM	Forearm Rg	Shank M	Shank COM	Shank Rg
P_{BMI}	0.020	0.066	0.349	0.400	0.003	<0.001	0.447	0.091	0.003	0.769	0.281	0.099	0.741	<0.001	0.166
P_{BMI}^2	0.023	0.034	0.276	0.322	0.002	<0.001	0.612	0.084	0.001	0.482	0.395	0.138	0.919	<0.001	0.309
R^2	0.109	0.168	0.051	0.045	0.216	0.683	0.086	0.062	0.247	0.187	0.083	0.084	0.199	0.417	0.179

Middle Female	Thigh M	Thigh COM	Thigh Rg	Torso M	Torso COM	Torso Rg	Upper Arm M	Upper Arm COM	Upper Arm Rg	Forearm M	Forearm COM	Forearm Rg	Shank M	Shank COM	Shank Rg
P_{BMI}	0.143	0.043	0.156	0.497	0.041	0.006	0.982	0.311	0.189	0.815	0.742	0.343	0.133	0.006	0.0215
P_{BMI}^2	0.199	0.038	0.182	0.562	0.026	0.034	0.672	0.319	0.104	0.569	0.5814	0.418	0.172	0.012	0.253
R^2	0.096	0.103	0.055	0.026	0.156	0.506	0.212	0.025	0.187	0.161	0.08	0.05	0.08	0.234	0.05

Old Female	Thigh M	Thigh COM	Thigh Rg	Torso M	Torso COM	Torso Rg	Upper Arm M	Upper Arm COM	Upper Arm Rg	Forearm M	Forearm COM	Forearm Rg	Shank M	Shank COM	Shank Rg
P_{BMI}	0.741	0.576	0.321	0.043	0.977	0.204	0.03	0.54	0.355	0.031	<0.001	0.346	0.292	0.67	0.012
P_{BMI}^2	0.591	0.744	0.309	0.057	0.935	0.550	0.054	0.617	0.278	0.12	<0.002	0.207	0.539	0.993	0.018
R^2	0.050	0.062	0.021	0.090	0.060	0.354	0.182	0.021	0.049	0.345	0.423	0.127	0.192	0.166	0.133

Young Male	Thigh M	Thigh COM	Thigh Rg	Torso M	Torso COM	Torso Rg	Upper Arm M	Upper Arm COM	Upper Arm Rg	Forearm M	Forearm COM	Forearm Rg	Shank M	Shank COM	Shank Rg
P_{BMI}	0.107	0.111	0.001	0.660	0.956	0.015	0.019	0.239	0.281	0.49	0.33	<0.001	0.22	0.104	<0.001
P_{BMI}^2	0.107	0.277	0.001	0.434	0.668	0.075	0.037	0.401	0.211	0.456	0.211	<0.001	0.757	0.263	<0.001
R^2	0.061	0.316	0.297	0.160	0.177	0.462	0.194	0.169	0.074	0.285	0.131	0.35	0.568	0.314	0.38

Middle Male	Thigh M	Thigh COM	Thigh Rg	Torso M	Torso COM	Torso Rg	Upper Arm M	Upper Arm COM	Upper Arm Rg	Forearm M	Forearm COM	Forearm Rg	Shank M	Shank COM	Shank Rg
P_{BMI}	0.243	0.213	0.935	0.070	0.096	0.015	0.367	0.51	0.627	0.052	0.153	0.335	0.466	0.521	0.001
P_{BMI}^2	0.213	0.247	0.956	0.247	0.020	0.118	0.322	0.559	0.53	0.126	0.202	0.387	0.978	0.67	0.003
R^2	0.043	0.046	0.034	0.482	0.510	0.640	0.036	0.02	0.046	0.303	0.087	0.039	0.487	0.088	0.337

Old Male	Thigh M	Thigh COM	Thigh Rg	Torso M	Torso COM	Torso Rg	Upper Arm M	Upper Arm COM	Upper Arm Rg	Forearm M	Forearm COM	Forearm Rg	Shank M	Shank COM	Shank Rg
P_{BMI}	0.003	0.240	0.193	0.184	0.566	0.134	0.089	0.079	0.374	0.015	0.023	0.076	0.799	0.004	0.767
P_{BMI}^2	0.003	0.330	0.255	0.065	0.292	0.347	0.1	0.069	0.34	0.002	0.046	0.088	0.5	0.006	0.813
R^2	0.232	0.120	0.101	0.443	0.376	0.460	0.085	0.099	0.034	0.616	0.267	0.095	0.307	0.22	0.011

3. Discussion

Overall, the results indicate that there are several significant effects of gender, age, BMI, and the interaction between age and BMI on several important body segment parameters in the working adult population.

Preliminary analysis. The initial analysis for males and females showed that age and BMI have several significant effects on the parameters of interest, and the interaction of gender with these terms indicates that it is appropriate to treat the genders separately when attempting to calculate segment parameters. While the regressions using age, BMI, and gender offer improvements over some of the current methods that only differentiate by gender [14], more precise effects can be discovered by analyzing the genders and age groups separately.

Objective 1. Investigating the effect of BMI (in its linear and quadratic terms) on the parameters of interest provides more insight into how men and women changes in terms of body mass distribution with increasing BMI. For example, some parameters, such as the upper arm center of mass, show the effects of increasing BMI moving in opposite directions based on gender (Table 4). In this example, increasing BMI in females correlates with a more distal COM, while increasing BMI in males correlates with a more proximal COM.

For other segments, such as the torso, both men and women appear to increase the fraction of total body mass in the torso with increasing BMI, women appear to have a larger effect size with increased BMI. Looking more at the torso segment, the significant decrease in radius of gyration in men and women indicates that as the torso mass increases, it appears to do so concentrated in the area of the torso closer to the center of mass, as opposed to gaining mass throughout the torso. The results of the investigation related to Objective 1 appear to validate the need to observe the impacts of BMI on segment parameters in men and women separately.

Objective 2. Next, the addition of the age terms (again, in its linear and quadratic contributions) provides more accuracy into predicting segment parameters. For this analysis, it is important to consider the significance of the nested F-test, which accounts for adding both of the age terms together, as opposed to adding and evaluating the linear age term by itself. While the individual terms only appear significant for a few parameters, such as the thigh mass in females, and the thigh radius of gyration and forearm parameters in males, the nested F-test performed indicates that adding age and age² terms to the model already containing BMI terms will significantly improve the model (Table 5).

Objective 3. In order to determine the interaction between age and obesity status, due to the population-wide increase in obesity with age [17], the set of age x BMI interaction terms were then added to the model including age and BMI terms without the interactions. Similarly to the Objective 2 analysis, there were a few examples of individual interaction terms having an effect on segment parameters (such as torso center of mass in women, and forearm parameters in men), but several significant effects of the interactions as a whole being added to the model, as indicated by the second nested F-test (Table 5). Because these results indicate that the impact of BMI appears to be changing with increasing age, further investigation is warranted into how BMI affects segment parameters at different age levels.

The final analysis performed, with the participants stratified by gender and age, indicates that BMI has some significant effects on segment parameters, regardless of age (Table 6). More importantly, this analysis demonstrates that BMI changes have different effects at

different ages. For example, BMI has a significant effect on thigh radius of gyration only in younger men, and not men in the middle or older age group. Some of these differences are likely due to the increase muscle mass in younger men, and how additional body mass is added and distributed with increasing BMI. Because obesity tends to worsen with age, the most appropriate analysis may be to separate the population by age group in order to isolate differing effects of obesity at different ages.

C. Aim 2

“Develop regression models to predict BSPs that include BMI”

1. Methods

The same methods as in Aim 1 were used except for the statistical analyses, which are described here. A backwards stepwise regression analysis was performed on the thigh and torso segment parameters for 200 (training) out of the full 280 participants included in the study. The other 80 subjects will be used as a validation sample. The initial models contained age, BMI, and all relevant physical measures taken of the body segment of interest. For each model, genders were analyzed separately, with age and BMI locked in as predictors. In each step of the analysis, the predictor with the largest P-value was removed, and the analysis was repeated. This process of removing the least significant predictor and repeating the analysis continued until the P-values for all predictors were below 0.10. All analyses were performed in JMP Pro 12 (SAS Institute, Cary, NC, USA).

2. Results

Several significant effects were found from the anthropometric measurements on the thigh and trunk segments in men and women (Table 7). For all six of the segment parameters of interest, waist circumference, hip circumference, or waist-hip ratio (WHR) were included in the final models. The new models appear to show the highest increase in accuracy (compared to the final Aim 1 models using age and BMI as predictors) in torso and thigh mass in women. All three thigh parameters in men also had ΔR^2 values of over 0.2 compared to the previous models not including body measurements

Table 7: P values for predictors remaining after backwards stepwise regression. R^2 values are for the final models, and ΔR^2 values are for the improvement from the final model in Aim 1 (using BMI, age, and all interactions as predictors).

FEMALE

Torso COM		Torso Mass		Torso Rg	
Predictor	P-value	Predictor	P-value	Predictor	P-value
Age	<0.001	Age	0.950	Age	0.586
BMI	0.714	BMI	<0.001	BMI	0.194
L3L4 trunk width	0.046	Shoulder trunk depth	0.067	Shoulder trunk depth	0.004
Inter-ASIS distance	0.020	Breast trunk depth	<0.001	Mid-breast trunk depth	0.028
Breast trunk depth	0.001	L3L4 trunk depth	0.011	Breast trunk depth	0.014
Waist circumference	0.003	Waist circumference	0.008	Waist circumference	<0.001
WHR	0.011	Hip circumference	0.048	Hip circumference	<0.001
R^2	0.448	R^2	0.606	R^2	0.700
ΔR^2	0.169	ΔR^2	0.468	ΔR^2	0.137

Thigh COM		Thigh Mass		Thigh Rg	
Predictor	P-value	Predictor	P-value	Predictor	P-value
Age	0.407	Age	0.970	Age	0.202
BMI	0.004	BMI	<0.001	BMI	0.641
Upper thigh circumference	0.001	Upper thigh circumference	0.008	Mid-thigh circumference	0.001
Lower thigh circumference	<0.001	Mid-thigh circumference	0.001	Knee circumference	<0.001
Hip circumference	0.001	Waist circumference	0.023		
		Hip circumference	0.035		
		WHR	0.094		
R^2	0.307	R^2	0.631	R^2	0.223
ΔR^2	0.185	ΔR^2	0.468	ΔR^2	0.174

Table 7 (cont.)

MALE

Torso COM		Torso Mass		Torso Rg	
Predictor	P-value	Predictor	P-value	Predictor	P-value
Age	0.016	Age	0.105	Age	0.026
BMI	0.320	BMI	0.177	BMI	0.053
Shoulder trunk width	0.002	Breast trunk width	0.047	L3L4 trunk width	0.026
Mid-breast trunk width	0.019	Inter-ASIS distance	0.028	Shoulder trunk depth	<0.001
Shoulder trunk depth	0.027	Shoulder trunk depth	0.002	Breast trunk depth	<0.001
Breast trunk depth	0.049	Mid-breast trunk depth	<0.001	Mid-breast axis depth	0.098
L3L4 trunk depth	0.065	Shoulder axis depth	0.002	L3L4 axis depth	0.008
Waist circumference	0.014	Breast axis depth	0.024	Waist circumference	0.003
WHR	0.027	Hip circumference	0.007	WHR	<0.001
R^2	0.602	R^2	0.652	R^2	0.739
ΔR^2	0.096	ΔR^2	0.199	ΔR^2	0.166

Thigh COM		Thigh Mass		Thigh Rg	
Predictor	P-value	Predictor	P-value	Predictor	P-value
Age	0.260	Age	0.033	Age	0.318
BMI	0.028	BMI	0.223	BMI	0.284
Upper thigh circumference	0.002	Upper thigh circumference	<0.001	Upper thigh circumference	0.016
Lower thigh circumference	<0.001	Waist circumference	0.012	Mid-thigh circumference	0.016
				Knee circumference	<0.001
				Hip circumference	0.054
R^2	0.366	R^2	0.514	R^2	0.541
ΔR^2	0.259	ΔR^2	0.271	ΔR^2	0.249

D. References

- [1] Chaffin DB, Andersson GBJ, and Martin BJ, *Occupational Biomechanics*, 4th edition ed. Hoboken, New Jersey: Wiley-Interscience, 2006.
- [2] Durkin JL and Dowling JJ, "Analysis of body segment parameter differences between four human populations and the estimation errors of four popular mathematical models," *J Biomech Eng*, vol. 125, pp. 515-522, 2003.
- [3] Hughes VA, Roubenoff R, Wood M, Frontera WR, Evans WJ, and Fiatarone Singh MA, "Anthropometric assessment of 10-y changes in body composition in the elderly," *Am J Clin Nutr*, vol. 80, pp. 475-482, 2004.
- [4] Kuczmarski MF, Kuczmarski RJ, and Najjar M, "Descriptive anthropometric reference data for older Americans," *J Am Diet Assoc*, vol. 100, pp. 59-66, 2000.
- [5] Matrangola SL, Madigan ML, Nussbaum MA, Ross R, and Davy KP, "Changes in body segment inertial parameters of obese individuals with weight loss," *J Biomech*, vol. 41, pp. 3278-3281, 2008.
- [6] Chaffin DB and Muzaffer E, "Three-dimensional biomechanical Static Strength Prediction Model sensitivity to postural and anthropometric inaccuracies," *IEEE Transactions*, vol. 23, pp. 215 227, 1991.
- [7] de Looze FJ, Kingma I, Bussmann JB, and Toussaint HM, "Validation of a dynamic linked segment model to calculate joint moments in lifting," *Clinical Biomechanics*, vol. 7, pp. 161-169, 1992.
- [8] de Looze MP, Bussmann JB, Kingma I, and Toussaint HM, "Different methods to estimate total power and its components during lifting," *J Biomech*, vol. 25, pp. 1089-1095, 1992.
- [9] Desjardins P, Plamondon A, and Gagnon M, "Sensitivity analysis of segment models to estimate the net reaction moments at the L5/S1 joint in lifting," *Med Eng Phys*, vol. 20, pp. 153-158, 1998.
- [10] Pearsall DJ and Costigan PA, "The effect of segment parameter error on gait analysis results," *Gait Posture*, vol. 9, pp. 173-183, 1999.
- [11] Rao G, Amarantini D, Berton E, and Favier D, "Influence of body segments' parameters estimation models on inverse dynamics solutions during gait," *J Biomech*, vol. 39, pp. 1531-1536, 2006.
- [12] Chandler RF, Clauser CE, McConville JT, Reynolds HM, and Young JW, "Investigation of inertial properties of the human body," U.S. Department of Transportation, Washington, DC DOT HS-801 430 /AMRL-TR-74-137, 1975.
- [13] Dempster WT, "Space requirements of the seated operator," Wright Air Development Center, Wright Patterson Air Force Base, Ohio WADC-TR-55-159, 1955.
- [14] de Leva P, "Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters," *J Biomech*, vol. 29, pp. 1223-1230, 1996.
- [15] Pavol MJ, Owings TM, and Grabiner MD, "Body segment inertial parameter estimation for the general population of older adults," *J Biomech*, vol. 35, pp. 707-712, 2002.
- [16] Chambers AJ, Sukits AL, McCrory JL, and Cham R, "Differences in geriatric anthropometric data between DXA-based subject specific estimates and non-age specific traditional regression models," *Journal of Applied Biomechanics*, 27(3):197-206, 2011.

- [17] Hertz HP, "The impact of obesity on work limitations and cardiovascular risk factors in the U.S. workforce," *journal of occupational and environmental medicine*, vol. 46, pp. 1196-1203, 2004.
- [18] Chambers AJ, Sukits AL, McCrory JL, and Cham R, "The effect of obesity and gender on body segment parameters in older adults," *Clinical Biomechanics*, vol. 25, pp. 131-136, 2010.

V. Publications

The following publications are listed in calendar year order by most recent year first.

A. Peer-Reviewed Journal Papers

Merrill ZF, Bova G, Chambers AJ, Cham R: [2017] Effect of Trunk Segment Boundary Definitions on Frontal Plane Segment Inertial Calculations. *Journal of Applied Biomechanics*, in press.

Merrill ZF, Perera S, Cham R: [2018] Effect of Age and Body Mass Index on Body Segment Parameters in Working Adults. In preparation.

Merrill ZF, Perera S, Cham R: [2018] Statistical Models for Predicting Body Segment Parameters in Working Adults. In preparation.

B. Conference Proceedings

Merrill ZF, Chambers AJ, Cham R: [2017] Impact of Age and Body Mass Index on Anthropometry in Working Adults. Proc of 2017 Human Factors and Ergonomics Society 61st International Annual Meeting, Austin, Texas, October 9-13.

Bova G, Merrill ZF, Cham R, Chambers AJ: [2016] Comparison in Segment Mass Values Determined by the Dual Energy X-Ray Absorptiometry Scan Method and the Zatsiorsky Anthropometric Table Calculation Method. Proc of 2016 American Society of Biomechanics 40th Annual Meeting, Raleigh, North Carolina, August 2-5.

Merrill ZF, Cham R: [2016] Effect of Age and Body Mass Index on Torso Anthropometry in Females. Proc of 2016 American Society of Biomechanics 40th Annual Meeting, Raleigh, North Carolina, August 2-5.

Knewtson ME, Merrill ZF, Cham R, Chambers AJ: [2015] Effect of Age on Body Segment Parameters in Normal Weight Females. Proc of 2015 American Society of Biomechanics 39th Annual Meeting, Columbus, Ohio, August 5-8.

Merrill ZF, Chambers AJ, Cham R: [2015] Impact of Mass Redistribution on Lower Extremity Biomechanics During Slipping. Proc of 2015 American Society of Biomechanics 39th Annual Meeting, Columbus, Ohio, August 5-8.

Merrill ZF, Knewtson ME, Cham R, Chambers AJ: [2015] Effect of Increased Body Mass Index on Body Segment Parameters in Males. Proc of 2015 American Society of Biomechanics 39th Annual Meeting, Columbus, Ohio, August 5-8.

VI. Other

A. Cumulative Inclusion Enrollment and Gender and Minority Inclusion Table

[View Burden Statement](#)

PHS Inclusion Enrollment Report
This report format should NOT be used for collecting data from study participants.

OMB Number: 0925-0001 and 0925-0002
Expiration Date: 10/31/2018

*Study Title (must be unique): Obesity and Body Segment Parameters in Working Adults - NIOSH 1 R01 OH010106

* Delayed Onset Study? Yes No

If study is not delayed onset, the following selections are required:

Enrollment Type	<input type="checkbox"/> Planned	<input checked="" type="checkbox"/> Cumulative (Actual)
Using an Existing Dataset or Resource	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No
Enrollment Location	<input checked="" type="checkbox"/> Domestic	<input type="checkbox"/> Foreign
Clinical Trial	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
Comments:		

Ethnic Categories

Racial Categories	Ethnic Categories									Total
	Not Hispanic or Latino			Hispanic or Latino			Unknown/Not Reported Ethnicity			
Female	Male	Unknown/Not Reported	Female	Male	Unknown/Not Reported	Female	Male	Unknown/Not Reported		
American Indian/Alaska Native	0	0	0	0	0	0	0	0	0	0
Asian	3	5	0	0	0	0	0	0	0	8
Native Hawaiian or Other Pacific Islander	0	0	0	0	0	0	0	0	0	0
Black or African American	34	22	0	0	0	0	0	0	0	56
White	95	92	0	0	2	0	0	0	0	189
More than One Race	14	9	0	2	2	0	0	0	0	27
Unknown or Not Reported	0	0	0	0	0	0	0	0	0	0
Total	146	128	0	2	4	0	0	0	0	280

B. Inclusion of Children

Not applicable