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A B S T R A C T

Load carriage induces systematic alterations in gait patterns and pelvic-thoracic coordination. Leveraging this
information, the objective of this study was to develop and assess a statistical prediction algorithm that uses
body-worn inertial sensor data for classifying load carrying modes and load levels. Nine men participated in an
experiment carrying a hand load in four modes: one-handed right and left carry, and two-handed side and
anterior carry, each at 50% and 75% of the participant's maximum acceptable weight of carry, and a no-load
reference condition. Twelve gait parameters calculated from inertial sensor data for each gait cycle, including
gait phase durations, torso and pelvis postural sway, and thoracic-pelvic coordination were used as predictors in
a two-stage hierarchical random forest classification model with Bayesian inference. The model correctly clas-
sified 96.9% of the carrying modes and 93.1% of the load levels. Coronal thoracic-pelvic coordination and pelvis
postural sway were the most relevant predictors although their relative importance differed between carrying
mode and load level prediction models. This study presents an algorithmic framework for combining inertial
sensing with statistical prediction with potential use for quantifying physical exposures from load carriage.

1. Introduction

Prolonged exposure to manual load carriage is a known risk factor
for low back disorders (Knapik et al., 1996; Putz-Anderson et al., 1997).
Epidemiological findings suggest an increased odds of developing a
prolapsed lumbar disc from frequently carrying objects heavier than
11.3 kg (25 lbs.) (Kelsey et al., 1984). Heavy and frequent load carriage
may accelerate spinal degeneration due to an increased loading on the
spine and would damage spinal tissues in the vertebral column (Jensen,
1988). While minimizing the frequency and intensity of manual load
carriage is ideal, such tasks are still common and inevitable in non-
routinized work such as in construction (Anderson et al., 2007), fire-
fighting (Park et al., 2010), and manufacturing (Cheng and Lee, 2006).
Accurate measurement of exposures to biomechanical risk factors is an
important step to develop effective musculoskeletal injury prevention
and risk reduction programs (David, 2005). Measuring the duration,
frequency, and magnitude of hand loads longitudinally is an essential
step for assessing the biomechanical impacts to the musculoskeletal
system and identifying strategies for intervention.

Measuring longitudinal exposures to load carriage in field settings
presents unique challenges. Traditional exposure assessment techniques
that rely on direct observations have limitations in non-repetitive job

conditions where the work tasks vary considerably in duration, fre-
quency, or intensity levels (Gold et al., 2006). Direct measurement of
task durations and load magnitudes in applied settings would require
instrumentation system that is wireless and portable and unrestricted
by changes in a worker's location. In addition to load magnitude, the
biomechanical effects of load carriage are influenced by the mode of
load carriage (e.g., two-handed anterior, one-handed side). A study by
Rose et al. (2013) demonstrated that carrying the same load with dif-
ferent carrying modes generates a significant difference in the anterior-
posterior shear loading at L2/L3. Carrying a two-handed anterior load
of 11.3 kg was sufficient to produce an average shear load of 856 N,
which exceeded the recommended exposure limits of 700 N (Gallagher
and Marras, 2012) and can potentially damage spinal tissues. The same
load carried in a backpack produced a lower average shear load of
345 N (Rose et al., 2013). Thus, methods for direct measurement of
such exposures need to identify and quantify both dimensions, namely,
carrying mode and load magnitude, besides temporal aspects of dura-
tion and frequency.

Wearable inertial sensors (or inertial measurement units, IMUs)
have gained attention in ergonomics research (Valero et al., 2016) for
field-based direct measurement of worker postures. Inertial sensors are
light-weight, portable, less obtrusive, and have on-board power and
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data storage capacity that allows for data collection over a long work
period (Bergmann et al., 2009; Mayagoitia et al., 2002). Typical use of
wearable inertial sensors in ergonomics studies to date have focused on
posture measurement in occupational tasks (e.g., lifting and pushing/
pulling) to estimate the orientation of a body segment or joint angle
between segments (Estill et al., 2000; Nath et al., 2017; Schall et al.,
2015; Valero et al., 2016) relative to a neutral posture (i.e., typically
upright standing) in order to quantify the extent and proportion of time
spent in a deviated or non-neutral posture. During load carriage, pos-
tural deviation relative to an upright standing posture is subtle com-
pared to other occupational tasks and less consequential than the
duration, magnitude and mode of load carriage. However, the magni-
tude and position of hand loads can alter gait kinematics and posture
(Ghori and Luckwill, 1985; Goh et al., 1998; Hong and Cheung, 2003;
Majumdar et al., 2010; Park et al., 2010; Qu and Yeo, 2011).

Movements of the torso, pelvis, and lower extremities change sys-
tematically with external load levels and carrying modes when walking
(Kinoshita, 1985; LaFiandra et al., 2003). Kinematic adjustments for
maintaining posture and stability during walking are reflected in tem-
poral and kinematic gait parameters, and rotational movement co-
ordination between the torso and pelvis (LaFiandra et al., 2003; van
Emmerik and Wagenaar, 1996). Using data from body-worn inertial
sensors, a recent study confirmed systematic difference in thoracic and
pelvic sway and movement coordination based on load level between
two-handed anterior and side carry (Lim and D'Souza, under review).
Specifically, in that study, carrying hand-loads that weighed 4.5 kg,
9.1 kg, and 13.6 kg in two-handed anterior vs. side carrying modes were
associated with significant differences in coronal and transverse thor-
acic-pelvic coordination measured using relative phase angles after
adjusting for stride length and gait speed. The present study aims to
leverage information about changes in gait kinematic patterns for es-
timating the duration, relative magnitude and mode of load carriage
using inertial sensing and predictive modeling.

Predictive modeling or machine-learning (ML) techniques have
been used in combination with wearable sensor data to extract con-
textual task information beyond just quantifying posture. For example,
activity recognition is an area of active research where data from body-
worn inertial sensors are used for classifying daily activities (Oshima
et al., 2010; Ravi et al., 2005), detecting gait events (Aminian et al.,
2002; Coley et al., 2005; Sabatini et al., 2005), and predicting safety
critical events such as falls (Bagalà et al., 2012; Schwickert et al., 2013;
Wu and Xue, 2008). The application of such techniques to occupational
ergonomics is still lagging. A few ergonomics studies have combined
predictive modeling with the wearable sensor data in activity re-
cognition to classify manual material handling tasks (Kim and
Nussbaum, 2014), assembly tasks (Stiefmeier et al., 2006), and patient
handling activities (Lin et al., 2017), and to detect states of fatigue from
gait kinematics during walking (Baghdadi et al., 2018; Janssen et al.,
2011; Zhang et al., 2014). Lee (2008) applied linear discriminant
analysis (LDA) to gait kinematics data obtained from a 3-D optical
motion capture system to distinguish between unloaded versus loaded
gait with participants wearing a vest weighing 12.5 kg. Their study
showed potential for using gait kinematics to classify carrying load
condition but was limited to a single carrying mode and load magni-
tude. Collectively all of these previous studies suggest the possibility for
leveraging information about postural adaptations during load carriage
obtained by inertial sensors combined with predictive modeling tech-
niques to create new algorithmic approaches for assessing physical
exposures from load carriage in situ.

The aim of this paper was to develop and assess a statistical pre-
diction algorithm as proof-of-concept that uses gait kinematics calcu-
lated from body-worn inertial sensor data for classifying hand-load
carrying mode and load level. The statistical prediction algorithm im-
plemented in this study incorporates a priori biomechanical knowledge
about the effects of load carriage on human gait patterns to inform the
data segmentation process, computing and selecting of predictor

variables, and the structure of the statistical model. We discuss these
steps in the context of leveraging ML techniques for ergonomics ex-
posure assessment.

2. Methods

2.1. Study participants

Nine healthy men were recruited from the university community for
the study. Participants had ages ranging from 18 to 25 years with an
average ± standard deviation (SD) of 22.0 ± 3.0 years, stature of
1.75 ± 0.05m, weight of 77.11 ± 9.98 kg, and BMI of
24.87 ± 2.84 kg/m2. Participants were screened for pre-existing back
injuries or chronic pain with a body discomfort questionnaire adapted
from the body mapping exercise by NIOSH (Cohen et al., 1997 for more
details). All participants were right-handed and right-footed when
tested with the questionnaire adapted from the Edinburgh handedness
inventory (Oldfield, 1971). Prior to the study, participants completed a
written informed consent approved by the university's institutional re-
view board.

2.2. Experiment procedures

A pre-experimental session was conducted to determine each par-
ticipants’ Maximum Acceptable Weight of Carry (MAWC; Cheng and
Lee, 2006), which was later used to set the normalized load levels in the
main experiment. For the measurement of one-handed MAWC, parti-
cipants were asked to carry a 2.3 kg box with their right hand and walk
5m back and forth. The box had dimensions of 152.4 mm width x
177.8 mm depth x 127mm height, and one handle on the top (Fig. 1-a).
The weight of the box could be increased in increments of 2.3 kg. A
method of limits discussed in Snook and Ciriello (1991) was used for
determining the maximum acceptable weight that the participant could
carry without perceiving unusual tiredness, weakness, overheating, or
breathlessness. The procedure was repeated to measure a two-handed
MAWC by using a box with dimensions of 177.8 mm width x 228.6mm
depth x 203.3 mm height held anteriorly with both hands using handles
located on the side (Fig. 1-d).

During the main experiment, participants carried a weighted box
down a levelled corridor (26.2 m length x 1.6 m width) for a distance of
24m in four carrying modes commonly used in occupational settings
(Fig. 1), viz., one-handed right hand carry (1H-R), one-handed left hand
carry (1H-L), two-handed side carry (2H-Side), and two-handed ante-
rior carry (2H-Anterior), in addition to a no-load (i.e., empty-handed
reference) condition. Two levels of box weights were carried in each
mode, namely, 50% MAWC and 75% MAWC. The one-handed MAWC
for each participant was used to calculate the normalized load levels of
50% and 75% for the one-handed conditions (i.e., 1H-R and 1H-L).
Likewise, the two-handed anterior MAWC was used to calculate the
50% and 75% normalized load levels for the 2H-Anterior and 2H-Side
carrying modes. Hand load was equally divided between the right and
left boxes in the 2H-Side carry.

Two no-load walk trials were performed first, and subsequently
each participant performed two consecutive trials of eight loaded
conditions (= 4 carrying modes x 2 load levels) in random order.
Walking speed was self-selected to observe the natural adaptation in
walking patterns due to different load carriage conditions. Two-minute
rest breaks between each walk trial were given to participants to
minimize carry-over effects of fatigue.

2.3. Instrumentation

Four commercial inertial sensors (Opal, APDM Inc, Portland, OR,
USA) were attached on the participant at the sixth thoracic vertebra
(T6), the first sacral vertebra (S1), and superior aspect of the right and
left shank midway between the lateral femoral and malleolar
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epicondyles (Fig. 1-d). Sensor placement was informed by the need for
computing specific predictor variables. Sensors attached on the right
and left shank were used for detecting key gait events (e.g., heel strike
and toe-off) and subsequent temporal gait parameters (Aminian et al.,
2002). Sensors placed on the T6 and S1 were used for calculating torso
and pelvis postural sway and thoracic-pelvic coordination measures
(Lim & D'Souza, 2018) that were related to the objectives of this study.
Velcro straps were used to secure the sensors located at T6 and S1, and
double-sided hypoallergenic tape and medical wrap were used to attach
the sensors to shank (R, L). One of the sensor axes (i.e., x-axis) was
attached aligned with the proximal-distal axis of the body segment and
pointing downward.

The inertial sensors recorded 3-D accelerometer, gyroscope, and
magnetometer sensor data at a sampling frequency of 80 Hz.
Accelerometer and gyroscope data were filtered using a second-order
low-pass zero-lag Butterworth filter with a cut-off frequency of 2-Hz.
Gyroscope data (angular velocity in radians/s) was integrated to obtain
angular displacement, and subsequently filtered using a second-order
high-pass filter with a cut-off frequency of 0.75 Hz to reduce the effect
of drift (Williamson and Andrews, 2001).

2.4. Algorithm to classify carrying mode and load level

A statistical classification algorithm was developed with six general
steps described in the following section (Fig. 2). Four carrying modes
(i.e., 1H-R, 1H-L, 2H-Side, 2H-Anterior) and no-load and two load le-
vels, 50% MAWC vs. 75% MAWC, were the target outcome variables for
each walking trial.

2.4.1. Step 1: detect gait cycles
Individual gait cycles were detected using a custom gait detection

algorithm adapted from Aminian et al. (2002) and described in detail
by Lim and D'Souza (under review). To summarize this process, first,
gait events signifying heel strike and toe-off were detected from the
angular velocity (rad/s) data obtained from the sensors on the right and
left shank (Fig. 2). Second, gait cycles were denoted by finding the
sequence of the following events: right heel strike → left toe-off → left
heel strike → right toe-off → next right heel strike. The algorithm was
implemented in MATLAB (MATLAB R2016b, The MathWorks Inc.,
Natick, MA, USA).

2.4.2. Step 2: calculate predictor variables
Sixteen gait parameters were calculated over each gait cycle,

namely, seven temporal gait measures, six torso and pelvis postural
sway and three thoracic-pelvic coordination measured in the trans-
verse, sagittal, and coronal planes, respectively (Table 1). Thoracic-
pelvic coordination was measured as the relative phase angle of rota-
tional movement between the torso and pelvis segments (Burgess-
Limerick et al., 1993; LaFiandra et al., 2003). This particular set of
variables were considered based on preliminary work on 2H-Anterior
load carriage (Lim & D'Souza, 2018). Swing, left leg (%) and stance, left
leg (%) durations were highly correlated with the initial double support
(%) duration with a Pearson's correlation coefficient of |R| > 0.8.
Swing, right leg (%) and stance, right leg (%) durations were also highly
correlated with the terminal double support (%) duration. Thus, four
temporal parameters, i.e., stance, right and left leg (%) and swing, right
and left leg (%) were excluded from further analysis to avoid multi-
collinearity, reducing the final set of predictor variables to twelve.

2.4.3. Step 3: predict carrying mode per gait cycle
A two-stage hierarchical model was implemented comprising a first

stage classification model for predicting carrying mode (Step 3 in
Fig. 2), and a second stage classification model for predicting the load
level (Step 5 in Fig. 2). The design of the hierarchical structure was
informed by prior studies demonstrating that the mode of load carriage
influences alterations in gait kinematics significantly more than
changes in the load levels within the same carrying mode (Ghori and
Luckwill, 1985; Kinoshita, 1985). The random forest technique
(Breiman, 2001) was chosen as the classification algorithm for both
stages because it produced the highest prediction accuracy in a pre-
liminary study on estimating the carrying mode and load level com-
pared to other common multiclass classification algorithms such as
classification and regression trees, multinomial logistic regression,
linear discriminant analysis, and support vector machines. Random
forest is a nonparametric machine-learning technique based on a de-
cision tree that grows recursive binary partitioning at the nodes of the
tree. Hundreds of decision trees are grown by random selection of a
subset of predictor variables each time. The prediction results across all
trees are averaged to obtain the final consensus prediction. In this
study, prediction was performed over 500 trees for each gait cycle with
a selection of four predictor variables each time. This step was im-
plemented using the randomForest package v.4.6–12 (Liaw and Wiener,

Fig. 1. Images showing the four carrying modes performed in this study: (a) one-handed right hand carry (1H-R), (b) one-handed left hand carry (1H-L), (c) two-
handed side carry (2H-Side), (d) two-handed anterior carry (2H-Anterior) along with the location of four inertial sensors attached on the body at T6, S1, and shank
(R, L).
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2002) in R v.3.3.1 (R Core Team, 2016).

2.4.4. Step 4: select carrying mode per trial
Classification results from each gait cycle within a walk trial were

used to decide the final classification result for the walk trial. In our
algorithm, predictions in Steps 3 and 5 were performed independently
for each gait cycle; however, under the assumption that the carrying
mode and load level does not change within a walk trial, probabilities
of the current gait cycle data belonging to a specific carrying mode were
updated based on the prior gait cycles using the method of Bayesian
inference (Box and Tiao, 2011). Assume that a prediction model (M) is
developed based on the current gait cycle data (Y). When data on new
gait cycle (Y*) is obtained, the posterior distribution can be updated
using Baye's theorem as follows:

= ∗ ∗
∗ ∗p M Y c p Y M p M( | ) ( | ) ( )

where p(M|Y*) is the posterior distribution updated by the new data
(Y*), p(Y*|M) is the probability that the new data belongs to each class
given the prediction model, and p(M) is the prior probability before
updating the new data. A normalizing constant, c, ensures that the

posterior probabilities of all classes add up to one. Using this method,
the classification results from prior gait cycles were cumulatively used
to update the classification result of the current gait cycle until the last
gait cycle identified in a walk trial. The carrying mode with the highest
posterior probability at the final gait cycle within the walk trial was
selected as the final prediction outcome for the carrying mode.

2.4.5. Step 5: predict load level per gait cycle
Steps 5 and 6 were performed to classify the load level within each

predicted carrying mode. While one model was developed for Step 3,
four separate models were developed in Step 5 for each carrying mode
excluding the no-load condition. Separate load level prediction models
were built based on a priori knowledge that the important kinematic
parameters to distinguish load levels differ by carrying mode (Ghori
and Luckwill, 1985; Kinoshita, 1985). Gait data from each walk trial
was subjected to one of four classification models for predicting the
load level depending on the carrying mode that was predicted in Step 4.
Load levels were predicted for each gait cycle in the walk trial.

Fig. 2. Overview of the carrying mode and load level classification algorithm developed in the study. The right panel shows example classification results for three
consecutive gait cycles at a two-handed anterior carry with 50% MAWC load condition.

Table 1
List and definitions of gait parameters calculated from the inertial sensor data for each gait cycle. Excluding stance right and left leg (%) and swing right and left leg
(%), all of the remaining 12 parameters were used as predictors in the classification model.

Parameter Definition

Temporal parameters (7 nos.)
1 Gait cycle duration (sec) Duration of one gait cycle (one right plus left step duration).
2,3 Stance, Right and Left Leg (%) Percentage of the gait cycle for when the right or left foot is on the ground.
4,5 Swing, Right and Left Leg (%) Percentage of the gait cycle for when the right or left foot is not on the ground.
6 Initial double support (%) Percentage of the gait cycle for when both feet are on the ground after a right foot heel-strike.
7 Terminal double support (%) Percentage of the gait cycle for when both feet are on the ground after a left foot heel-strike.
Torso and pelvis postural sway (6 nos.)
8–13 ROM at T6 and S1 in the transverse, sagittal, and coronal

planes (deg.)
Range of rotation angle at torso and pelvis in transverse, sagittal, and coronal planes: Max (integrated
angular velocity) – min (integrated angular velocity)

Thoracic-pelvic coordination (3 nos.)
14–16 Mean relative phase angle between T6 and S1 in the

transverse, sagittal, and coronal planes (deg.)
Average (pelvic phase angle – thoracic phase angle) in transverse, sagittal, and coronal planes. Phase
angle (t)= arctan (normalized angular velocity (t)/normalized integrated angular velocity (t))
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2.4.6. Step 6: select load level per trial
Similar to step 4, Bayesian inference was used to update the classi-

fication result of the load level within a walk trial.

2.5. Evaluating model performance

The performance of the prediction model was evaluated using 10-
fold cross-validation tests. All walk trials were split into ten roughly
equal-sized subsamples or folds (k=1,2, …,10). In each iteration, one
subsample (k) was selected as the validation data for testing the model,
and the remaining k-1 subsamples were used for training the model
(Hastie et al., 2008). This test was iterated k times until all subsamples
were used as a validation set. Gait cycles from the same walk trial were
grouped when partitioning, so that all of the gait cycles from the same
walk trial were included in the same subsample.

An identical test was performed for the classification algorithm
without the Bayesian update (Step 4 and 6) as a comparison to in-
vestigate the benefit of applying the Bayesian inference to the algo-
rithm. In this model, the final classification result for the walk trial was
decided by averaging the classification results from individual gait
cycles within the walk trial.

Three performance measures were computed:

⁃ Average prediction accuracy = [# true positives + # true nega-
tives]/[# total walk trials],

⁃ Precision = [# true positives]/[# true positives + # false posi-
tives]), and

⁃ Sensitivity= [# true positives]/[# total positives].

2.6. Interpreting the predictive model

The relative importance (%) of predictor variables in each model
was calculated to investigate the importance of each predictor variable
in predicting the response variable (Boulesteix et al., 2012). In a
random forest model, variable importance is measured as the impurity

of data after it is split at each node. The Gini impurity Index, a common
measure of the node impurity, is computed by averaging impurity at a
data partition across all classes of the response variable (Strobl et al.,
2007). A larger decrease in the Gini index represents a larger decrease
in impurity at a data partition and a greater importance of the predictor
variable in the classification model. The magnitude of the Gini index
can differ by models, so it is a common practice to calculate a nor-
malized index as the relative importance (%) by giving the most im-
portant variable a score of 100% in each model.

3. Results

A total of 162 walk trials were performed across all participants (9
participants x 9 conditions per participant x 2 walk trials per condition).
Excluding three interrupted walk trials during the data collection, 159
walk trials were used for building and testing the algorithm. A total of
2028 gait cycles were recorded across all participants with an
average ± standard deviation (SD) of 12.8 ± 1.5 (range: 9 to 17) gait
cycles in each repetition of the walk trials.

Across all participants the average ± SD for the MAWC (kg) in the
one-handed condition was 32.5 ± 7.9 kg and in the two-handed con-
dition was 31.0 ± 4.5 kg, respectively. Load levels for the walk trials
were set to 50% and 75% of the participant's one-handed and two-
handed MAWC value. Average ± SD values of normalized MAWCs
were 17.4 ± 3.9 (50% MAWC) and 24.4 ± 6.3 (75% MAWC) for the
one-handed conditions, and 16.6 ± 2.3 (50% MAWC) and
23.2 ± 3.53 (75% MAWC) for the two-handed conditions.

3.1. Bayesian inference update vs. averaging

Applying Bayesian inference in Steps 4 and 6 outperformed the
averaging approach in terms of the prediction accuracy. The model
with the Bayesian inference correctly classified the carrying mode in
96.9% of the walk trials and load level in 93.1% of the walk trials,
resulting in an average overall prediction accuracy of 91.8%. In

Fig. 3. Example results from the random forest
classification to predict carrying mode for fifteen
consecutive gait cycles from a two-handed anterior
carry walk trial without (top-panel) and with
(bottom-panel) Bayesian inference applied. In each
gait cycle, the mode with the highest predicted
probability is labeled as the classification result for
that gait cycle. In this example, without Bayesian
inference applied (top-panel) 3 of the 15 gait cycles
were misclassified as either 1H-L (gait cycle #1) or
no-load (gait cycle #9 and #10). In the bottom
graph, Bayesian inference was applied to the same
data and updated the posterior probability of the gait
cycle based on prior gait cycles cumulatively. The
probability of the data predicted as the correct class
(i.e., two-handed anterior carry in this case) ex-
ceeded 0.9 after four gait cycles and converged to 1.0
in subsequent cycles.
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comparison, the averaging approach correctly classified the carrying
mode in 95.3% and load level in 72.7% of the walk trials, resulting in
an average overall prediction accuracy of 72.2%, which was 19.6%
lower compared to the Bayesian approach.

Fig. 3 depicts an example model prediction for a walk trial in a 2H-
Anterior carry consisting of fifteen consecutive gait cycles. The Baye-
sian inference approach showed convergence in the posterior prob-
ability after four gait cycles in the example described in Fig. 3. Across
all conditions an average ± SD of 4.5 ± 1.5 gait cycles were needed
to correctly classify carrying mode with a posterior prediction over
90%. Since the Bayesian approach demonstrated a clear advantage in
prediction performance, we limit the subsequent analysis and discus-
sion to this approach.

3.2. Model performance

3.2.1. Carrying mode classification
Table 2 presents the confusion matrix for the prediction model

along with the precision and sensitivity values from the 10-fold cross-
validation test. The prediction accuracy for classifying the carrying
mode was 96.9%. The precision of the no-load, 2H-Side, and 2H-
Anterior conditions were 100% while it was lower in the 1H-R and 1H-L
at 91.4% and 94.3% respectively. Sensitivity was also highest for the
no-load, 2H-Side and 2H-Anterior conditions at 100%, compared to 1H-
R and 1H-L at 94.1% and 91.7% respectively. Five walk trials were
misclassified in carrying mode between the 1H-R and 1H-L conditions,
and interestingly were all at the load level of 75% MAWC.

To further investigate the misclassified cases, posterior probabilities
of the target carrying mode for individual walk trials were plotted by
gait cycle (Fig. 4). Consistent with Table 2, there were no misclassified
cases for the no-load, 2H-Side, and 2H-Anterior conditions. The pos-
terior probabilities in these conditions (n=89 walk trials) converged
to 1.0 typically after 4 to 5 gait cycles even though the initial prob-
ability at the first gait cycle was very low (P < 0.5) in many cases. On
the other hand, the posterior probabilities for multiple walk trials in the
1H-R and 1H-L conditions did not converge to 1.0 and fluctuated
throughout the walk trial.

3.2.2. Load level classification
The average prediction accuracy for classifying the load level across

all carrying modes was 93.1% (n= 148 of 159 walk trials), which was
3.8% lower than the classification of carrying mode. Table 3 sum-
marizes the confusion matrices for the models by carrying mode along
with the precision and sensitivity values from the cross-validation test.
Prediction accuracies within each carrying mode were 91.4% for 1H-R,
91.4% for 1H-L, 94.4% for 2H-Side, and 91.4% for 2H-Anterior. Among
the carrying modes, the model for 2H-Side had the highest prediction
accuracy with just 1 out of 18 walk trials misclassified between the 50%
MAWC and 75% MAWC load levels each.

3.3. Variable importance

Fig. 5 shows the relative importance (%) of the predictor variables
in each classification model. Thoracic-pelvic coordination in the cor-
onal plane was the most important predictor in the classification model
for carrying mode, followed by postural sway of the pelvis in the cor-
onal plane and transverse thoracic-pelvic coordination in a distant
second and third, respectively (Fig. 5, panel A). For 1H-R, gait cycle
duration and thoracic-pelvic coordination in the coronal plane were
nearly equally most important predictors for classifying the load level
(Fig. 5, panel B-1). However, unlike the classification model for car-
rying mode with one dominant predictor variable, the load level clas-
sification model for 1H-R also indicated terminal double support, torso
and pelvis postural sway in the coronal plane, and torso postural sway
in the transverse plane as relatively important (i.e., > 75%). Coronal
plane measures of torso and pelvis postural sway and thoracic-pelvic
coordination were the three most important predictors in the load level
classification model for 1H-L compared to the rest of the predictor
variables (Fig. 5, panel B-2). Pelvis postural sway in the sagittal plane
was the most important predictor when classifying the load level in the
2H-Side carry (Fig. 5, panel B-3). Pelvis postural sway in the transverse
plane and coronal plane were the second and third most important
predictors. Pelvic postural sway in the transverse and coronal planes
were both equally important when predicting the load level in the 2H-
Anterior carry, followed by torso postural sway in the coronal plane
(Fig. 5, panel B-4).

4. Discussion

Wearable sensing technology combined with predictive modeling
has the potential to advance the science of field-based exposure as-
sessment by providing information about work content beyond just
quantifying worker postures. This study assessed the potential for
classifying carrying mode and load level using gait kinematics calcu-
lated from the inertial sensor-derived data. As an initial investigation,
the study was intentionally limited to a small homogenous participant
sample (n=9) with gait data recorded at self-selecting walking speeds
over multiple walk trials and conditions, namely 159 walk trials and
2028 gait cycles in total, to build and assess the statistical model.
Thoracic and pelvic range of motion and thoracic-pelvic coordination
were important predictors in classifying carrying mode and relative
load level compared to unloaded gait. The accuracy of statistically
classifying carrying mode and load levels were 96.9% and 93.1%, re-
spectively. Use of the Bayesian inference for updating probabilities with
the incoming gait cycles improved the overall prediction accuracy by
19.6% with 4–5 gait cycles needed to converge on the classification
result.

4.1. Methodological contributions

Biomechanical exposures during physical work are typically

Table 2
Confusion matrix showing the classification result for carrying modes from each walk trial data: No-load= empty-handed reference condition, 1H-R= one-handed
right carry, 1H-L= one-handed left carry, 2H-Side= two-handed side carry, 2H-Anterior= two-handed anterior carry.

Predicted Carrying Mode Total
Walk Trials

Sensitivity

No-load 1H-R 1H-L 2H-Side 2H-Anterior

Actual Carrying Mode No-load 18 0 0 0 0 18 100%
1H-R 0 32 2 0 0 34 94.1%
1H-L 0 3 33 0 0 36 91.7%
2H-Side 0 0 0 36 0 36 100%
2H-Anterior 0 0 0 0 35 35 100%

Total Walk Trials 18 35 35 36 35 159
Precision 100% 91.4% 94.3% 100% 100%
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characterized by three main dimensions (Winkel and Mathiassen,
1994), i.e., intensity (magnitude or amount of the forces and loads
which are also a function of task and posture), frequency (repetition),
and duration (the time the physical activity is performed). The algo-
rithm presented provides information on all three dimensions of phy-
sical exposures during load carriage. The gait detection algorithm (Step
1) used in this study implements a robust detection of the start and end
of walking, so the duration of the walking (either unloaded or loaded)
can be accurately estimated. The load level classification (Step 5 & 6)

predicts the relative intensity of the load carried, the measurement of
which can be obtrusive in work settings that involve carrying loads of
different magnitudes (e.g., construction work, distribution centers). The
carrying mode classification (Step 3 & 4) combined with the load level
classification (Step 5 & 6) quantifies the frequency of load carriage by
categorizing the task in terms of its mode and load level.

Developing a successful prediction algorithm requires knowledge of
the underlying system or domain when deciding on the structure of the
statistical model (e.g., single-stage vs. multi-stage), segmenting the
data, and selecting predictor variables or features within the data seg-
ment (Hastie et al., 2008). The current study incorporated biomecha-
nical information about the association between human gait kinematics
and load carriage to develop and assess the statistical prediction model,
which had direct bearing on model performance. We discuss key as-
pects of the model development and assessment in the subsequent
sections.

4.1.1. Data segmentation and choice of predictor variables
Statistical prediction with continuous time series data requires that

the data be re-structured into segments. The methods of segmenting a
continuous stream of sensor data influences the performance of the
prediction model and thus needs consideration (Avci et al., 2010). To be

Fig. 4. Posterior probabilities of the target carrying mode in each walk trial depicted by gait cycles. Misclassified classes are marked as red dotted lines. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 3
Summary of the classification results in terms of sensitivity and precision of
predicted load levels for each predicted carrying mode.

Carrying mode Load level Sensitivity (%) Precision (%)

One-handed, Right 50% MAWC 88.9 94.1
75% MAWC 94.1 88.9

One-handed, Left 50% MAWC 88.9 94.1
75% MAWC 94.1 88.9

Two-handed, Side 50% MAWC 94.4 94.4
75% MAWC 94.4 94.4

Two-handed, Anterior 50% MAWC 88.9 94.1
75% MAWC 94.1 88.9
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useful, the method of data segmentation needs to represent the data
such that the prediction error of all segments across time is minimized
(Keogh et al., 2001). A common approach to segmenting time series
data uses sliding windows with a fixed sliding width (e.g., Kim and
Nussbaum, 2014). Other approaches include a top-down approach of
splitting time-series data into partitions by decreasing the segment
length iteratively until the prediction error is below a user-specified
threshold (Keogh et al., 2001), and a bottom-up algorithm that starts
from the finest possible partition of the time-series data and increases
the length of the segment iteratively. Unlike the latter two iterative
approaches, use of a sliding window is the most popular form in online
applications since the segmentation can be performed while the data is
streaming. Another online approach involves segmenting data based on
pre-defined events, as was the case in this study.

In this study, inertial sensor data were segmented by first detecting
gait cycles, which represents a meaningful segmentation of the data
stream. For a given carrying mode and load magnitude, gait cycle
duration for a person shows little variability over short bouts of
walking; however, the cycle duration can vary significantly between
participants and across load carry conditions for the same person
(LaFiandra et al., 2003; Martin and Nelson, 1986). For example, in the
present study gait cycle duration ranged between 0.93 s and 1.16 s
across all participants and carrying conditions. If a fixed window of
average gait cycle, for example 1 s, was used for data segmentation
instead of the proposed adaptive algorithm, the kinematic variables
calculated within a segment would be less representative of the gait
patterns relative to a data segment that captures a complete gait cycle.
Another advantage of the proposed data segmentation method is that it
can be used in online applications in near-real-time. Once a gait cycle is
detected from an incoming data stream, predictor variables for the gait
cycle can be computed and used as input to the classification algorithm.
The delay in the classification output would be just over one gait cycle
(∼1 s). The detection of an exact start and end of gait cycles resolves an
issue of underestimating the task duration reported in previous studies
on classifying manual material handling tasks (Kim and Nussbaum,
2014). In that study, task durations were underestimated by about 14%
when classifying tasks using inertial sensor data that were segmented
by sliding window of fixed duration. The detection of gait events and
subsequent data segmentation based on gait cycles used in the current
study would produce a more accurate estimate of duration of load
carriage compared to a sliding window of fixed duration.

Choice of the predictor variables, which requires computing (i.e.,
extracting) and selecting features from sensor data, is also an important
step towards building a simpler, comprehensible model while ensuring
adequate prediction accuracy (Liu et al., 2010). Predictor variables
need to represent the main characteristics of a data segment, so that it
contains important cues for distinguishing levels of outcome variables
(Avci et al., 2010). Use of domain specific features such as step

detection, step variance, and vertical and horizontal acceleration of the
sensor segment were found to increase prediction performance when
classifying physical activities such as walking, running, cycling, and
resting compared to using only time- and frequency-domain features
(Bieber and Peter, 2008). Kim and Nussbaum (2014) used descriptive
statistics on whole-body joint angles to classify manual material-
handling tasks. The present study used temporal, and thoracic and
pelvic kinematic gait parameters as predictor variables. As opposed to
using raw sensor data, the use of such domain specific features could
significantly reduce the number of feature vectors used in a classifica-
tion algorithm and also increase prediction accuracy.

4.1.2. Structure of the model
A two-stage hierarchical model structure was implemented in this

study where the carrying mode was classified first followed by classi-
fication of load levels within mode. Without the hierarchical structure,
nine classes or categories would need to be predicted (i.e., 4 carrying
modes x 2 load levels, and 1 no-load condition). With the same number
of test datasets, increasing the number of target classes often increases
the possibility of misclassification and lowers prediction accuracy.
Reducing a k-class problem to a set of k two-class problems by building
a separately trained binary classification model for each of the k pro-
blems is a common approach to deal with the multiclass classification
(Anand et al., 1995). However, this approach does not provide guidance
about which the two classes need to be paired or the effect of having
different pairs on model performance. Considering that classification
problems in occupational settings may have a high number of potential
outcome classes such as task type (e.g., lifting, pushing, pulling, car-
rying, etc.) and intensity level (e.g., forceful exertions; Schall et al.,
2018), multiclass classification models would be more common than
two-class classification.

Implementing a hierarchical structure in classification models with
multiple target classes has three advantages. First, implementation of
the hierarchical model significantly improves the prediction accuracy
compared to classifying the combination of different task conditions at
one time. In our preliminary testing with the same test dataset, the
multiclass prediction model with no hierarchical structure resulted in a
prediction accuracy of 48.0%, which was 43.8% lower than the pro-
posed hierarchical model. In a different study aimed at classifying the
handle height and force intensity level in a pushing task, the hier-
archically structured model produced a 50.0% greater prediction ac-
curacy compared to the multiclass prediction model (Lim & D'Souza,
2017). In both cases, the hierarchy of the models was built with an
empirical understanding of the relative influence of different task
variables (Ghori and Luckwill, 1985; Kinoshita, 1985; Lim et al., 2016;
Lim & D'Souza, 2018).

A second advantage of having a hierarchical model structure is the
opportunity for optimizing the predictor variable set in each model. The

Fig. 5. Relative importance (%) of the predictor variables computed as the mean decrease in the Gini index relative to the maximum (100%) for each of the five
classification models, namely, for carrying mode (panel A) and for load level (Panels B-1 to B-4).
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analysis of variable importance (Fig. 5) suggests that the important
variables in each model differ across classification models. This in-
formation can be used to reduce the number of predictor variables in
each model thereby decreasing model complexity and computational
effort, and increasing model interpretability.

Third, the hierarchical structure allows prediction performance as-
sessment at every level of the hierarchy independently. In addition, the
algorithms that occur in the lower level do not affect the performance of
the algorithms that occur in the upper levels (Mathie et al., 2004).

4.1.3. Model interpretability
The random forest method used in this study is flexible in modeling

relationships between multiple predictors and outcome classes, without
requiring any a priori assumptions about the type of relationships, e.g.,
linear vs. nonlinear. This flexibility lends to high prediction accuracy as
was evident in this study, but comes at some expense of interpretability,
i.e., it is difficult to quantify how any individual predictor is associated
with the outcome. The primary means for interpreting a random forest
model uses the average decrease in the Gini Index as an indicator of the
relative importance of predictor variables. Our results on important
predictor variables are supported by findings from previous studies that
demonstrate that changes in gait from hand-load carriage are evident in
the measures of thoracic and pelvic postural sway and thoracic-pelvic
coordination (Anderson et al., 2007; Madinei and Ning, 2017;
LaFiandra et al., 2003; van Emmerik and Wagenaar, 1996).

The relative importance of thoracic and pelvic sway and interseg-
ment coordination differed across all five prediction models (Fig. 5).
Specifically, 2H-Side carriage increases angular momentum and mo-
ment of inertial in the coronal and transverse planes (Madinei and Ning,
2017). With this increase, postural stability is maintained by an in-
creased but anti-phasic sway (i.e., counter-rotation) of the pelvis in the
coronal, transverse, and sagittal planes with increasing loads relative to
unloaded gait (Lim and D'Souza, 2018). Similar contributions of thor-
acic and pelvic sway and intersegment coordination in the coronal
plane were also identified in the 1H-R and 1H-L side carry. However,
the load prediction models for 1H right vs. left side carry showed dif-
ferences in relative importance of other temporal gait parameters,
namely, gait cycle duration and terminal double support. These dif-
ferences may be due to bilateral asymmetries in strength and gait, and
is a topic of further investigation.

Restricted arm movements and close coupling between the torso
and pelvis during 2H-Anterior load carriage is associated with increased
pelvic sway in the coronal and sagittal planes and a decrease in pelvic
sway in the transverse plane relative to unloaded gait (Anderson et al.,
2007; Madinei and Ning, 2017). Consequently, movement coordination
between the thoracic-pelvic segments is more in-phase or synchronized
in the coronal and transverse planes with increasing load relative to
unloaded gait (Birrell and Haslam, 2008; Majumdar et al., 2010).

4.2. Study limitations

Certain limitations of this laboratory study are worth emphasizing
in order to contextualize the study findings and implications for prac-
tice. Given its focus on model development and assessment, the study
sample comprised of a relatively small and homogenous sample of
healthy, young male participants. Further investigation is needed to test
the generalizability of the model across the spectrum of worker de-
mographics on known sources of variability in gait such as age (Ko
et al., 2010), gender (Mazzà et al., 2009), obesity (Cau et al., 2014;
Pamukoff et al., 2016) and strength (Lord et al., 1996; Nigg et al.,
1994). The present study found that a minimum of 4–5 gait cycles was
needed to converge on a prediction result. This finding suggests that in
subsequent studies the amount of data collected from each participant
can be economized in lieu of a larger and more diverse sample.

For jobs that might involve long durations of manual load carriage,
cumulative fatigue from load carriage may induce alterations in gait

(Barbieri et al., 2013; Helbostad et al., 2007; Yoshino et al., 2004). Prior
studies have associated fatigue with increased variability in step length,
step width, and mediolateral trunk accelerations while walking, and
increased double support duration during load carriage. Qu and Yeo
(2011) reported hip and torso range of motion to increase while car-
rying a backpack load immediately following a fatiguing treadmill ex-
ercise. Age is also reported to moderate the effects of fatigue on gait
(Barbieri et al., 2013; Helbostad et al., 2007). To minimize the con-
founding effects of fatigue, the present study introduced two-minute
rest breaks between each walk trial of 24m distance. However, sub-
sequent studies will need to account for the effects of cumulative fa-
tigue from long duration exposures to load carriage on thoracic and
pelvic range of motion and coordination.

The proposed model also requires that load magnitudes be nor-
malized to individual carrying capacity determined using either bio-
mechanical strength or psychophysical criteria. This may be a limita-
tion in certain work settings that do not have a steady cohort of workers
that can be assessed. Additional study is also needed to consider more
diverse task conditions that are representative of applied settings (e.g.,
size and form-factor of the load carried, location of handles, and weight
distribution of the load) and over extended periods before the proposed
algorithm can be used as a field evaluation tool for manual load car-
riage work.

4.3. Application and relevance

Quantifying physical exposures to load carriage can be challenging
in non-routinized work settings where load intensity, duration and
frequency vary between workers and within worker across time. The
present study represents an initial step towards the development of a
real-time exposure assessment tool that leverages wearable inertial
sensing and predictive modeling for use in occupational settings.
Multiple previous studies have used inertial sensors to classify between
different types of activities (e.g., walking vs. sitting), however few
studies have delved into predicting task demands within a specific ac-
tivity (i.e., relative changes between load within the same task). The
present study is novel in this regard. A key contribution of this study
was the reliance on a biomechanical understanding of the effects of load
carriage on pelvic and thoracic movement and coordination into a
practical framework for predicting carrying mode and relative load
conditions. From a practical standpoint, our findings have direct im-
plications for attachment locations of inertial sensors. Leveraging subtle
movement patterns of the torso and pelvic implies that the sensors be
closely attached to the skin on these segment as opposed to worn on top
of loose clothing, helmet, or gloves. Newer forms of wearable sensing
embedded in smart clothing may help overcome these potential us-
ability concerns (Mokhlespour Esfahani and Nussbaum, 2018).

Extending the proposed approach to include other tasks that are of
interest in ergonomics exposure assessment such as lifting and pushing/
pulling will require task-specific models that capture intrinsic kinematic
adaptations to task demands. For example, findings by Zehr et al.
(2018) indicating that thoracic-pelvic coordination in the sagittal plane
is influenced by lifting mode (i.e., freestyle, flexed and neutral spine;
Zehr et al., 2018) can be leveraged to develop and assess predictive
models of lifting modes using body worn inertial sensors. These task
specific models can be envisioned as modules nested within an over-
arching activity classification model. This framework aligns with our
proposed approach of a multi-stage hierarchical model structure led by
classification by task type (e.g., lifting, pushing, pulling, carrying, etc.),
followed by models that classifying mode and intensity within task type
to account for the large number of potential outcome classes in occu-
pational settings.

5. Conclusions

This study presents an algorithmic framework for combining
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wearable inertial sensing, gait kinematics, and statistical prediction for
classifying carrying modes and load levels during manual load carriage.
Overall, the algorithm was sensitive in discerning loaded from unloaded
walk conditions within 4–5 gait cycles. Prediction accuracy and the
relative importance of thoracic and pelvic measures as predictors were
found to differ by models for carrying mode and load level. The few
misclassified trials occurred largely in the 1H-R and 1H-L side carrying
modes. Further investigation is needed to test the generalizability of the
model across the spectrum of worker demographics and load carrying
conditions. The present study also provides practical information about
locations for inertial sensor placement and the type and amount of data
required for distinguishing carrying modes and relative load levels for
use in subsequent studies of higher ecological validity and increased
generalizability.

Applying statistical classification techniques to movement analysis
requires an understanding of machine learning theory, signal proces-
sing, and feature extraction. By emphasizing model development and
assessment, this study also attempts to explain aspects of classification
and predictive modeling towards encouraging the application of these
statistical techniques to ergonomics practice.
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