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List of Terms and Abbreviations 

List of Abbreviations:  

ATE:  Auditory evoked potential after exposure 

AWT:  Analytic wavelet transform 

dB:  Decibel 

dBA:  A-weighted decibel 

EEH:  Equal energy hypothesis 

%IHC: Internal haircell loss 

NIHL:  Noise induced hearing loss 

%OHC: Outer haircell loss 

PRE:  Auditory evoked potential pre-exposure 

PST:  Auditory evoked potential after 30 days post exposure 

PTS:  Permanent threshold shift 

SPL:  Sound pressure level 

STFT:  Short time Foureir transform 

T-F:  Time-frequency 
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TTS: temporary threshold shift 

 

List of Symbols: 

( )g t :  Gaussian time window 

s:  Scale of the wavelet transform, related to the frequency by 
s
ηω =    

Ws(u):  The wavelet transform value at time u 

Pref :  Reference pressure 

Leq:  Equivalent SPL 

LAeq:  A-weighted equivalent SPL 

Peq:   Equivalent pressure  

Lem:  Modified equivalent SPL 

( )wT ω : Weighted time  

( )β ω : Frequency by frequency kertosis 

η :  Frequency parameter of the AWT transform, related to the frequency by 
s
ηω =  

mpρ :  Linear correlation defined between data sets m and p 
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,m pσ σ : Standard deviations of sets m and p 

( )tψ :  Mother wavelet of the AWT 

ω :  Circular frequency (rad/s) 
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Abstract 

 

Many workplaces are subject to complex noise environments where impulsive noises are 
embedded in the continuous background noise. Current noise guidelines recommend an 
exposure limit based on the equal energy hypothesis (EEH), thus overlooking the effect 
of temporal and spectral variations of the noise. This practice is widely believed 
inaccurate to assess the risk of complex or impulsive noises. An improved noise risk 
assessment method is necessary for more effective protection of workers from the noise-
induced hearing loss (NIHL), the most common occupational disease. This research is a 
part of the long-term effort to develop a general noise risk assessment procedure. In this 
research, an advanced signal processing method and a general noise metric, two basic 
components of the noise risk assessment, were developed utilizing an existing set of 
chinchilla noise exposure data.        

One of the main difficulties in assessing exposure risk to impulsive or complex noise 
environments is the quantitative characterization of the noise. A highly transient event 
such as impulsive noise should be characterized in the joint time-frequency (T-F) domain 
because its time and frequency characteristics are inter-related. An advanced T-F noise 
characterization method was developed by refining and extending the analytic wavelet 
transform (AWT) method developed in the PI’s previous research. The method obtains T-
F characteristics of the noise in a set of 1/3 octave time histories, from which the noise 
metric is calculated.  

Most noise guidelines currently assess the noise risk based on a single-valued metric, 
typically the A-weighted overall SPL. A more general noise metric that reflects the T-F 
characteristics of the noise is necessary to accurately predict hazard of a noise of general 
type. In this research, 14 new noise metrics that reflect T-F characteristics of the noise in 
distinctively different ways were designed. The best metric was identified by based on 
the statistical correlations of these metrics with hearing losses measured in chinchillas.  
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Highlights and Significant Findings 

Development of an advanced signal analysis method: An advanced signal processing 

method, a modified version of the analytic wavelet transform (AWT) was developed to 

characterize noises in the time-frequency (T-F) domain. The wavelet transform technique 

is inherently an ideal tool to characterize highly transient signals because of its superior 

T-F resolution. The AWT is a special version of the wavelet transform that works like a 

transient Fourier transform. The version of the AWT developed in this work characterizes 

the noise as a set of 1/3 octave time histories of given center frequencies.  

The biggest advantage of the AWT developed in this work is that it characterizes the 

signal in familiar terms, sound pressure level (SPL) and frequency. The AWT is used in 

this project to re-dissect existing animal exposure study data to uncover relations between the 

noise and the hearing impairments that could not have been found in the past. The AWT enables 

defining noise metrics as functions of T-F characteristics of the noise, thus enables the correlation 

study between the hearing loss and the noise.       

Identification of a general noise metric: Most noise guidelines currently assess the noise 

risk based on a single-valued metric, typically the A-weighted overall SPL. The practice 

is known to be accurate for relatively steady-state, broadband noises, however not for 

highly transient noises such as an impulsive noise. A more elaborate noise metric is 

necessary to predict hazard of transient noises accurately. In this research, 14 new noise 

metrics were designed, each of which to reflect T-F characteristics of the noise in a 

distinctively different way. The best metric was identified by studying statistical 

correlations between the metrics and hearing losses measured in chinchillas. The 
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chinchilla exposure data was obtained by exposing groups of chinchillas to noises of 

widely different characteristics. A modified form of the equivalent sound pressure level 

Leq showed the best overall correlation with measured hearing losses; therefore was 

identified as the best metric, which. The metric will be used to assess the risk of noises of 

various different types.   

Development of the future research plan: The underlying long-term goal that motivated 

this study was the development of a NIHL risk assessment procedure for human. The task 

requires multiple projects involving a wide range of scientific disciplines; therefore, a 

long-term plan is necessary to steer the effort. A long-range strategy is (1) develop a 

general noise metric for chinchillas (this research); (2) develop a general NIHL risk 

assessment procedure for the chinchilla; (3) develop the human version of the procedure 

by converting the chinchilla version developed.  The detailed plan for the stage (2) was 

developed in this research.  
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Translation of Findings 

Two major outcomes of this research are the analytic wavelet transform (AWT) 

specialized for signal processing of transient noises and a general noise metric identified 

by the correlation study. The two outcomes will be used as the core components of an 

improved noise risk assessment method that the PI plans to develop in the future. The 

new method will consider the effect of spectral and temporal variations of the noise; 

therefore will enable more accurate assessment of the risk of impulsive and complex 

noises than current noise guidelines. The new method will also enable frequency by 

frequency prediction of the hazard of the noise.     

  

Outcomes/Relevance/Impact 

It is a near consensus that current guidelines are relatively accurate in assessing the risk 

of broadband Gaussian noises but not the risk of complex or impulsive noises; however 

continue to be employed because a better alternative is not available. The risk of exposure 

to industrial noises may have been severely underestimated, which contributed to making 

NIHL the most common occupational disease – affecting more than 11 million workers in 

the U.S. alone. The new risk assessment method that will be developed based on the 

outcomes from this research will improve workers safety and health by better protecting 

them from noise-induced hearing losses.  
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Background of the Project 

Noise-induced hearing loss (NIHL) is the most common job-related illness in the United 

States today, affecting more than 11 million workers (NIOSH, 1996). Hence, the National 

Occupational Research Agenda (NORA) identifies NIHL as one of its top-priority 

research areas. Current noise guidelines, such as ISO 1999 (ISO, 1999) and ANSI S3.28-

1986 (ANSI S3.28-1986) recommend a noise exposure limit based on the equal energy 

hypothesis (EEH), thus ignoring temporal variations of spectral characteristics of the 

noise. It is believed by many researchers that this practice can lead to a severe 

underestimation of the risk when the exposure contains impulsive noises (Ahroon et al., 

1993). For exposures to occupational noises, European Union Directive, ISO 1999 and 

NIOSH recommend integrating both impulsive and continuous type noises using EEH. 

This practice, applying EEH to impulsive noises, is highly controversial. Numerous 

animal and demographic studies strongly suggest the need for a more elaborate model 

(Hamernik et al., 1987, 1991, 1993, 2002). Developing an improved noise guideline is 

clearly an urgent task to ensure safe and healthy working conditions for workers in the 

United States. 

A typical workplace has a complex noise environment that contains multiple reflected 

impulsive noises mixed with broadband Gaussian noises. A number of animal exposure 

studies showed that the interaction effect between impulsive and broadband noises may 

exacerbate the NIHL (Hamernik et al., 1987). For example, it was observed that the 

exposure to a complex noise resulted in much greater permanent threshold shift (PTS) 

and more extensive hair-cell losses than exposure to only an energy-equivalent 
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continuous or impulsive noise alone would have caused. The interaction effect was 

dependent upon the frequency contents of the two classes of noise (Hamernik et al., 

1993), indicating the need to consider spectral characteristics in assessing the risk of 

complex noises. Due to the time-averaging effect of the Fourier transform, a more 

elaborate T-F signal analysis technique is necessary to capture the characteristics of 

impulsive noises accurately. The PI developed an advanced T-F signal analysis technique 

called the analytic wavelet transform (AWT) (Zhu & Kim, 2005, 2006) and applied it to 

various noise and vibration signals.  

Various human population studies and animal exposure studies have indicated that 

impulsive and continuous noises pose different hazards to the auditory system. Passchier-

Vermeer (Passcheir-Vermeer, 1983) showed that an impulse noise below 100-dBA caused 

hearing loss of approximately 10-dB more than a continuous noise of equivalent level. 

Hearing losses induced by impulsive and continuous noises were compared to show the 

additional hazard of impulsive noises in various animal noise exposure studies. Nilsson et 

al. (Nilsson et al., 1983), using the guinea pig, reported that the impulse noise inflicted 

more cochlear hair-cell damage and accompanying hearing loss than the pure-tone noise 

of equivalent overall energy. Dunn et al. (Dunn et al., 1991) conducted a comparison test 

using two groups of chinchillas, each exposed to a broadband noise and an impulsive 

noise of approximately equal energy and frequency spectrum, respectively.  

Variability in individual susceptibility has confounded investigators in interpreting results 

from noise exposure studies. Several large-scale demographic studies (Taylor et al., 1984) 

showed a wide range of individual susceptibility to NIHL. Considerable research has 

been conducted to understand possible causes for this variability focused on biological 
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and environmental factors (Davis et al., 1989, Boetter et al., 1992) and chemical 

exposures (Humes, 1984, 1991). A significant degree of variability was also observed in 

controlled laboratory animal studies. The nature and possible cause of variability in 

animal study data are discussed in (Cody & Robertson, 1983).    

A number of animal exposure studies showed that the interaction effect between the 

impulsive and broadband noises may exacerbate the NIHL (Blakeslee et al., 1977, 

Hamernik et al., 1974). The effect was dependent upon the spectra of the two classes of 

noise, indicating that spectral as well as temporal characteristics of the noise should be 

considered in assessing the NIHL risk. The time and frequency of a transient event are 

not independent but interwoven concepts (Zhu & Kim, 2005); therefore, they must be 

considered simultaneously. The effect of the T-F characteristics of noise could not be 

considered properly in past studies because of the lack of an effective signal analysis tool. 

Wavelet analysis is an ideal tool for transient signal analysis because it uses a variable T-

F atom to characterize signals, unlike the Fourier transform which uses a fixed T-F atom. 

The special version of the AWT that the PI developed is ideal for analysis of transient 

noises because it can represent the signal in traditional terms, such as SPL and frequency. 

The AWT is used as the main signal analysis tool in this proposed research.                 
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Specific Aims 

The three specific aims of this project are as follows.  

(Aim 1) Develop a tool for time-frequency domain noise characterization: An 

advanced T-F noise characterization software tool will be developed by refining and 

extending the modified AWT method proposed by the PI. The characterization software 

will be applied to the complex noises used in chinchilla based NIHL studies conducted by 

the consultants of this research to study correlations between the noise characteristics and 

observed hearing losses.    

(Aim2) Develop a quantitative procedure for NIHL risk assessment: Several new 

noise metrics will be proposed as functions of T-F characteristics of noise. Statistical 

correlations of these metrics with hearing losses observed in chinchillas will be studied to 

identify the metric that best represents the hazard of complex noise environment.  

Employing this metric, a prototype for a general noise hazard assessment procedure will 

be developed.  The procedure will consist of measurement, signal analysis and risk 

evaluation phases.   

(Aim 3) Design future NIHL study and test protocol: Based on the experience of 

developing the new noise hazard assessment method, studies that become necessary or 

possible because of the capability of the new  T-F noise characterization tool will 

be identified.  These studies will then be combined to develop a protocol  for future 

research.   
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Procedures 

Currently nearly all noise guidelines use a single-valued metric, typically the A-weighted 

overall SPL, to assess the exposure risk of a noise. Risks of noises of widely different 

characteristics are predicted to be the same while numerous animal and demographic 

studies indicate that they are significantly different. To overcome this problem, the noise 

metric should be designed to reflect T-F characteristics of the noise. Additionally, for 

widely different types of noise, the value of the metric calculated from a noise should be 

well correlated with the hearing loss that the exposure to the noise will induce. The major 

goal of this research was to identify such a noise metric. The procedure adopted to 

develop the noise metric is described as follows.  

(1) Develop a new signal processing method to identify T-F characteristics of the 

noise in a form that is easy to incorporate in the calculation of the noise metric. 

(2) Design noise metrics as functions of T-F characteristics of the noise in various 

forms. 

(3) Identify a set of chinchilla noise exposure study data that has been obtained for 

widely different types of noise for the correlation study. 

(4) Compare correlations between the noise metrics and the NIHL observed in 

chinchillas to identify the best noise metric.   
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Methodology 

I. Development of the Analytic Wavelet Transform Method 

1.1 Wavelet Transform 

A unique noise characterization method was developed by using the modified analytic 

wavelet transform (AWT), an advanced time-frequency (T-F) signal analysis method 

developed by the PI specifically for transient sound analysis (Zhu & Kim, 2005). The 

method calculates the time history of a 1/3 octave component of the given center 

frequency of the noise. The method is applied to characterize the noises used in the 

chinchilla exposure study.  The identified characteristics are used as the basic data to 

calculate the noise metrics designed as function of the time and frequency. This approach, 

dissecting existing data with a new tool to uncover information that could not have been 

observed in the past, will prove very effective to increase the value of existing clinical 

laboratory data.          

 

The wavelet transform, a relatively new signal analysis method introduced in 1970s 

(Daubechies, 1992; Grossmann & Morlet, 1984), decomposes signals using wavelets of 

variable scales, which are obtained by dilating and scaling the mother wavelet.  The main 

advantage of the wavelet transform stems from the fact that it uses variable scales, 

therefore variable T-F resolutions.  The transform with a small scale wavelet uses a T-F 

atom short in time and wide in frequency, thus picks up fast changing components 

efficiently, while the transform with a large scale wavelet uses a T-F atom long in time 
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and narrow in frequency, thus picks up slowly changing components efficiently.       

The analytic wavelet transform (AWT) provides a perfect solution for this situation.  At 

first, the information obtained from the AWT can be represented and interpreted in 

exactly the same way as in the STFT.  Secondly, the AWT process can be made 

numerically nearly as efficient as the STFT if it is programmed properly.  With the AWT 

setup in the way used in this paper, end-users will not even notice the difference in using 

the AWT from using the STFT; the AWT just provides much clearer information on T-F 

characteristics of the signal.  It seems there simply is no reason not to use the AWT over 

the STFT for transient signal analysis.  

1.2  Design of the Analytic Wavelet Transform  

The mother wavelet of the AWT is defined as follows: 

 ( ) ( ) j tt g t e ηψ =  (1) 

where, 1j = − , η is a parameter that will be related to the frequency and a Gaussian 

function is adopted for ( )g t :    

 
2

22
2 1/ 4

1( )
( )

t

g t e σ

σ π
−

=  (2) 

In equation (2), parameterσ  determines the shape of the function.  The AWT is defined 

as follows.     

 *
,( ) ( )s u sW u f t dtψ

∞

−∞
= ∫  (3) 
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The family of wavelets ,u sψ is obtained by dilating and translating the mother wavelet ψ :  

 ,
1( ) ( )u s

t ut
s s

ψ ψ −
=  (4) 

where, s is the scale and u is the translation amount. 

The wavelet transform in Eq. (3) effectively performs as a real-time frequency filter. The 

value for η can be determined from the following center frequency equation:  

 c s
ηω =  (5) 

The parameter σ  can be determined from the bandwidth equation:  

 2 2 1/6
1020 (1 2 ) / 2logldB eσ η −Δ = − −  (6) 

For example to make 3 dB drop at the upper and lower limit frequencies as in typical 

band filters, andη σ  have to be chosen so that 2 2 58.σ η =   Therefore in this work, 

1.05σ =  and 7.252η =  are used. With this parameter set, performing the AWT returns 

the amplitude of the signal components contained in the frequency range of the 1/3 

octave band centered at c s
ηω = .  

If the sound pressure signal is in Pa, the result from AWT can be represented in the sound 

pressure level (SPL) as follows;   

   
*

10 2

( ) ( )( ) 10log
2

s s
s

ref

W u W uSPL u
P

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (7) 
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where, sW  is the complex amplitude obtained with AWT, *
sW  is its complex conjugate. 

620 10refP −= × Pa.  This way, noise analysis with AWT can be done in terms of the SPL, 

which can be easily applied to noise signal analysis.   

Fig. 1 shows the time history of the sound generated by an impact power wrench, which 

was measured at the operator’s ear position for duration of 0.1 second (Kulkarni et al., 

2004).  The sampling rate of 40,000 Hz was used, which corresponds to the Nyquist 

frequency of 20,000 Hz.  Operation of the tool involves very rapid metal-to-metal 

impacts, which create a train of highly impulsive sounds occurring nearly 50 times per 

one second, each time reaching to instantaneous SPL of nearly 120dB.  

 

Figure 1.  Time history of the sound from an impact power wrench 

 

Fig. 2 shows the T-F plot obtained from the STFT of the signal shown in Fig. 1.  A time 

window of 0.02s is used for each Fourier transform, which results in the frequency 
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resolution of 50 Hz.  50 % overlapping is used; therefore the window is moved by 0.01 s 

for each FFT.  A-weighting is applied to each spectrum ( )P ω  to convert the SPL to dBA.     

The T-F plot in Fig. 2 was obtained by interlacing the frequency plots, which can be done 

by estimating the AWT at every 1/12 octave points.  This provides 4 intermediate 

frequency points to each 1/3 octave frequency interval to make the surface smoother.   

As illustrated in Fig. 2, the frequency axis of the AWT may be related to the positions of 

the basilar membrane because 1/3 octave frequencies match with critical bands in a wide 

range of frequency.  Therefore, the curve obtained by cutting the T-F characteristic 

surface to the time axis direction at a given frequency may be considered as the time 

history of the stimulus felt by the basilar membrane at the corresponding position.  Also, 

the curve obtained by cutting the surface to the frequency direction at a given time may 

be interpreted as a snap shot of the basilar membrane displacement.   Employing the 1/3 

octave band makes use of the effective averaging time of the auditory system as the time 

constant, thus makes a good sense for hearing research purpose.  Used this way, the AWT 

can be very useful for correlation study of the hearing loss and noise characteristics.           
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Figure 2. Time-frequency plot of the SPL of the impact power wrench obtained by AWT 
using more frequency points 

 

1.3  Time Histories of 1/3 Octave Components of the Noise   

The AWT obtained by equation (3) is actually the time history of the sound power 

contained in the 1/3 octave band of center frequency / sη .  Fig. 3 shows six 1/3 octave 

time histories at 0.5, 1, 2, 4, 8 and 16 KHz.  It is seen that the time history changes faster 

at higher frequencies as time atom becomes smaller. These transient 1/3 octave band time 

histories are new concepts that may have various applications.   
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Figure 3.  1/3 octave time histories of the impact power wrench noise obtained by AWT; 
6 time histories of 0.5, 1, 2, 4, 8, 16 KHz center frequency  

 

II. Design of Metrics 

2.1 The Need for an Improved Noise Metric 

Noise guidelines currently being in use such as ISO 1999 (ISO-1999, 1990) and ANSI 

S3.28-1986 (ANSI S3.38-1986, ) recommend the noise exposure based on a single-

valued metric such as the A-weighted SPL, LeqA, and the equal energy hypothesis (EEH). 

This assumes that noises of equal amount of energy cause equal NIHL.  For example, 

ISO 1999 and NIOSH guideline (ISO-1999, 1990; NIOSH, 1998) recommend the 

exposure limit using the 85 dBA equivalent sound pressure level (LAeq) as the threshold 
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and the 3-dB exchange rule. That is, 8 hours daily exposure is allowed for a noise of 85 

dBA or lower; then every 3 dB increase from the threshold level halves the allowed 

exposure. It is generally considered that this EEH based approach is accurate for steady-

state noises but not for impulsive noises as the time averaging effect can significantly 

underestimate the exposure risk (Ahroon et al., 1993, Hamernik & Qiu, 2001).  

Typical workplaces are often subjected to a complex noise environment in which 

impulsive noises are embedded to a steady-state background noise.  A number of animal 

exposure studies showed that the interaction effect between impulsive and broadband 

noises may actually exacerbate the NIHL (Blakeslee et al., 1977; Hamernik et al., 1987; 

Hamernik et al., 1974).  For example, it was observed that the exposure to a complex 

noise resulted in much greater permanent threshold shift (PTS) and more extensive 

haircell losses than exposure to only an energy-equivalent continuous or impulsive noise 

alone would have caused (Blakeslee et al., 1977; Hamernik et al., 1974).  Animal 

exposure studies strongly suggest the need for a more elaborate noise metric than Leq for 

complex or impulsive noises (Ahroon et al., 1993; Dunn et al., 1991; Hamernik & Hsueh, 

1991; Hamernik et al., 1991; Hamernik & Qiu, 2001; Hamernik et al., 2003; Hunt et al., 

1976; Martin, 1975; Nilsson et al., 1983; Patterson, 1991; Roberto et al., 1985; Starck & 

Pekkarinen, 1987; Starck et al., 2003; Thiery & Meyer-Bisch, 1988; Voigt et al., 1980).   

A new noise metric is designed as a function of T-F characteristics of the noise for more 

accurate assessment of the risk of impulsive or complex noises. By definition, a good 

noise metric should relate the noise with the resulting hearing loss with good correlations. 

To identify such a metric, six basic forms of noise metrics are designed by reflecting T-F 
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characteristics of the noise in uniquely different ways.  Fourteen metrics obtained by 

varying the basic six forms are compared by utilizing an existing data obtained from an 

animal exposure study (Hamernik et al., 2003; Hamernik et al., 1987; Hamernik et al., 

1994; Hamernik & Ahroon, 1999; Hamernik & Qiu, 2000; Hamernik et al., 2002).  In the 

exposure study, 18 groups of chinchillas were exposed to noises of different T-F 

characteristics, which included a steady-state noise and 17 impulsive and complex noises.  

The NIHL induced in the 18 groups of chinchillas were measured and the 18 noises used 

to expose them were digitally recorded.   

2.2 Chinchilla Noise Exposure Test Data 

Hamernik et al. (Blakeslee et al., 1977; Hamernik et al., 1987; Hamernik et al., 1974; 

Hamernik & Hsueh, 1991; Hamernik et al., 1993; R. P. Hamernik & Qiu, 2001) have long 

proposed that a time-averaged metric such as the equivalent sound pressure level ( eqL ) is 

not sufficient to quantify the exposure hazard to complex noises.   

Initially the correlation study of the noise metrics were conducted by using the noise 

exposure data that Hamernik and his collaborators obtained by using 18 different noises 

shown in Table 1.  The complex noises were generated by combining high-level noise 

impulses of the Friedlander type with a Gaussian continuous noise (Hamernik et al., 

1974).  The total SPL was controlled at 100 dBA for all types of noise to give a standard 

platform for comparison.   

In the experiment, 18 groups of chinchillas were exposed to a respectively different type 

of noises for 5 days 24 hours per day, and then allowed to recover for 30days.  A total 
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number of 214 chinchillas were divided into 18 groups, with 9 ~ 16 animals in each 

group, and exposed to the noise.  Auditory evoked potential pre-exposure (PRE), auditory 

evoked potential after 30 days post exposure (PST), and auditory evoked potential after 

exposure (ATE) were measured.  From these, the permanent threshold shift (PTS=PST-

PRE) and temporary threshold shift (TTS=ATE-PRE) were calculated.  Percentage of 

outer hair cell loss (%OHC) and percentage of inner hair cell loss (%IHC) were also 

carefully measured.  The measurements were conducted at 6 frequency points, 0.5, 1, 2, 4, 

8 and 16KHz.   

The 18 noises used in the study consisted of a Gaussian noise and 17 complex noises 

composed with variant levels of Gaussian background noise and impulses or bursts at 

different peak values, occurrence frequencies and occurrence rates.  A description of the 

18 noise types and their characteristics is listed in Table 1.  More details on the design of 

the noises can be found in (Hamernik & Qiu, 2001; Hamernik et al., 2003; Lei, Ahroon, 

& Hamernik, 1994). 
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Noise 

index 

Noise 

name 

Band type Band width 

(Hz) 

Time 

kurtosis 
Peak 

SPL (dB)

Probability 

of Impulse 

in 750 ms 

No. of 

animals  

1 G-261 Gaussian N/A 3 N/A N/A 15 

2 G-264 Three bands 400 12 116~126 0.6 12 

3 G-266 Very 

broadband 

100~10,000 15 113~127 0.6 12 

4 G-250 Narrow band 1800~2200 21 114~128 0.6 11 

5 G-244 Three bands 400 25 115~128 0.6 12 

6 G-254 Three bands 400 25 15~128 Impact/1.5s 11 

7 G-255 Very 

broadband 

100~10,000 25 115~129 0.6 12 

8 G-270 Burst 

broadband 

710~5680 27 104~115 0.6 12 

9 G-259 Two bands 400 30 115~129 0.6 12 

10 G-249 Broadband 710~5680 33 115~129 0.6 12 

11 G-260 Three bands 400 39 115~129 0.6 16 

12 G-252 Three bands 400 53 123~127 0.6 11 

13 G-253 Three bands 400 61 117~130 0.2 12 

14 G-268 Very 

broadband 

100~10,000 65 128~133 0.1 11 

15 G-251 Three bands 400 75 118~130 0.6 11 

16 G-269 Narrow band 1800~2200 75 114~129 0.6 9 

17 G-263 Three bands 400 85~110 116~128 0.6 11 

18 G-265 Very 

broadband 

100~10,000 105 127~132 0.1 12 

 

TABLE 1: Description of the noises used in the exposure study used for the initial 
correlation study 
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2.3 Characterization of the Noise by the AWT 

The AWT is applied to G263 and G264, two of the noises used in the exposure study, for 

demonstration.  G263 is a nearly pure impulsive noise while G264 is a complex noise 

consisted of impulsive noise and background Gaussian noise. Time histories of the noises 

are shown in Figs. 4 and 5 for randomly selected 3 second periods.  

The T-F characteristics of the noises obtained by applying the AWT technique are shown 

in Figs. 6 and 7 that were obtained by overlaying 1/3 octave time series of the noise 

obtained for center frequencies with 1/12 octave interval. Differences of the noises are 

clearly seen in the figures.  
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Figure 4.  Time history of noise G253 for 3 seconds. 
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Figure 5.  Time history of noise G264 for 3 seconds. 

 

 

Figure 6.  T-F representation of noise G263 obtained from AWT. 
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Figure 7.  T-F representation of noise G264 T-F obtained from AWT. 

 

As it was mentioned earlier, each implementation of the AWT (see Eq. (3)) obtains the 

time history of the 1/3 octave SPL of the center frequency at 
s
ηω =  (Zhu & Kim, 2006).  

Figs. 8 and 9 show six 1/3 octave time histories obtained for G263 and G264 at the center 

frequencies 0.5. 1, 2, 4, 8, 16 KHz, at which NIHL of chinchillas were measured. This set 

of six 1/3 octave time histories are used as the basic T-F information to calculate the noise 

metrics.  
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Figure 8.  1/3 octave time histories of noise G263 at 0.5, 1, 2, 4, 8 and 16KHz. 
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Figure 9.  1/3 octave time histories of noise G264 at 0.5, 1, 2, 4, 8 and 16KHz. 
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2.4 Design of Noise Metrics 

Six basic forms of noise metric were designed to reflect T-F characteristics of noises in 

uniquely different ways; then varied to a total of 14 metrics. These metrics are calculated 

from the six 1/3 octave time histories obtained by applying the AWT to the noise. 

Therefore, these noise metrics are obtained as functions of frequency. The definitions of 

the metrics are as follows.   

Metric 1: Equivalent SPL ( )eqL ω : It has the same definition as the conventional Leq 

except that it is calculated as a function of frequency. The time averaged pressure ( )eqP ω  

is calculated as follows.      

 ( )2

0
( ) ( , )

T

eqP P tω ω= ∫   (8) 

where, ( , )P tω is the 1/3 octave pressure time histories obtained at the aforementioned 6 

frequencies. ( )eqL ω is obtained as: 

 
2

10 2

( )
( ) 10log eq

eq
ref

P
L

P
ω

ω
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (9) 

Metric 2: The frequency domain kurtosis ( )β ω : The kurtosis, a statistical quantity that 

represents the impulsiveness of the event, is calculated from each 1/3 octave SPL time 

history. Kurtosis of a time series is defined as: 
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where, ,ix ω  is the 1/3 octave time series  and N is the number of time points.  The kurtosis 

obtained from the total sound pressure was used as the metric in the noise exposure study 

by Hamernik and Qiu (Hamernik & Qiu, 2001; Hamernik et al., 2003; Lei et al., 1994; 

Lei & Hamernik, 1995).   

Metric 3: max ( )L ω : Maximum SPL of each 1/3 octave time history is used as a metric 

based on the assumption that the hearing loss may depend on the maximum level of the 

frequency component.  The 95% value of the SPL distribution histogram is taken as the 

maximum SPL.  

Metrics 4 – 8: Dynamic sound pressure level ( )dL ω : The basic form of these metrics is 

defined as:  

 ( ) ( ) ( )d mL L K Lω ω ω= + Δ  (11) 

where ( )mL ω is the mean value of the SPL of the noise, ( )L ωΔ is the dynamic fluctuation 

of the SPL defined as the difference between max ( )L ω  and ( )mL ω , and K is a magnifying 

factor greater than 1. The design weights the dynamic component of the SPL more 

heavily than the static component based on the logic that the dynamic component is more 

detrimental than the static component to the failure of a dynamic system. Metrics 4 

through 8 are defined by taking the values of K=2,3,4,5, and 10.   
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Metrics 9-13: Modified equivalent SPL ( )emL ω : The basic definition is defined as follows: 

 
1/

0

( , )1( , ) ( , ) , ( ) 20log
T eq

em o em
ref

P
P p t p dt L

T P

αα α ω
α ω ω ω

⎛ ⎞⎡ ⎤= − = ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠
∫  (12) 

where op is the threshold pressure, ( , )p tω  is the pressure value of the 1/3 octave time 

history of SPL, T is the averaging time, and the exponent α reflects the non-linearity of 

the damage mechanism.  0( , )p t pω −  is a singular function defined as: 

 0 0( , ) 0 if ( , ) , ( , ) ( , ) if ( , )o o op t p p t p p t p p t p p t pω ω ω ω ω− = ≤ − = − >  (13) 

Equation (4.10) assumes that the noise contributes to the hearing loss only when its level 

exceeds the threshold pressure po. Using a higher α  value has an effect of weighting 

higher pressures more heavily. Currently, 0.282 Pa is used for po , which corresponds to 

the SPL of 80 dB. Metrics 9 through 13, respectively, are obtained by calculating with 

α =2,3,4,5, and 10. 

Metric 14: Normalized weighted exposure time ( )wT ω : This definition is obtained by 

applying the 3 dB exchange rule to each time interval to each 1/3 octave time history. For 

each unit time interval of size tΔ ;  

• If ( , )p tω  is the same as the threshold value p0, the weighted time interval 

, ( )w it tωΔ = Δ .  

• If ( , )p tω is higher than the threshold value by 3 dB, the weighted time interval 
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, ( ) 2w it tωΔ = Δ ; by 6 dB, , ( ) 4w it tωΔ = Δ , and so on. 

• If ( , )p tω in the interval is lower than the threshold value by 3 dB, the weighted 

time interval , ( ) / 2w it tωΔ = Δ , by 6 dB, , ( ) / 4w it tωΔ = Δ , and so on. 

Finally, ,
1

( ) ( ) /
N

w w i
i

T t Tω ω
=

= Δ∑ , where T is the length of the time series and N is the 

number of time intervals. 

2.5  Preliminary Study of the Exposure Test Data 

Figs. 10 and 11 show averaged values of the PTS, TTS, OHC and IHC losses measured 

from groups G263 and G264.  As it is seen, the four NIHL indicators have all different 

frequency dependencies.  Out of the four indicators PTS is selected as the NIHL 

parameter to study the correlation with the noise metrics in this study because it is a 

direct indication of the hearing loss. 
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Figure 10: Averaged hearing loss data from chinchillas exposed under G263. 
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Figure 11: Averaged hearing loss data from chinchillas exposed under G264. 

 

 

Six of the 14 metrics are plotted with the PTS data obtained from G263 group as 

functions of frequency in Fig. 12.   It is seen visually that ( )dL ω  and ( )emL ω  give good 

correlations with PTS for this particular group.   
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Figure 12.  Measured PTS and six metrics of noise G263 

 

Fig. 13 shows box plots of the PTS data measured at 6 frequencies from 18 chinchilla 

groups. Boxes represent inter-quartile ranges, horizontal lines represent the median, 

whiskers represent the largest and smallest values and ‘+’ symbols represent outliers 

defined as the points outside of 1.5 box lengths from the end of the boxes,  It is seen that 

the measured PTS data have quite large statistical variations, as it is frequently in animal 

test data.  Because of the high statistical variations, median values are used instead of 

mean values in the ensuing correlation study.         



38 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

10

20

30

40

50

M
ea

su
re

d 
P

TS

Animal Group

Boxplot of PTS for all animal groups at 500Hz

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

10

20

30

40

50

60

70

M
ea

su
re

d 
P

TS

Animal Group

Boxplot of PTS for all animal groups at 1KHz

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

10

20

30

40

50

60

70

M
ea

su
re

d 
P

TS

Animal Group

Boxplot of PTS for all animal groups at 2KHz

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

10

20

30

40

50

60

70

80

M
ea

su
re

d 
P

TS

Animal Group

Boxplot of PTS for all animal groups at 4KHz

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

10

20

30

40

50

60

70

80

M
ea

su
re

d 
P

TS

Animal Group

Boxplot of PTS for all animal groups at 8KHz

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-20

-10

0

10

20

30

40

50

60

70

M
ea

su
re

d 
P

TS

Animal Group

Boxplot of PTS for all animal groups at 16KHz

 

Figure 13. Box plots of measured PTS of 18 groups of chinchillas at 0.5, 1, 2, 4, 8, 16 
KHz. 

 

2.6 Correlation Study of the Noise Metrics 

Definition of Correlations: The 14 noise metrics were compared for their correlations 

with the NIHL data obtained by Hamernik and Qiu. The data that was used in this initial 

study was obtained from 214 chinchillas divided into 18 groups exposed to respectively 

different types. The details of the exposure data used for the correlation study are found 

in Table 1.  

The linear correlation between the observed PTS and the metric value is calculated as 

follows [109]:  
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( )( )i i

mp
m p

E m m P P
ρ

σ σ

⎡ ⎤− −⎣ ⎦=  (14) 

where, E implies the expectation, im  and iP are the values of metric and PTS of the ith 

pair of the data, m  and P are their respective averages, and mσ  and pσ  are their 

respective standard deviations. A correlation value 1 indicates a perfect correlation and a 

value of 0 indicates no correlation.  

The noise metric and the average PTS of the animal group are obtained for 18 noises / 

animal groups at 6 frequency points; therefore in 18 x 6 matrices. Let matrix 

1 18 1 6( : , : )im g g f f  is the ith noise metric calculated and matrix 1 18 1 6( : , : )PTS g g f f  is the 

average PTS measured. The three correlations used in the study are defined as follows. 

Frequency correlation indicates how well the metric and PTS are correlated as functions 

of frequency for each noise group. Therefore, 18 frequency correlations are calculated for 

each of the 14 metrics. For example, the frequency correlation of Leq (1st metric) of the 

second animal group (G264 in Table 1) is calculated from 6 pairs of the metric-PTS data 

( 1 2 1 6( , : )m g f f ; 2 1 6( , : )PTS g f f ) by using Eq. (6).  The relationship between Leq and 

average PTS of group G264 are shown in Fig. 6 (a) as functions of frequency, and Fig. 6 

(b) in a scatter plot. If the metric and the PTS were perfectly correlated, all points in Fig. 

6(b) would have located on a straight line.  

Noise correlation indicates how well the metric and the average PTS of animal groups are 

correlated for the 18 noises at each frequency. Therefore, 6 noise correlations are 

calculated for each metric. For example, the noise correlation of Lem2 (9th metric) at 1 
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KHz (2nd frequency) is calculated from 18 pairs of data ( 9 1 18 2( : , )m g g f ; 

1 18 2( : , )PTS g g f ) by using Eq. (6).  A metric-PTS scatter plot similar to Fig. 6 (b) will be 

obtained but with 18 points.  

Overall correlation indicates the overall performance of the given metric. The overall 

correlation is calculated from the combined data set of the above two cases. The 

correlation is calculated from Eq. (6) using 108 (18 x 6) pairs of data 

( 9 1 18 1 6( : , : )m g g f f ; 1 18 1 6( : , : )PTS g g f f ). A single correlation value is obtained for each 

metric. Overall correlations were used to compare the metrics to select the best noise 

metric.  

 

Comparison of Frequency Correlations 

Considering the position theory of the basilar membrane responses, it is logical to expect 

good correlations between the frequency dependencies of the NIHL and the noise metric.  

A metric with a good frequency correlation will enable assessing the NIHL risk as a 

function of frequency.  Fig. 14 shows the correlations of the 14 metrics calculated as such 

for 18 noises in a color map, in which a darker color represents better correlation. Noise 

index in the horizontal axis indicates the noise the animals were exposed (see Table 1), 

and metric index in the y-axis indicates the afore-mentioned 14 noise metrics. An ideal 

metric would have good correlations with all 18 noises. 
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Figure 14. Correlation across frequencies between the PTS and noise metrics. 

 

For some unknown reason, no metric gave good correlations for noise G264 and G269 

(index 2 and 16).  The averaged correlation values of the 14 metrics re shown in Table 2.  

The two metrics that showed the highest correlation values are identified as metric 14 

( wT ) with averaged correlation of 0.614 and metric 1 ( eqL ) with averaged correlation of 

0.606.  It is also seen that all five modified equivalent SPL ( ( )emL ω  with 2,3,4,5,10α = ) 

show almost as good correlations as the top two metrics.    Correlation values of these 

two metrics are plotted in Fig. 15, which clearly show bad correlations with animal 

groups 2 and 16. Examination of the measured NIHL data did not reveal any abnormality 

for these groups; however the examination was of limited nature because the data is from 

a past study.   
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Metric 

Index 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Averaged 

Correlation 

0.606 0.394 0.596 0.575 0.517 0.476 0.443 0.380 0.565 0.555 0.561 0.563 0.573 0.614 

 

TABLE 2: Averaged correlation of metrics 
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Figure 15.  Correlation of two metrics with best across-frequency correlations. Solid line, 
( )wT ω ;  dashed line, ( )eqL ω .  

 

Frequency correlations can also be calculated from the A-weighted metrics.  The A-

weighting can be applied to the six 1/3 octave SPL time histories obtained from the AWT.  

Using these time histories to calculate the metrics, A-weighted metrics can be calculated. 

The correlation results when A-weighting is used are shown in Fig. 16.  Table 3 shows 
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the averaged correlations of the metrics calculated from A-weighted data. The top two 

metrics in this case are identified as maxL  (metric 3) with averaged correlation of 0.62, 

and ( )2dL K = (metric 4) with averaged correlation of 0.572.  The best two A-weighted 

metrics are plotted in Fig. 17.  While Lmax gives a better correlation than the best non-

weighted metric ( wT ), it is seen that the metrics calculated from non-weighted time 

histories give generally better correlations in general. Therefore, it is decided to use non-

weighted time series for the further correlation study.  

 

Metric 

Index 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Averaged 

Correlation 0.535 0.394 0.620 0.572 0.506 0.502 0.511 0.510 0.490 0.486 0.489 0.496 0.528 0.541 

 

TABLE 3: Averaged correlation between A-weighted metrics and PTS  
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Figure 16.  Frequency correlations when A-weighting is used. 
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Figure 17.  Correlation of two metrics with best across-frequency correlations when A-
weighting is used, solid line, maxL ; dashed line, ( )2dL K = . 
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Comparison of Overall Correlations 

An ideal noise metric should have the good frequency correlation as well as the noise 

correlation.  Such a metric will enable accurate assessment of the exposure risk to noises 

of any temporal or spectral characteristics as a function of frequency. The combined 

overall correlation calculated from all 108 data points, 6 frequency points by 18 noise 

groups, can be used to identify the best metric in that sense.   Table 4 shows the overall 

correlations values of the 14 metrics calculated from 108 pairs of the PTS data and 

calculated metric values.  When the initial data set composed of 18 noise groups (see 

Table 1) is used, metrics Lem2, Lem3 and Lem4 (Lem with α =2,3,4) showed the best overall 

correlations, 0.525, 0.52 and 0.51. The traditional metric Leq had the overall correlation 

of 0.48.  

 

Metric 

Index 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Corre-

lation 
0.488 0.056 0.421 0.199 0.127 0.100 0.086 0.062 0.503 0.502 0.494 0.486 0.476 0.382 

 

TABLE 4: Overall correlation values calculated for non-weighted metrics. Top 2 metrics 
are with 2emL α =  (0.503) and with 3emL α =  (0.502) 

 

Based on this data, Lem2 (Lem with α =2) is considered as the best metric. An additional 
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advantage of Lem2 is that it can be interpreted the same way as the traditional metric Leq 

for noises of high SPL. For example, Lem2 changes by 3-dB when Leq of the noise changes 

by 3-dB.  

 

Comparison of Noise Correlations 

Correlations can also be calculated for the data of 18 noise groups for a fixed frequency.  

In this case, the correlations are calculated from 18 pairs of {x} and {y} data.  {x} is the 

median values of the PTS of the 18 animal group and {y} is the metric values of the 18 

noises used to expose the group. The correlation calculated in this way indicates the 

ability of the noise metric to represent NIHL risks of different type of noises.  

Fig. 18 shows noise correlations of the 14 metrics calculated at 6 frequencies.  5 

variations of ( )emL ω  are identified as the metrics that give good noise correlations.  The 

noise correlation Lem2, the selected metric, calculated from the initial data set composed 

of 18 noise groups is shown in Fig. 19. It I seen that the correlation is very poor at two 

frequencies, 500 Hz and 1 KHz. As it is seen in Fig. 18, noise correlations of all other 

metrics were very poor at these two frequencies.  
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Figure 18. Correlations across noises between the PTS and noise metrics. 

  

 

Figure 19. Noise correlations of Lem2 of 6 frequency components calculated from the 
initial data set and expanded data set  
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The poor correlations at 0.5 KHz and 4 KHz contributed to lowering the overall 

correlation. To understand the cause of this problem, the PTS-Leq scatter plots for all 

individual animals were made at 6 frequency points as seen in Fig. 20. The scatter plots 

were made by matching Leq calculated each of the 18 noises and the PTS value of the 

animals in the group. Therefore, there are 214 data points.  The examination reveals that 

the Leq levels of all 18 noises are in much narrower narrow ranges at these the two 

frequencies than they are at other frequencies.  The range is only 12 dB at 500 Hz and 10 

dB at 4 KHz while the ranges are about 20 dB or higher at all other frequencies.  

It is believed that this made the data to be used for the calculation of the correlation ill-

conditioned. For an extreme example, if all chinchillas were exposed to the noises that 

have exactly at the same metric value, the points in the PTS – metric scatter plot will 

form a horizontal line, which will result in giving zero-valued correlation between the 

noise and metric.  
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Figure 20.  PTS-Leq scatter plots at six frequencies 

 

To correct this problem, the chinchilla noise exposure test data conducted with noises of 

lower levels was added to expand the range of the data. Table 5 shows the information of 

the additional test data, which was obtained from 61 chinchillas exposed to 5 different 

noises of 90 and 95-dBA. The data sets were added to the original data from 18 animal 

groups shown in Table 1. The expanded data is composed of a total of 275 chinchillas 

exposed to 23 different noises. This expanded data set was used for the rest of the study.  

Fig. 19 compares the noise correlations calculated at 6 frequencies using the initial data 

set composed of 18 noise groups and from the expanded data set composed of 6 noise 

groups. The comparison shows significant improvement of the noise correlations, 

especially at 0.5 KHz and 4 KHz.  This suggests that the frequency-by-frequency risk 

assessment of the noise, which this proposed research aims, has a good possibility of 
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success. 

The scatter plots of the PTS-Lem2 for all frequency points of the original and expanded 

datasets are shown in Fig. 21(a) and (b). The plot of the original set in Fig. 21 (a) is 

composed of 108 points (18 groups x 6 frequencies), while the plot of the expanded set in 

Fig. 21 (b) is composed of 138 points (23 groups x 6 frequencies). Comparison of the 

figures shows substantial improvement of the overall correlation. The actual value of the 

overall correlation improved from 0.525 (original data) to 0.680 (expanded data), which 

is a quite good correlation considering wide subject-to-subject variations of the data 

observed often animal test data (Cody et al., 1983).  

 

Noise  No. of chinchillas  Time Kertosis SPL (dBA) 

G‐47  12  3  90 

G‐48  11  32  90 

G‐56  11  35  90 

G‐57  15  3  95 

G‐58  12  41  95 

 

Table 5.  Additional Exposure Test Data Measured with Lower Exposure Levels 
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Figure 21. PTS-Lem2 scatter plots used to calculate the overall correlation of Lem2: (a) plot 
of the initial data (214 chinchillas of 18 groups), (b) plot of the expanded data set (275 
chinchillas of 23 groups)  

 

III. Design of Future NIHL Study and Test Protocol 

The proposed research is a part of the long-term effort of the PI to develop an improved 

NIHL risk assessment procedure for human. The long-term research plan composed of 

four stages is briefly explained in the following. The stages (1) and (2) were completed 

during this project.  The stages (3) and (4) are future researches. 

(1) Preliminary Research to Develop Basic Signal Analysis and Simulation Techniques  

 

In preparation for the long-term research program, basic analysis and simulation tools to 

be used in the risk assessment procedure were developed. The AWT, a special version of 

the wavelet transform, was developed as the basic signal analysis tool to characterize the 

noise [28-30]. An auditory system simulation model of human was developed based on 
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the AHAAH model. The model will be modified to a chinchilla model in the proposed 

research. A transfer function based method was developed to calculate the stapes 

displacement in response to the given noise by using measured transfer functions. The 

method can be applied to chinchilla, human, guinea pig and cat. See Section C, 

Preliminary Studies, for more details.  

(2) Development of the General Noise Metric for Chinchillas 

This stage of the research was conducted as the NIOSH R-21 project that is being 

reported. Fourteen metrics were designed to reflect effects of temporal and spectral 

changes of the noise in uniquely different ways. The noise metric best correlated with 

PTS of chinchillas induced by diversely different types of noise was identified based on 

the correlation study. The metric enables more accurate representation of the risk of 

highly transient noises such as an impulsive noise as well as steady, broadband noises. 

   

(3) Development of the General Noise Risk Assessment Procedure for Chinchillas:  

 

In this stage, a chinchilla version of the general noise risk assessment procedure will be 

developed as a prototype of the human version procedure to be developed in the future. 

The general noise metric developed in the previous research and a new concept called the 

equal auditory risk metric (EARM) curves will be the core concepts of the procedure. The 

procedure will be validated by using a set of chinchilla noise exposure data that was not 

used for the development of the procedure. Utilizing the experience gained through the 

development of the procedure during this research, a detailed research plan will be made 

for the development of the risk assessment procedure for human.      
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(4) Development of the Human Version of the Risk Assessment Procedure 

As the final goal of the long-term plan, the human version of the NIHL risk assessment 

procedure will be developed and validated. The procedure will contribute to improving 

occupational health of workers in the United States as well as other nations by enabling 

more accurate assessment of the risk of industrial noises including impulsive and 

complex noises.  

 

Results and Discussion 

A special version of the AWT developed in this research is an ideal signal analysis tool 

that can be applied to the development of the noise metric. The AWT will be used as a 

part of the noise guideline in the future.  The signal analysis method developed in this 

work can be used as a basic tool for the noise exposure research and noise risk analysis 

methods.  

Fourteen different designs of noise metrics were studied to identify a more general form 

of noise metric that be used to for more accurate assessment a of risks of impulsive or 

complex noises.  The metrics were designed so that they reflect time-frequency 

characteristics of the noise in uniquely different ways.  The 14 noise metrics were 

evaluated initially based on their correlations with an existing animal noise exposure 

study data obtained from 18 groups of chinchillas exposed to respectively different types 

of noise of 100-dBA.  
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Noise metrics were calculated with and without using A-weighting, resulting in un-

weighted and A-weighted noise metrics.  It was seen that un-weighted noise metrics 

showed generally better correlations with PTS data than A-weighted metrics.  This 

contradicts with the current practice of using the A-weighted SPL as the metric.   

Three types of correlations of the noise metrics were calculated, which are frequency 

correlation, noise correlation and the overall correlation.   When no frequency weighting 

is used, ( ) and ( )w eqT Lω ω were identified as the metrics that showed best correlations 

with measured PTS across frequencies. All modified equivalent SPLs, ( ),emL ω  

2,3,4α = , 5 and 10 showed nearly as good frequency correlations.  Two modified 

equivalent SPL, ( ), 4 and 5emL ω α =  showed best noise correlations.  For the overall 

correlations, ( ), 2 and 3emL ω α =  were identified as the best metrics, which had 

correlation values of 0.503 and 0.502. The traditional metric ( )eqL ω  calculated as a 

function of frequency also showed relatively a good overall correlation value of 0.488.  

It was found that all noise metrics have very poor noise correlations at 0.5 KHz and 4 

KHz. Inspecting the Leq - PTS relationship, it was found that the range of the noise level 

the 18 noises used in the original exposure data was too narrow at those two frequencies. 

To correct the problem, additional test data obtained from 61 chinchillas exposed to 5 

different noises of 90 and 95-dBA was added to expand the data set.  Correlation study 

was conducted by statistically comparing the metric values calculated from the noise and 

the PTS measured in the chinchillas exposed to the noise. The overall and noise 

correlations showed substantial improvement. For example, the overall correlation of Lem2 
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improved from 0.525 (original data) to 0.680 (expanded data), 

Based on the correlation study, metric ( ) with 2emL ω α =  calculated from un-weighted 

SPL time histories is considered as the best metric to assess risk of a wide range of noises 

including impulsive and complex noise.  An additional advantage of Lem2 is that it can be 

interpreted the same way as the traditional metric Leq if the SPL of the noise is 

sufficiently high, as in most cases in that NIHL is concerned.  

 

Conclusion  

A special type analytic wavelet transform (AWT) developed for transient signal analysis 

of noises and an improved noise metric identified for the future noise guidelines are two 

major contributions of this research.  

The AWT, a special type of the wavelet transform, has not been widely used despite its 

many advantages.  We developed a special version of the AWT that is ideal for transient 

noise signal analysis.  The method will serve as the signal analysis tool to assess the 

exposure risk to general type of noises.     

By utilizing the unique capability of the AWT, fourteen designs of advanced forms of 

noise metrics were developed and compared.  The noise metrics were calculated from the 

1/3 octave SPL time histories obtained with AWT, therefore are functions of time and 

frequency. Correlation study conducted utilizing the PTS data measured from chinchillas 

exposed to a total of 21 different noises identified metric Lem2 as the best noise metric.  
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Lem2 is a metric defined by modifying Leq to account for the noise only when its 

instantaneous SPL exceeds the given threshold value.        

Development of an improved noise guideline is the future research that can be extended 

from this work.  The signal processing method and the noise metric developed and 

identified in this research will serve as the basis of the new noise guideline to be 

developed in the future.  
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