Closeout Report A) FINAL PROGRESS REPORT

Title Page

Principal Investigator: Debra J. Romberger, MD

Address: University of Nebraska Medical Center

Dept. of Internal Medicine

Pulmonary, Critical Care, Sleep & Allergy Division

985300 Nebraska Medical Center

Omaha, NE 68198-5300

402 559 4875

dromberg@unmc.edu

Grant awarded to: Board of Regents of the University of Nebraska

Address: 987835 Nebraska Medical Center

Omaha, NE 68198-7835

Project title: Organic Dust Epithelial PKC Activation & Airway Disease

Date of report: October 25, 2010
Co-Investigators: Myron Toews
William West

Todd Wyatt
Jane Meza

Narasimham Parinandi

Grant number: R01 OH008539 Start & end dates: 8/1/2006-7/31/2010

Romberger, Debra J. 5R01OH008539

Table of Contents

A. Final Progress Report	1-11
Title Page	1
Table of Contents	2
List of Terms/Abbreviations	3
Abstract	4
Section 1	5-6
Highlights/Significant Findings	5
Translation of Findings	5
Outcomes/Relevance/Impact	5-6
Section 2: Scientific Report	6-10
Background	6
Specific Aims	6
Procedures/Methodology	6-7
Results and Discussion	7-9
Conclusion	9-10
Publications	10-11
Inclusion of Gender and minority study subjects	11
Inclusion of children	11
Materials available for other investigators	11
B. Final Financial Status Report Forms	12

List of Terms & Abbreviations

bronchoalveolar lavage fluid (BAL) chronic obstructive pulmonary disease (COPD) concentrated animal feeding operations (CAFOs) epidermal growth factor receptor (EGFR) hog barn dust extract (HDE) intercellular adhesion molecule (ICAM-1) interleukin 6 (IL-6) interleukin 8 (IL-8) lysophosphatidic acid (LPA) protein kinase C (PKC) tumor necrosis factor-alpha (TNF-alpha)

Abstract

Exposure to organic dusts is a cause of airway disease, including chronic obstructive pulmonary disease (COPD). As many as 20% of COPD cases are attributed to occupational exposures. In rural areas, an important source of dust exposure occurs in hog concentrated animal feeding operations (CAFOs). Persons exposed to hog CAFOs have airway inflammation and an increased incidence of COPD. Although many substances are present in hog barn dust that induce inflammation, actual mechanisms leading to COPD are not well defined. Understanding mechanisms of hog barn dust-induced airway disease is relevant in developing both targeted treatment and prevention strategies.

Epithelial cells within the airways respond to inhaled agents with the release of cytokines that recruit and activate inflammatory cells and expression of molecules that serve as receptors and ligands for interactions with other cells. Previously, we observed that hog barn dust extract (HDE) augments human airway epithelial protein kinase C (PKC) activation, resulting in IL-8 and IL-6 release and increased ICAM-1 expression, mediating inflammatory cell adhesion to airway epithelium *in vitro*.

The objective of this proposal was to define mechanisms by which hog barn dust activates epithelial cell PKC and the role of PKC in airway inflammation associated with chronic bronchitis occurring in confinement facility workers and to determine the role of hog barn dust-related lysophosphatidic acid (LPA), an important lipid mediator, in modulating dust effects on PKC and inflammatory responses. We addressed our objective with these specific aims:

- 1) Determine the biochemical nature and specific identity of factor(s) in HDE that activate epithelial cell PKC and identify the specific PKC isoenzymes activated by HDE and these factors.
- 2) Establish how HDE-associated lysophosphatidic acid (LPA) modulates HDE-induced epithelial cell PKC activity and IL-8/IL-6 release.
- 3) Identify mechanisms by which HDE augmentation of epithelial cell PKC *in vitro* mediates recruitment and adhesion of inflammatory cells to airway epithelium *in vitro*.
- 4) Determine how HDE modulates airway epithelial PKC activation and inflammatory responses *in vivo* utilizing an animal model of exposure, including testing the potential role of LPA.

The results of our studies support that several components of dusts found in hog CAFOs contribute to airway inflammation in workers in these facilities. Although endotoxin (from Gram-negative bacteria in the environment) is an important constituent of such dusts and a constituent of dusty environments that can be monitored, our data provides evidence that endotoxin alone is not the only important component of dusts in terms of respiratory disorders. We have observed that substances from Gram-positive bacteria (peptidoglycan) and proteases within the dust contribute substantially to airway epithelial inflammation. Better understanding of factors in dust that elicit airway inflammation is critical to enhancing the design of monitoring and prevention strategies for animal confinement facilities to protect the respiratory health of workers.

We have created a mouse model with dust from hog confinement facilities (using intranasal exposure of dust extract) that demonstrates several features that are similar to respiratory disease seen in workers. This model shows a brisk initial inflammatory response to the dust extract, the development of some tolerance to the dust with repeated exposure, but significant lung inflammation with continued exposure. This animal model is important in ongoing work that allows us to study the mechanisms by which dust causes inflammation and to then test specific interventions to see if they improve the inflammation.

Our data has provided new insights into the basic mechanisms by which dusts from confinement facilities cause inflammation in airways. We have demonstrated that dusts of swine confinement facilities activate specific isoforms of an important cell-signaling molecule protein kinase C (PKC) that regulates inflammatory mediator release of airway epithelial cells and inflammatory cell interactions with the epithelial cells. By defining the role of this important cell-signaling molecule in dust-induced airway inflammation, we can explore potential therapeutic interventions for airway disease focused on mediating the effect of dust on this pathway.

Section 1

Highlights/Significant Findings

Our data supports that several components of dusts found in swine confinement facilities contribute to airway inflammation in those working in these confinement facilities. Although endotoxin (from Gram-negative bacteria in the environment) is an important constituent of such dusts and a constituent of dusty environments that can be monitored, our data provides evidence that endotoxin alone is likely not the only important component of dusts in terms of respiratory disorders. We have observed that substances from Gram-positive bacteria (peptidoglycan) and proteases within the dust contribute substantially to airway epithelial inflammation. Better understanding dust factors that elicit airway inflammation is critical to enhancing the design of monitoring and prevention strategies for animal confinement facilities to protect the respiratory health of workers in these environments.

We have created a mouse model with dust from swine confinement facilities (using intranasal exposure of dust extract) that demonstrates several features that are similar to respiratory disease seen in workers. This model shows a brisk initial inflammatory response to the dust extract, the development of some tolerance to the dust with repeated exposure, but significant lung inflammation despite the tolerance with continued exposure. This animal model is important in ongoing work that allows us to study the mechanisms by which dust causes inflammation and to then test specific interventions to see if they improve the inflammation.

Our data has provided new insights into the basic mechanisms by which dusts from confinement facilities cause inflammation in airways. We have demonstrated that dusts of swine confinement facilities activate specific isoforms of an important cell-signaling molecule protein kinase C (PKC) that regulates inflammatory mediator release of airway epithelial cells and inflammatory cell interactions with the epithelial cells. By defining the role of this important cell-signaling molecule in dust-induced airway inflammation, we can explore potential therapeutic interventions for airway disease focused on mediating the effect of dust on this pathway.

Translation of Findings

Our finding that endotoxin in dust from swine confinement facilities is not solely responsible for airway inflammation sets the groundwork for continued definition of the role of other components of the dust (molecules from Gram-positive bacteria and proteases) that should be monitored in order to provide the safest environment for workers in swine confinement facilities and likely other concentrated animal feeding operations (CAFOs). We expect to further define the importance of the various components of CAFO dusts. The long-term goal is to determine if monitoring of specific components is useful in terms of predicting respiratory symptoms and disease of workers and if strategies aimed at reducing these components are effective in improving the environment in terms of respiratory disease for workers.

Our findings regarding the cellular processes regulated by dust exposure and our animal model of dust exposure set the stage for testing whether specific therapies can be used to treat workers with respiratory disease in the future.

Outcomes/Relevance/Impact

This study has provided new information about cellular processes by which dust from swine CAFOs causes inflammation in the airways of workers. In addition, this study has provided further information about the potential role of a variety of components in dust besides endotoxin that may be important in respiratory disease in workers. Furthermore, we have created an animal model of dust exposure that will allow us to test whether specific future therapeutic interventions may have value in treating workers with respiratory disease. The findings from this study provide potential outcomes in terms of determining components of the environment in CAFOs that should be more closely monitored with the long-term goal of better prevention strategies for respiratory disease in CAFO workers. Similarly, our findings using cells and the mouse model

provide potential outcomes in terms of developing new therapeutic strategies for airway disease of CAFO workers.

Section 2

Scientific Report

Background: Exposure to organic dusts is a cause of airway disease, including chronic obstructive pulmonary disease (COPD). As many as 20% of COPD cases are attributed to occupational exposures. In rural areas, an important source of dust exposure occurs in hog confinement barns. Persons exposed to hog barns have airway inflammation and an increased incidence of COPD. Although many substances are present in hog barn dust that induces inflammation including endotoxins, actual mechanisms leading to COPD are not well defined. Understanding mechanisms of hog barn dust-induced airway disease is relevant in developing both targeted treatment and prevention strategies.

Epithelial cells respond to inhaled agents with the release of cytokines that recruit and activate inflammatory cells and expression of molecules that serve as receptors and ligands for interactions with other cells. We previously observed that hog barn dust extract (HDE) augments human airway epithelial protein kinase C (PKC) activation, resulting in IL-8 and IL-6 release and increased ICAM-1 expression, mediating inflammatory cell adhesion to airway epithelium *in vitro*. At the start of this project, we had preliminary data using an intranasal exposure to HDE in mice that HDE lead to an increase in airway epithelial PKC activation and inflammatory responses *in vivo*. We had also observed that epithelial cell exposure to HDE results in an increase of the lipid mediator lysophosphatidic acid (LPA). Treatment with phospholipase B to inactivate LPA inhibits HDE-stimulated IL-6 and IL-8 release. The role of LPA induced by hog barn dust in directing airway inflammation is not known.

The objective of this proposal was to define mechanisms by which hog barn dust activates epithelial cell PKC and the role of PKC in airway inflammation associated with chronic bronchitis/COPD occurring in confinement facility workers and to determine the role of hog barn dust-related LPA, an important lipid mediator, in modulating dust effects on PKC and inflammatory responses.

Specific Aims: 1) Determine the biochemical nature and specific identity of factor(s) in HDE that activate epithelial cell PKC and identify the specific PKC isoenzymes activated by HDE and these factors. 2) Establish how HDE-associated lysophosphatidic acid (LPA) modulates HDE-induced epithelial cell PKC activity and IL-8/IL-6 release.

- 3) Identify mechanisms by which HDE augmentation of epithelial cell PKC *in vitro* mediates recruitment and adhesion of inflammatory cells to airway epithelium *in vitro*.
- 4) Determine how HDE modulates airway epithelial PKC activation and inflammatory responses *in vivo* utilizing an animal model of exposure, including testing the potential role of LPA.

Procedures/Methodology: To study the effects of HDE on airway epithelial cell inflammatory responses, we used human airway epithelial cells in culture. We have utilized predominantly BEAS-2B human airway epithelial cells (cell line) in submerged cell culture system. We have confirmed all key observations with primary human bronchial epithelial cells in a similar culture system. The epithelial cell inflammatory responses investigated have been primarily IL-6, IL-8, and TNF-alpha release (utilizing ELISA methods) and ICAM-1 expression of epithelial cells utilizing flow cytometry methods. PKC activity including PKC-alpha and PKC-epsilon specific activity was measured. We have also investigated inflammatory cell adhesion (predominantly human neutrophils) to airway epithelial cells *in vitro*.

We have also used an *in vivo* model of HDE exposure. Mice receive intranasal instillation of 12.5% dust extract or saline control once (single exposure) or once daily for 2 weeks (repetitive exposure). Animal food intake and body weight is monitored to ensure that the changes in lung pathology are not due to weight loss as opposed to actual treatment effects. We have not found changes in dust-exposed wildtype mice. The

parameters measured in mice have included bronchoalveolar lavage fluid (BAL) for cell numbers, cell types, and cytokines; histology; airway hyper-responsiveness; and epithelial cell PKC activity.

Results and Discussion: Regarding specific aim 1 and the nature of factor(s) in dust and dust extract, we have observed that there are multiple substances that have yet to be specifically identified that influence airway epithelial cell function including cytokine release (IL-6/8 and TNF-alpha) and PKC activity. In collaboration with Dr. Myron Toews (co-Investigator), we fractionated HDE using Sephadex G-100 columns. We have found multiple components within HDE that influence IL-8, IL-6, as well as epidermal growth factorreceptor (EGFR) binding and phosphorylation of airway epithelial cells (see role of EGF in results from Aim 2 below). Some fractions are proteinase K sensitive and others are not. Some fractions that augment airway epithelial cell IL-6 and IL-8 release are dependent on EGFR activation and others are not. Our studies to date with mass spectroscopy analysis of these fractions have demonstrated several interesting substances including proteases. Thus, we subsequently analyzed several swine confinement dusts extracts by zymography and demonstrated that HDE contains protease activity and this activity is sensitive to protease inhibitors (PMSF, AEBSF). Treatment of airway epithelial cells with various exogenous proteases (trypsin, thrombin, MMP-2/9, porcine pancreatic elastase) or with HDE induces release of IL-6/8 and TNF-alpha. Pretreatment of HDE with PMSF or AEBSF significantly attenuates the HDE-induced release of IL-6/8 and TNF-alpha. In addition, HDE-induced cytokine release can be inhibited by pretreatment with protease activated receptor antagonists. We presented data regarding the presence of proteases including porcine pancreatic elastase in HDE and its role in mediating airway epithelial cell cytokine release as a poster at the May 2010 meeting of the American Thoracic Society meeting. A manuscript is currently being prepared and these studies have provided important preliminary data for our ongoing NIOSH-sponsored work.

In collaboration with Dr. Jill Poole (NIEHS KO8 awardee mentored by Dr. Romberger), we have performed a number of additional analyses of our swine CAFO dusts. Semi-quantitative elemental analysis by inductively coupled plasma-mass spectrometry revealed trace metals (B, Mg, Ti, Mn, Fe, Co, Ni, Cu, Rb, Mo, Zn). However, dust that is heat-inactivated at 120°C (a process that inactivates the biologics and leaves the metals intact) did not result in ust-induced inflammatory or immune changes, indicating that metals and particulates are likely not playing a critical role. Bacterial counts of the dust revealed that approximately 98% of the colonies were Gram-positive bacteria (Staphylococcus, Bacillus, Streptomycetes, Enterococci), while the remaining 2% were Gram-negative bacteria. Mass spectrometry analysis demonstrated that swine CAFO dust had 10 times more muramic acid (reflecting peptidoglycan typically from Gram-positive bacteria) than house dust, elevated levels of 3-hydroxy fatty acids indicating endotoxin (two-fold) and no difference in ergosterol (reflecting fungi). These data further support the potential importance of Gram-positive bacteria in swine CAFOs that has also been suggested by others.

Regarding Aim 2, our preliminary data suggesting that HDE-associated lysophosphatidic acid (LPA) modulates HDE-induced epithelial cell PKC activity and IL-8/IL-6 release have not proven correct. However, pursuit of this aim (comparing effects of LPA and HDE) has led to interesting observations regarding the effect of HDE on epidermal growth factor receptors (EGFRs) of airway epithelial cells. Cell membrane receptors (such as EGFRs) by which HDE initiates release of IL-6/8 and TNF-alpha are not clearly identified. Because several other inhaled agents induce airway epithelial cell responses through EGFR activation, we hypothesized that HDE would activate EGFRs and that EGFRs would be required for some of the responses to HDE. Indeed, exposure of BEAS-2B cells to HDE caused EGFR phosphorylation and downstream ERK activation, and the EGFR-selective kinase inhibitor, AG1478, blocked both responses. Both AG1478 and EGFR-neutralizing antibody reduced HDE-stimulated IL-6 and IL-8 release by about half. Similar EGFR phosphorylation and requirement for maximal IL-6 and IL-8 release were found with primary isolates of human bronchial epithelial cells. Because HDE-stimulated IL-6 and IL-8 release involve the Ca²⁺-dependent PKCα, we hypothesized that HDE would induce intracellular Ca²⁺ mobilization. HDE exposure induced intracellular Ca²⁺ mobilization in Beas-2B cells, but this response was neither mimicked by EGF nor inhibited by AG1478. Thus,

HDE activates EGFRs and their downstream signaling, and EGFR activation is required for some but not all airway epithelial cell responses to HDE. This data has recently been submitted as a manuscript.

Regarding Aim 3 to identify mechanisms by which HDE augmentation of epithelial cell PKC *in vitro* mediates recruitment and adhesion of inflammatory cells to airway epithelium *in* vitro and in collaboration with Dr. Wyatt (co-Investigator), we have reported on the sequential activation of PKC isoforms in regulating cytokine release. HDE stimulates PKC α activity by 1 h, and within 6 h the activity returns to baseline. PKC α -specific inhibitor or PKC α DN cells, abolish this HDE-mediated effect. Both IL-6 and IL-8 release are likewise diminished under these conditions compared to normal human airway epithelial cells, and treatment with TNF α neutralizing antibody does not further inhibit cytokine release. In contrast, PKC ϵ activity was enhanced by 6 h after HDE treatment. TNF α blockade abrogated this effect. HDE-stimulated IL-6, but not IL-8 release in PKC ϵ DN cells. The concentration of TNF α released by HDE-stimulated airway epithelial cells is sufficient to have a potent cytokine-eliciting effect. A time course of TNF α release suggests that TNF α is produced after PKC α activation, but before PKC ϵ . These results suggest a temporal ordering of events responsible for the release of cytokines, which initiate and exacerbate inflammatory events in the airways of people exposed to agricultural dust (reference # 4 in Publications section).

We have also performed experiments that have demonstrated that HDE augments neutrophil adhesion to airway epithelial cells in vitro (outlined in Specific Aim 3). We have observed that airway epithelial cells exposed to HDE support greater neutrophil adhesion that is concentration- and time-dependent. Pretreatment of neutrophils with HDE (instead of airway epithelial cells) does not alter neutrophil adhesion to cultured airway epithelial cells, demonstrating the importance of HDE influence on airway epithelial cells in this adhesion assay. The effect of HDE on neutrophil adhesion to airway epithelial cells is substantially inhibited by pretreatment with two PKC isoform pharmacological inhibitors (PKC-alpha inhibitor, Gö6976 and PKC-epsilon inhibitor RO-318220). Furthermore, airway epithelial cells expressing inactive PKC-alpha or PKC-epsilon did not support enhanced neutrophil adhesion when exposed to HDE, also demonstrating the role of these two PKC isoforms in mediating the HDE regulation of neutrophil adhesion to airway epithelial cells. We have previously reported that HDE enhances the expression of ICAM-1 of airway epithelial cells and neutrophil adhesion to airway cells was inhibited by ICAM-1 antibody. These experiments confirm that HDE exposure augments inflammatory cells, specifically neutrophil, adhesion to airway epithelial cells that is mediated by specific PKC isoforms (alpha and epsilon). These data were presented as an oral presentation at the May 2009 American Thoracic Society meeting. Additional studies this past year have demonstrated that HDE is augmenting TNF-alpha converting enzyme activity that also contributes to the neutrophil adhesion to airway epithelial cells and can be attenuated by exposure to ethanol. An abstract to the 2011 American Thoracic Society meeting will be submitted and a manuscript is under preparation on this most recent data.

Regarding Specific Aim 4, we have now published the effects of single versus repetitive dust-induced airway inflammation in mice by the intranasal exposure method. Mice were exposed to swine facility dust extract (DE) or saline once and once daily for 1 and 2 weeks. Dust exposure resulted in increased bronchoalveolar lavage fluid neutrophils and macrophages after single and repetitive exposures. Lavage fluid TNF α , IL-6, KC, and MIP-2 were significantly increased after single and repetitive dust exposures, but were dampened in 2-week dust-exposed mice as compared to single exposure. Dust exposure induced protein kinase C (PKC) alpha and epsilon activation in isolated tracheal epithelial cells, but was dampened with repetitive exposures. *Ex vivo* stimulation of alveolar macrophages from 2 week animals demonstrated reduced cytokine responsiveness and phagocytic ability. Significant lung pathology occurred with heterogeneity of mixed mononuclear cellular aggregates (T- and B-lymphocytes, phagocytes) after repetitive dust exposure, a novel observation. Airway hyper-responsiveness to methacholine occurred after single dust exposure, but resolved after 2 weeks. Collectively, intranasal exposure to DE results in significant lung inflammatory and pathologic responses marked by a modulated innate immune response to single and repetitive dust exposures that is associated with PKC activity (reference # 5 in Publications section). This mouse model will be used in

our ongoing NIOSH work to determine whether strategies aimed at manipulating specific cytokines, PKC activation, and protease activity will be useful in an *in vivo* setting.

To further delineate mechanisms by which dust from swine confinement facilities regulates cellular inflammatory processes and in collaboration with Dr. N. Parinandi (subcontract at Ohio State University) in conjunction with Aim 1, we examined swine dust (SD)-induced reactive oxygen species (ROS) formation by the RAW 264.7 and human monocyte-derived macrophages. SD (0.25-1 mg/ml), following 2h of treatment. induced maximal intracellular ROS generation (as measured by the DCFDA fluorescence) by both cell systems. Superoxide dismutase (SOD 100 units) and SOD mimetic (MnTBAP, 5µM) significantly attenuated SD-induced ROS generation by the macrophages. Diphenyleneiodonium (50 µM) and oxipurinol (100 µM) completely blocked SD-induced ROS formation by the cells, followed by significant but partial inhibition of the same offered by rotenone (100 µM), suggesting the role of NADPH oxidase and xanthine oxidase to a greater extent and respiratory electron transport to a lesser extent in SD-induced ROS generation by the macrophages. N-acetylcysteine (5 mM) and desferal (1 mM) significantly attenuated SD-induced ROS generation by the cells, indicating the role of thiol-redox and intracellular iron, therein. These data indicated that SD-induced ROS formation by the macrophages was mediated by NADPH oxidase, xanthine oxidase, and respiratory electron transport, involving thiol-redox and intracellular iron. We also demonstrated that SD induced MIP-1a/CCL3 and IL-8 cytokine release from macrophages, implicating the role of inflammation in the process. Furthermore, N-acetylcysteine, the thiol-redox antioxidant, attenuated the SD-induced cytokine secretion by the macrophages, suggesting the role of oxidative stress in mediating the cytokine secretion by macrophages. Although the role of ROS in airway epithelial cells has not been extensively studied with Dr. Parinandi, we have not found N-acetylcysteine or desferal to be effective in attenuating airway epithelial cell IL-6 and IL-8 release, suggesting that HDE regulates various types of cells using different mechanisms.

Because of this project, we established a new collaboration with Dr. Bidasee at UNMC. The purpose of the collaboration was to assess whether HDE contains components that are capable of binding to and modulating the activity of type 1 ryanodine receptor Ca2+-release channel (RyR1), a key regulator of skeletal muscle function. HDE collected from confinement facilities were extracted with chloroform, filtered, and rotary evaporated to dryness. Residues were resuspended in hexane-chloroform (20:1) and precipitates, referred to as HBDorg, were air-dried and studied further. In competition assays, HBDorg dose-dependently displaced [3H]ryanodine from binding sites on RyR1 with an IC50 of 1.5±0.1 microg/ml (Ki=0.4±0.0 microg/ml). In single-channel assays using RyR1 reconstituted into a lipid bilayer, HBDorg exhibited three distinct dose-dependent effects: first it increased the open probability of RyR1 by increasing its gating frequency and dwell time in the open state, then it induced a state of reduced conductance (55% of maximum) that was more likely to occur and persist at positive holding potentials, and finally it irreversibly closed RyR1. In differentiated C2C12 myotubes, addition of HBD triggered a rise in intracellular Ca2+ that was blocked by pretreatment with ryanodine. Because persistent activation and/or closure of RyR1 results in skeletal muscle weakness, these new data suggest that HDE is responsible, at least in part, for the muscle ailment reported by hog confinement workers. These data have been published (reference #1 in Publications section).

We have collaborated extensively with Dr. Jill Poole whose research focus is on determining mechanisms by which CAFO dust exposure influences immune function including adaptation responses. With her, we have observed that repeat HDE exposure modulates inflammatory mediator production in human monocytes independent of endotoxin, consistent with an adaptation response. In addition, the ability of PKC to be reactivated contributes to this response. We have also observed that repetitive organic dust exposure significantly decreases markers of antigen presentation and host defense function in monocyte-derived macrophages.

Conclusions: This project has provided data that dust in swine CAFOs has multiple components that are capable of inducing inflammatory mediators from airway epithelial cells including IL-6, IL-8 and TNF-alpha. Although endotoxin is recognized as a biological component of dust that results in inflammation and has been

monitored is some settings, our data supports that other components of dust are also important in inducing inflammation that can result in respiratory disease in workers. This suggests that monitoring of other components including components of Gram-positive bacteria may also have value in terms of better identifying environments within CAFOs that are likely to be associated with respiratory disease.

Our data have demonstrated that PKC isoforms (alpha and epsilon) are critically involved in dust extract stimulation of inflammatory cytokines of airway epithelial cells *in vitro* as well as interactions between epithelial cells and neutrophils. In addition, we have developed an animal model of dust exposure that supports that our *in vitro* observations are relevant to an *in vivo* setting. Our mechanistic studies including use of the animal model have set the stage for us to continue translational studies aimed at determining how we can mediate dust-induced PKC activation in the airway with a goal of defining novel therapeutic approaches to lung disease in CAFO workers.

Publications

- 1. Tian C, Shao CH, Fenster DS, Mixan M, Romberger DJ, Toews ML, Bidasee KR. Chloroform extract of hog barn dust modulates skeletal muscle ryanodine receptor calcium-release channel (RyR1). J Appl Physiol. 2010 Sep;109(3):830-9. Epub 2010 Jun 24. PubMed PMID: 20576841; PubMed Central PMCID: PMC2944631.
- 2. Poole JA, Dooley GP, Saito R, Burrell AM, Bailey KL, Romberger DJ, Mehaffy J, Reynolds SJ. Muramic acid, endotoxin, 3-hydroxy fatty acids, and ergosterol content explain monocyte and epithelial cell inflammatory responses to agricultural dusts. J Toxicol Environ Health A. 2010 Jan;73(10):684-700. PubMed PMID: 20391112; PubMed Central PMCID: PMC2856089.
- 3. Poole JA, Thiele GM, Alexis NE, Burrell AM, Parks C, Romberger DJ. Organic dust exposure alters monocyte-derived dendritic cell differentiation and maturation. Am J Physiol Lung Cell Mol Physiol. 2009 Oct;297(4):L767-76. Epub 2009 Jul 31. PubMed PMID: 19648285; PubMed Central PMCID: PMC2770789.
- 4. Wyatt TA, Slager RE, Heires AJ, Devasure JM, Vonessen SG, Poole JA, Romberger DJ. Sequential activation of protein kinase C isoforms by organic dust is mediated by tumor necrosis factor. Am J Respir Cell Mol Biol. 2010 Jun;42(6):706-15. Epub 2009 Jul 27. PubMed PMID: 19635931; PubMed Central PMCID: PMC2891498.
- 5. Poole JA, Wyatt TA, Oldenburg PJ, Elliott MK, West WW, Sisson JH, Von Essen SG, Romberger DJ. Intranasal organic dust exposure-induced airway adaptation response marked by persistent lung inflammation and pathology in mice. Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L1085-95. Epub 2009 Apr 24. PubMed PMID: 19395665; PubMed Central PMCID: PMC2692812.
- 6. Bailey KL, Meza JL, Smith LM, Von Essen SG, Romberger DJ. Agricultural exposures in patients with COPD in health systems serving rural areas. J Agromedicine. 2007;12(3):71-6. PubMed PMID: 19042672.
- 7. Bailey KL, Poole JA, Mathisen TL, Wyatt TA, Von Essen SG, Romberger DJ. Toll-like receptor 2 is upregulated by hog confinement dust in an IL-6-dependent manner in the airway epithelium. Am J Physiol Lung Cell Mol Physiol. 2008 Jun;294(6):L1049-54. Epub 2008 Mar 21. PubMed PMID: 18359883; PubMed Central PMCID: PMC2749499.

- 8. Poole, J. A., T. LeVan, R. E. Slager, F. Qiu, L. Severa, J. Yelinek, M. L. Carlson, J. Bush, N. Bolin, T. A. Wyatt, D. J. Romberger, S. G. Von Essen. Bronchodilator Responsiveness in Swine Veterinarians. J. Agromedicine, 2008 12: 49-54.
- 9. Slager RE, Allen-Gipson DS, Sammut A, Heires A, DeVasure J, Von Essen S, Romberger DJ, Wyatt TA. Hog barn dust slows airway epithelial cell migration in vitro through a PKCalpha-dependent mechanism. Am J Physiol Lung Cell Mol Physiol. 2007 Dec;293(6):L1469-74. Epub 2007 Oct 12. PubMed PMID: 17934063.
- 10. Poole JA, Wyatt TA, Von Essen SG, Hervert J, Parks C, Mathisen T, Romberger DJ. Repeat organic dust exposure-induced monocyte inflammation is associated with protein kinase C activity. J Allergy Clin Immunol. 2007 Aug;120(2):366-73. Epub 2007 Jun 6. PubMed PMID: 17555806.

Under review: Dodmane PR, Schulte NA, Heires AJ, Band H, Romberger DJ, Toews ML. Airway Epithelial EGF Receptor Mediates Hogbarn Dust-Induced Cytokine Release But Not Ca2+ Response. (submitted to Am J Respir Cell Mol Biol.)

Inclusion of Gender and minority study subjects Not applicable.

Inclusion of children Not applicable.

Materials available for other investigators

Published materials and methods are available to other investigators.

FINANCIAL STATUS REPORT

(Short Form)

(Follow instructions on the back)

-	cy and Organizational Element ort is Submitted	2 Federal Grant or Other Identifying Number Assigned By Federal Agency			OMB Approval No.	Page of
DH	HS/CDC/NIOSH	5 R01 OH008539-04				1 1
3 Recipient Org	anization (Name and complete	address, including ZIP code))			pages
Sponsored Pr	Nebraska Medical Center ograms Accounting aska Medical Center 88198-5100					
4 Employer Ider	ntification Number	5 Recipient Account Num	ber or Identifying Number		7. Basis	•
o Eunding/Oran	1470049123A6	34-5237	7-2006-004	Yes 🗵 No	⊠ Cash □ Ac	crual
From: (Month	t Period (See Instructions) n, Day, Year) 8/1/2006	To: (Month, Day, Year) 7/31/2010	 Period Covered by this From: (Month, Day, Y 8/1/t 	•	To: (Month, Da 7/31/3	•
10 Transactions			I Previously Reported	II This Period	II Cumu	
a. Total ou	utlays		958,110.67	343,524.90		1,301,635.57
b. Recipie	nt share of outlays		w			-
c. Federal	I share of outlays		958,110.67	343,524.90		1,301,635.57
d. Total ur	nliquidated obligations					
e. Recipient share of unliquidated obligations					-	
f. Federal share of unliquidated obligations					-	
g. Total Federal share (sum of lines c and f)					1,301,635.57	
h. Total Federal funds authorized for this funding period		e e e Habilia		1,360,000.00		
I. Unoblig	ated balance of Federal funds	· <u>-</u> ,				58,364.43
11 Indirect	a. Type of Rate (Place "X" in	appropriate box) □ Provisional ⊠	☑ Predetermined □] Finat □ Fixed		
Expense	b. Rate	c. Base	☑ Predetermined □ d. Total Amount	Final Li Fixed	e. Federal Sha	ire
,	47.00%	838,399.81	394,047.91			394,047.91
12 Remarks: Atta legislation	university of Nebraska Medica of \$58,364.43				th governing	
13 Certification:	I certify to the best of my kn				ys and	
Typed or Printed Na	unliquidated obligations are	for the purposes set forth	in the award documents.		imber and extens	elon\
Typed or Printed Name and Title Alan Reeves Accountant, Connected Reserves Accounting			Telephone (Area code, number and extension) (402) 559-5818			
	zed Certifying Official	Sponsored Programs Ac	counting	Date Report submitted		
Clan Roem			-	l '	21/2010	
NSN 7540-01-218-4387 269-202			9-202	S	tandard Form 26	9A (Rev. 7-97

Prescribed by OMB Circulars A-102 and A-110

Department of Health and Human Services Final Invention Statement and Certification (For Grant or Award)

DHHS Grant or Award No.

5R01OH008539-04

A. We hereby certify that, to the best of our knowledge and belief, all inventions are listed below which were conceived and/or first actually reduced to practice during the course of work under the above-referenced DHHS grant or award for the period through 08/01/2006 07/31/2010 original effective date date of termination B. Inventions (Note: If no inventions have been made under the grant or award, insert the word "NONE" under Title below.) NAME OF INVENTOR TITLE OF INVENTION DATE REPORTED TO DHHS None (Use continuation sheet if necessary) C. Signature — This block *must* be signed by an official authorized to sign on behalf of the institution. Title Name and Mailing Address of Institution Director, Sponsored Programs Administration University of Nebraska Medical Center Typed Name 987835 Nebraska Medical Center Deborah K. Vetter Omaha, NE 68198-7835 Signature R. Vetter

HHS 568 (Rev. 06/09)