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ABSTRACT: Novel technologies, such as smartphones and small
personal continuous air pollution sensors, can now facilitate better
personal estimates of air pollution in relation to location. Such information
can provide us with a better understanding about whether and how
personal exposures relate to residential air pollution estimates, which are
normally used in epidemiological studies. The aims of this study were to
examine (1) the variability in personal air pollution levels during the day
and (2) the relationship between modeled home and school estimates and
continuously measured personal air pollution exposure levels in different
microenvironments (e.g., home, school, and commute). We focused on
black carbon as an indicator of traffic-related air pollution. We recruited
54 school children (aged 7−11) from 29 different schools around
Barcelona as part of the BREATHE study, an epidemiological study of the
relation between air pollution and brain development. For 2 typical week
days during 2012−2013, the children were given a smartphone with CalFit software to obtain information on their location and
physical activity level and a small sensor, the micro-aethalometer model AE51, to measure their black carbon levels simultaneously
and continuously. We estimated their home and school exposure to PM2.5 filter absorbance, which is well-correlated with black
carbon, using a temporally adjusted PM2.5 absorbance land use regression (LUR) model. We found considerable variation in the
black carbon levels during the day, with the highest levels measured during commuting periods (geometric mean = 2.8 μg/m3) and
the lowest levels at home (geometric mean = 1.3 μg/m3). Hourly temporally adjusted LUR model estimates for the home and
school showed moderate to good correlation with measured personal black carbon levels at home and school (r = 0.59 and 0.68,
respectively) and lower correlation with commuting trips (r = 0.32 and 0.21, respectively). The correlation between modeled
home estimates and overall personal black carbon levels was 0.62. Personal black carbon levels vary substantially during the day.
The correlation between modeled and measured black carbon levels was generally good, with the exception of commuting times.
In conclusion, novel technologies, such as smartphones and sensors, provide insights in personal exposure to air pollution.
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■ INTRODUCTION
Epidemiological studies of air pollution and adverse health effects
often use residential outdoor estimates as the exposure indicator,
assuming this to be a good predictor of personal exposure of air
pollution.1,2 Recent quantitative reviews show that the relation
between ambient and personal air pollution is variable and may
depend upon several factors.3,4 Empirical studies also suggest
heterogeneity in the relation between residential and personal
exposure. In Barcelona, for example, we found that the
relationship between modeled and measured ambient and
measured personal exposure estimates varied by pollutant and
were generally low to moderate.5,6 Possible explanations for this
were the limited number of measurements, limited exposure
contrast, substantial daily mobility, or some combination of all
three factors. With mobility, for instance, people may live in an
area with low air pollution but move through roads with high
air pollution levels to an area with medium air pollution levels
(work and school) or vice versa, thereby reducing the contrast
in exposure between people compared to residential outdoor
exposures. In this instance, the ambient residential exposure
estimates may not be a strong predictor of personal exposure
levels. For example, de Nazelle et al.7 found that, using mobility
data and modeled air pollution data, travel activities accounted
for only 6% of people’s total time budget, but this small portion of
the time budget accounted for 24% of the total inhaled daily dose
of NO2 in Barcelona. Dons et al.8,9 in Belgium and Buonanno
et al.10 in Italy had similar findings for black carbon. The likely
explanation is a combination of higher pollution levels near
roadways during peak commute hours and higher rates of
inhalation, precipitated by walking and bicycling commuting.
The use of new technologies, such as geographical information

systems (GIS), (smartphone-based) geopositioning systems
(GPS), and small personal continuous air pollution sensors,7−12

to track people’s location and measure their air pollution
levels simultaneously has now made it possible to obtain better
personal estimates of air pollution in relation to location, which
can provide us with a better understanding of if and how this
may be related to residential air pollution estimates allocated to
subjects in an epidemiological study.
The aims of this study were to examine (1) the variability

in personal air pollution levels during the day and (2) the
relationship between modeled residential and school estimates
and personal air pollution exposure measurements in different
microenvironments (e.g., home, school, and commute). We
focused on black carbon as an indicator of traffic-related air
pollution

■ METHODS
We recruited 54 school children (aged 7−11) from 29 different
schools around Barcelona of the BREATHE study, an
epidemiological study of air pollution and brain development.13

For 2 normal week days in 2012−2013, the children were
given a smartphone with CalFit software7,14 to obtain
information on their location and physical activity level (the
latter was not used here) and a small pollution sensor, the micro-
aethalometer model AE51 (AethLabs, San Francisco, CA, 5 min
resolution), to measure their black carbon levels simultaneously
and continuously. CalFit was developed through collaboration
with researchers in Computer Science and Environmental
Health Sciences at University of California, Berkeley. It consists
of open-source software that runs continuously in the back-
ground on Android smartphones. CalFit records the phone’s
triaxial accelerometry at 10 Hz and a network-assisted global

positioning system (aGPS) at 1 Hz. The CalFit application
includes an algorithm that adapts to the orientation of the phone,
descomposes the triaxial accelerometry into vertical and
horizontal forces, and estimates energy expenditure within a
sampling period (which for our study was 10 s).7,14 The aGPS
improves the time-to-first-fix (TTFF) and can improve accuracy
of the GPS, particularly in dense urban areas, where GPS signals
from satellites can often be obstructed. CalFit was installed on
Samsung GT-S5360 Android phones.7,14 CalFit software runs
continuously in the background on the Android smartphone and
records location continuously.
The micro-aethalometer determines black carbon concen-

tration based on the Beere Lambert law by measuring the light
absorbed (attenuation) by optically absorbing particles (i.e., the
black carbon particle fraction). In particular, an 880 nm
wavelength beam of light is produced by a light-emitting diode
(LED) light source aimed at a photodiode detector. During its
travel, the light beam passes through the aerosol sample collected
on a filter. This sensor is small and portable (250 g) and has
a battery life of up to 24 h when logging on a 5 min basis, as was
the case in the present study. The pump speed was set at a rate
of 100 mL/min. The micro-aethalometers and smartphones
were worn together in a waist pouch, which was on a spibelt
with a tube to the breathing zone of the children. Generally, we
provided the sensor pack to 2 children per week.
At the beginning of each measurement campaign, the children

met with a trained research assistant who provided them with
details on the study protocol, obtained informed consent, and
equipped them with the study instruments. Ethics approval
was obtained from the IMIM ethics committee (number 2010/
4122/I). After data cleaning, 42 measurements were available for
analysis.
In the schools, black carbon levels were also measured with a

the same type of micro-aethalometer on the same settings during
the days of the personal exposure measurement.15

We also estimated the home and school exposure to PM2.5
absorbance, which is highly correlated with black carbon, using
an ESCAPE PM2.5 absorbance land use regression (LUR)model,
which has been described elsewhere.16 Briefly, following the
ESCAPE protocol, we selected 20 sites to measure PM2.5
absorbance. These sites were a combination of traffic and
background locations representing the gradient of various land
use, emission sources, and traffic characteristics. Three
monitoring campaigns, each 2 weeks long, were conducted in
different seasons during 2009 and adjusted for temporal trends to
derive annual mean proxy estimates using an ESCAPE protocols
and a background monitoring site. European-wide and local GIS
data on land uses, traffic indicators, population density, and
geographic description of monitoring sites were obtained to
create potential predictor variables. A multiple linear regression
model was constructed following the ESCAPE supervised
forward selection protocol using the annual average concen-
trations obtained from the sampling campaign as the dependent
variable. Predictors for PM2.5 absorbance were high-density
residential area within a 300 m buffer, inverse distance to the
nearest road × traffic intensity in the nearest road, and traffic
intensity within a 50m buffer, and this model had a R2 of 0.83 and
root-mean-square error (RMSE) of 0.38.16

Exposure levels to PM2.5 absorbance were estimated for each
study participant by combining the LUR spatial estimates of
pollutants for the geocoded address of residence with a hourly
temporal adjusting factor obtained from the routine monitoring
data, following ESCAPE guidelines. Specifically, we used the
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ratio of the concentration of the routine monitor for each hour
of the study period to the annual average during the year of the
ESCAPE sampling campaign (2009) as the adjustment factor for
that hour. Hourly estimates were combined to obtain averages
over the whole measurement periods and for periods at home,
school, and in commute.
Statistical Analyses. We conducted descriptive statistical

analyses and Pearson correlation analyses to assess the
correlation between average measured and modeled data for
the whole measuring period and home, school, and commuting.

We produced Bland−Altman plots to evaluate the agreement
over the exposure range. We used analyses of variance with trend
analyses to assess the relationship between the mean of modeled
and measured black carbon data.

■ RESULTS
The children spent the largest part of their day at home, followed
by school, and on average less than 1 h commuting (Table 1).
The school was on average around 1 km from the home. The
commuting trips were spread all over Barcelona (Figure 1).
Personal black carbon levels varied during the day, with the

highest average levels occurring between 8 and 9 during rush
hour in the morning and the lowest levels from 5 to 6 in the
morning (Figure 2). Two lower peaks around 17.00 and 21.00
are likely due to the school and work rush hours back home. The
lowest levels of black carbon were measured at home [geometric
mean (GM) = 1.3 μg/m3], followed by higher levels at school
(GM = 1.6 μg/m3), with the highest levels observed during
commute (GM= 2.8 μg/m3) (Table 2). The correlation between
school and home personal black carbon measurements was 0.47
(p = 0.002). The correlation between the background station and
personal black carbon measurements was 0.57. The contribution
of home, school, commute, and other to the total personal
exposure (estimated as percentage of duration × concentration)
over the sampling period was 46, 32, 13, and 8%, respectively.
The correlation between modeled temporally adjusted

ESCAPE LUR home PM2.5 absorbance and the personal black
carbon measurements was moderate over the whole day (r =
0.62) and for time spent at home (r = 0.59), lower for when
at school (r = 0.49), and considerably lower when commuting
(r = 0.32) (Table 2). The GM of the personal black carbon
measurements increased with tertiles of temporally adjusted

Table 1. Duration of Time (h) Overall and in Each Micro-
environment (Using Different Buffers)

tertiles of home outdoor ESCAPE PM2.5
absorbance estimates (μg m3)

all (1.01, 2.26) (2.26, 2.68) (2.68, 4.56)

mean (SD)a mean (SD) mean (SD) mean (SD)

2.5 (0.7) 1.8 (0.4) 2.5 (0.1) 3.3 (0.6)

time home (100 m) (h) 13 (4) 12 (4) 13 (4) 13 (4)

time home (300 m) (h) 15 (3) 15 (3) 15 (3) 15 (2)

time home (500 m) (h) 17 (4) 17 (4) 18 (5) 17 (4)

time home (1000 m) (h) 20 (5) 18 (5) 21 (4) 20 (5)

time school (100 m) (h) 7 (2) 6 (2) 7 (2) 7 (2)

time school (300 m) (h) 8 (2) 8 (2) 8 (2) 8 (2)

time school (500 m) (h) 13 (7) 13 (7) 14 (8) 13 (7)

time school (1000m) (h) 19 (7) 16 (7) 21 (5) 19 (8)

commute (h) 0.7 (1) 0.9 (0.7) 0.5 (0.7) 0.8 (1.3)

distance between home
and school (m)

1057 (1005) 1194 (946) 912 (973) 1066 (1140)

accuracy of location (m) 446 (558) 745 (691) 300 (429) 293 (419)

missing minutes per day 20 (62) 24 (64) 31 (87) 4 (11)
aSD = standard deviation.

Figure 1.Map of all of the trips in Barcelona overlaid on major roads. The center of the city is indicated with “Barcelona”. The green area (west of the
city) is Collsera park with a major road called Rhonda de Dalt running alongside, and the blue area is the sea with a major road called Rhonda Literal
running alongside.
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ESCAPE LUR home PM2.5 absorbance, overall, for home, school,
and commuting.
The correlation between modeled temporally adjusted

ESCAPE LUR school PM2.5 absorbance and the personal
black carbon measurements was moderate over the whole day

(r = 0.44), considerably higher for time spent at school (r = 0.68),
and lower for when at home (r = 0.31) and commuting (r = 0.21)
(Table 3). The correlation between modeled temporally
adjusted ESCAPE LUR school PM2.5 absorbance and the static
black carbon measurements in the schools was good (r = 0.70).
The mean (GM) of the personal black carbon measurements
generally showed an increasing trend with tertiles of temporally
adjusted ESCAPE LUR school PM2.5 absorbance, overall, for
home, school, and commuting. Bland−Altman agreement plots
showed some tendency for under- and overestimation of the
models at the extremes of the exposure range, but the tendency
was not statistically significant (panels a and b of Figure 3).

■ DISCUSSION
In this study, we measured personal black carbon levels of
children and found considerable variation in the levels during the
day. The highest levels were measured during commuting, and
the lowest levels were measured at home. Temporally adjusted
LUR models for the home and school showed moderate to good
correlation with personal levels at home and school, respectively,
but only low to moderate correlation with commuting. The
results demonstrate that novel technologies, such as smart-
phones and sensors, together with GIS can provide new insights
in personal exposure to air pollution.
Our average personal black carbon levels were similar to those

reported in adults in Belgium (1.59 μg/m3)9 but lower than those
reported in children in Italy (5.1 μg/m3).10 As in other studies
of black carbon in children8 and adults,8,9 levels in the road/
commuting environment were higher compared to the home or
other environments. As with many other studies and the studies

Figure 2.Average black carbon levels (μg/m3) over the day (all personal
measurements combined).

Table 2. Characteristics of the Black Carbon Levels (Geometric Means and Geometric Standard Deviations) Overall and by
Tertiles of Temporally Adjusted Modeled Home ESCAPE PM2.5 Absorbance

tertiles of home outdoor ESCAPE PM2.5
absorbance estimates (adjusted) (μg m3)

all (0.20, 1.08) (1.08, 2.08) (2.08, 3.97)

GMa (GSD)b GM (GSD) GM (GSD) GM (GSD)
ANOVA
p value

p trend correlation
estimate

Pearson
p value

overall micro-aethalometer estimation 1.4 (1.6) 1.1 (1.4) 1.4 (1.6) 1.9 (1.5) <0.001 <0.001 0.62 <0.001
micro-aethalometer estimation for school (GPS) 1.6 (1.7) 1.2 (1.7) 1.6 (1.6) 2.1 (1.6) 0.008 0.002 0.49 0.001
micro-aethalometer estimation for home (GPS) 1.3 (1.8) 0.9 (1.5) 1.3 (1.8) 1.9 (1.8) 0.001 <0.001 0.59 <0.001
micro-aethalometer estimation for commute (GPS) 2.8 (2.2) 2.3 (2.4) 2.5 (1.9) 3.8 (2.3) 0.216 0.116 0.32 0.087
ESCAPE exposure for home 2.4 (1.4) 2.1 (1.4) 2.4 (1.2) 2.9 (1.2)
ESCAPE exposure for home (adjusted by ratio) 1.4 (2.1) 0.6 (1.7) 1.6 (1.2) 2.8 (1.2)
aGM = geometric mean. bGSD = geometric standard deviation.

Table 3. Characteristics of the Black Carbon Levels (Geometric Means and Geometric Standard Deviations) Overall and by
Tertiles of Temporally Adjusted Modeled School ESCAPE PM2.5 Absorbance

tertiles of school outdoor ESCAPE PM2.5
absorbance estimates (adjusted) (μg m3)

all (0.13, 0.98) (0.98, 1.5) (1.5, 4.0)

GMa (GSD)b GM (GSD) GM (GSD) GM (GSD)
ANOVA
p value p trend

correlation
estimate

Spearman
p value

overall micro-aethalometer estimation 1.4 (1.6) 1.2 (1.6) 1.2 (1.6) 2.0 (1.4) 0.003 0.006 0.44 0.004
micro-aethalometer estimation for school (GPS) 1.6 (1.7) 1.2 (1.7) 1.5 (1.5) 2.5 (1.3) <0.001 <0.001 0.68 <0.001
micro-aethalometer estimation for home (GPS) 1.3 (1.8) 1.2 (1.7) 1.0 (1.8) 1.8 (1.7) 0.039 0.077 0.31 0.044
micro-aethalometer estimation for commute (GPS) 2.8 (2.2) 2.4 (2.5) 1.9 (1.5) 4.17(1.9) 0.046 0.093 0.21 0.271
school monitoring 1.2 (1.7) 0.8 (1.7) 1.1 (1.5) 1.8 (1.4) <0.001 <0.001 0.70 <0.001
ESCAPE exposure for school 2.0 (1.6) 1.3 (1.4) 2.1 (1.5) 2.8 (1.1)
ESCAPE exposure for school (adjusted by ratio) 1.2 (2) 0.6 (1.8) 1.2 (1.1) 2.4 (1.4)

aGM = geometric mean. bGSD = geometric standard deviation.
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from Italy10 and Belgium,8,9 we found that children spent the
majority of their time at home and only a small proportion
(around 3% in our study) commuting. As others studies have
shown, even though the commuting time is short, it may contribute
to a larger proportion (25% or so) of the total inhaled dose during
the day.7−10We did not attempt to estimate the inhaled dose in our
study, but the contribution to total exposure was 13%.
Previously, in Barcelona, we found a similar moderate

correlation (R2 = 0.45) between annual LUR models for PM2.5
absorbance and personal measurements of PM2.5 absorbance
in 15 adults measured over three 14 day periods.5 Dons et al.17

found a lower correlation (r = 0.45) between temporally adjusted

black carbon LUR models and personal black carbon exposure
measurements in 62 adult volunteers. There are differences
between their analyses and ours, as they included corrections for
indoor/outdoor ratios, while we did not apply such adjustments.
As may be expected, the home temporally adjusted LUR

model estimates for PM2.5 absorbance were better correlated
with black carbon measurements at home than at school and the
school temporally adjusted LUR model estimates were better
correlated with the black carbon measurements at school than at
home; however, the differences was not that large (r = 0.59 versus
0.68). For both modeled estimates, the correlation was weakest
with commuting black carbon exposures. Also, putting the
temporally adjusted home and school LUR model estimates
into tertiles showed that, for all measurements (overall, home,
school, and commute), there was an increasing trend in average
measured personal black carbon exposure with the modeled
estimates. This may be partly due to the relatively small distance
between home and school, the short commuting time, and possibly
the larger day-to-day variability in black carbon levels. The recent
VE3SPA study reported that the temporal correlation between
PM2.5 absorbance from a background station and personal PM2.5
absorbance levels was larger (R2 = 0.64)18 than the spatial
correlation between LUR model estimates for PM2.5 absorbance
and personal PM2.5 absorbance measurements (R2 = 0.45).5 Here,
we found a correlation of 0.57 between the background station and
personal black carbon measurements, which was only slightly
lower than the correlation between the LUR model estimates for
PM2.5 absorbance and personal black carbon levels (r = 0.62),
suggesting that the temporal variability is the most important
determinant of short-term personal black carbon levels but that
still there is marginal benefit when including spatial variability.
We did not try to model commuting levels and assess the

agreement with personal black carbonmeasurements or the street
characteristics determining the exposure, as did Dons et al.,19

because commute estimates are not often used in epidemiological
studies, which is themain focus of this work. In general, in epidemio-
logical studies, home estimates are used as an index of exposure
and these are sometimes combined with school estimates.
The strength of the study was the use of novel technologies,

such as smartphone tracking software and sensor measurements,
to assess objectively the location and the black carbon con-
centrations during the day. These new technologies can provide
insights for air pollution and other exposures, such as noise,
temperature, and green space; however, these technologies are in
their infant state, which limits their use, and further improvements
need to bemade.20Moreover, we developed good LURmodels as
part of an European project using standard methodology.
The weakness of the study is the relatively small sample size

and the limited number of days of measurements. These types
of studies are labor-intensive and can also be burdensome for
the subjects, particularly children. Fortunately, we had good
compliance from the children, but we still had a considerable
number of recordings (12 of 54) that were too short for inclusion
in the daily analyses. Furthermore, for the LUR models, we used
PM2.5 absorbance as a surrogate for black carbon, and even though
it is highly correlated with black carbon, it may have led to lower
correlations because the two measures have some differences.
Also, for this reason, we focused more on correlations rather than
absolute values of the exposure levels. We did not correct for
differences in indoor/outdoor ratios, because we previously found a
large variability between homes and seasons5 and we did not have
the indoor/outdoor measurements for houses in our study. Finally,
we choose black carbon as a marker for traffic-related air pollution

Figure 3. Bland−Altman plots of (a) home LUR−personal home and
(b) school LUR−personal school.
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because can be well-measured on a person as a result of the
availability of themicro-aethalometer. Black carbon, though, is only
one component of personal traffic-related air pollution, and there
are many other constituents that may be important.5,17,21,22

This study provides further understanding of the personal
black carbon levels among children during the day and the
relationship with modeled estimates. It also demonstrates the
utility of a novel smartphone sensor. Further studies are required,
particularly also for when the distance between the home and the
school or work environment are larger.
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