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a b s t r a c t

Traditional methods of exposure assessment in epidemiological studies often fail to integrate important
information on activity patterns, which may lead to bias, loss of statistical power, or both in health effects
estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure
measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone
technology to track person-level time, geographic location, and physical activity patterns for improved
air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free-living population
of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was
linked to space-time air pollution mapping. We found that information from CalFit could substantially
alter exposure estimates. For instance, on average travel activities accounted for 6% of people’s time and
24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology
potentially provides an unobtrusive means of enhancing epidemiologic exposure data at low cost.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Mobile phones are a ubiquitous technology throughout much of
the developed and developing world. Many of these phones offer
sensing capabilities that allow for tracking the movement patterns
of their users through various environments, and thus potentially
offer an innovative approach to enhance estimates of exposure to
environmental hazards. The billions of current and future smart-
phone users worldwide (Pratt et al., 2012) afford an extraordinary
opportunity for large-scale data collection efforts that are cost-
effective, accurate, and unobtrusive.

Air pollution exposure assessment for use in epidemiological or
health impact assessment studies has traditionally relied on fixed-
site monitoring stations to assign ambient air pollution levels to
large populations. More recently researchers have employed land
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use regression or dispersion models to estimate small-area con-
centrations at home addresses of study subjects (Hoek et al., 2008;
Jerrett et al., 2005). However, a person’s activities throughout the
day may result in variability in exposures and inhalation of air
pollution that may be substantial and unaccounted for when only
home address-based concentrations are estimated.

Several studies comparing personal exposure measurements to
ambient monitoring at subject’s home address have revealed large
discrepancies between concentrations at residential addresses and
personal exposure concentrations, and large variations from study-
to-study and subject-to-subject (Avery et al., 2010). Other studies
indicated that activity patterns are important determinants of
personal exposures (Schembari et al., 2013; Valero et al., 2009).
Recently, Dons et al. (2011) have shown that transport activities
contribute most to variability in personal exposures between peo-
ple exposed to the same concentrations at home. Further, esti-
mating inhaled dose of air pollution by accounting for energy
expenditure can change the relative ranking of exposures as
a function of activity patterns compared to using solely exposure
concentrations (de Nazelle et al., 2012). Thus, exposure measure-
ment errors introduced by failing to account for mobility and
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inhalation may lead to bias, loss of power, or both in health effects
estimates (Setton et al., 2011).

A growing body of research has used global positioning systems
(GPS) to improve the measurement of a person’s location as it
pertains to health. In environmental epidemiology portable GPS
technology improves the measurement of individuals’ exposures to
hazards such as electromagnetic waves and pollution (Elgethun
et al., 2003; Phillips et al., 2001; Riediker et al., 2003). Trans-
portation researchers have used portable GPS technology to rec-
oncile data on location, duration, and routes of individuals’ trips
(Dill, 2009; Duncan et al., 2009; Elgethun et al., 2007; Stopher et al.,
2007) and to evaluate the quality of data from self-reports. Physical
activity researchers have used GPS to determine locations where
physical activity occurs (Rodríguez et al., 2005; Troped et al., 2011;
Wheeler et al., 2010) to identify which environments are conducive
for physical activity and which environments pose barriers. Accel-
erometers are used in combination with the GPS in these physical
activity studies but only as separate devices rather than in an in-
tegrated system. No previous studies have used GPS and motion-
sensor technology in an integrated system such as a smartphone
to simultaneously assess location and intensity of movements.

While the benefits of using GPS devices are increasingly
recognized for exposure research, there are limitations to
their widespread use, including the relatively high cost of
equipment and time spent in field work to dispatch and collect
data from subjects enrolled in personal measurement studies. A
new opportunity emerges with the growing popularity of
smartphones, which have integrated GPS systems and other
sensor technology such as accelerometer, gyroscope, and
magnetometer that are potentially useful for health-related
research. The US National Academy of Sciences has recently
called for the development of such novel ubiquitous and
participatory sensing approaches to improve exposure science,
in particular in integrated personalized monitoring and model-
ing frameworks (Committee on Human and Environmental
Exposure Science, 2012).

In this paper, we present results of the field use and perfor-
mance of CalFit, a novel smartphone-based software that con-
tinuously records a subject’s time-location patterns and energy
expenditure associated with physical activity using the phone’s
integrated GPS and accelerometer, respectively, which we com-
bined with spatialetemporal maps of air pollution. The main
objective of this paper is to demonstrate the use of CalFit in tracking
people’s movements in the urban environment and associated
physical activity levels to improve air pollution exposure
assessment.

2. Methods

2.1. Sample

A sample of 36 adults living and working in Barcelona, Spain, was recruited for
the study by way of emails sent to colleagues and friends of colleagues working at
the CREAL research institute. The study took place from November 2010 to Feb-
ruary 2011. Inclusion criteria were to live and work or study in Barcelona, live at
more than a 10-min walk away from work or school, and be able to ride a bicycle
for 20 min. The study was approved by the Hospital del Mar Research Institute
ethics committee.

2.2. Instruments

CalFit was developed through collaboration with researchers in Computer
Science and Environmental Health Sciences at UC Berkeley. It consists of software
that runs continuously in the background on an Android smartphone. CalFit records
the phone’s triaxial accelerometry at 10 hertz (Hz) and a network-assisted global
positioning system (aGPS) at 1 Hz. The CalFit application includes an algorithm that
processes the accelerometry to estimate energy expenditure that adapts to the
orientation of the phone, integrates motion in both vertical and horizontal
directions, and uses the integrated vertical and horizontal accelerations (typically
referred to as counts) within a generalized linear model to estimate ener-
gy expended within a sampling period (which for our study was 10 s). The aGPS
improves the time-to-first-fix (TTFF) and can improve accuracy of the GPS,
particularly in dense urban areas where GPS signals from satellites can often be
obstructed.

The algorithms (Gravina et al., 2010; Kuryloski et al., 2009; Seto et al., 2010; Yan
et al., 2010) and their lab validation against the COSMED system are described
elsewhere (Seto et al., 2011); as is the validation of the physical activity measure-
ment in our current free-living population (Donaire-Gonzalez et al., submitted for
publication).

CalFit was installed on Google G1 Android phones retrofitted with larger size
batteries to allow for a day of running CalFit. Phones were equipped with Subscriber
Identity Module (SIM) cards with a data plan for phone and internet service from
a local phone company, Yoigo.

2.3. Participant procedures

Volunteers were scheduled to participate in the study during a week repre-
sentative of their normal schedule. At the beginning of that week they met with
a trained research assistant who provided them with details on the study protocol,
obtained informed consent, and equipped them with the study instruments. The
paper travel diary administered for this study was similar to most travel logs used in
transportation studies, with entries for each trip on time of departure and arrival,
purpose, travel mode(s), and destination address (see Supplemental material for
additional information).

2.4. Data treatment and analysis

After downloading accelerometry and GPS files, we converted the energy in-
tensity in Kcal (summed to a minute) to energy intensity in METs (metabolic
equivalents expressed as 1 kcal/kg/h, approximately equivalent to the energy cost at
rest) to have a same unit of measure on energy intensity independent of subjects’
weights and independent of activity duration for activity classification purposes.

When satellite signals were unavailable or too weak, CalFit provides location
data from wireless network triangulation. These files gave less accurate geographic
positions and were only used when satellite signals were not available.

Participants’ home and workplace address as well as any identifiable destination
from the travel diary were geocoded using the City of Barcelona’s geocoding soft-
ware (Instititut Municipal d’Informacio). The travel diary and CalFit data were
merged to compare travel time periods logged in the diary to GPS tracking data, and
to assign activity location and transport modes for each identified trip.

The GPS tracking data required post-processing. In particular, large clouds of
data were formed when individuals were indoors. Also, when individuals traveled
in narrow street canyons or in the metro observations sometimes dispersed or
were missing. We used a point selection process with a manual check to clean up
data for the selected day of each volunteer. Our process was to select in ArcGIS 9.3
(ESRI, Redlands, CA) observations pertaining to clouds of data, assuming these to
be associated with indoor activities, and then to check the time sequence of the
selected points to detect probable departure from or arrival into the cloud. We
confirmed the inferred indoor/outdoor and departure/arrival sequences based on
records in the travel diary. We performed a final check examining the logic of time
periods allocated to different activities. To focus our process we identified four
such activity spaces: “home”, “work”, “other” indoor environments, and “in
transit”, which included any movement outdoors (e.g., recreational outdoor
activities).

We converted all observations to 1-min averages of location and energy
expenditure intensity in METs. To obtain a full data set we imputed for missing
minutes geolocations and energy expenditure from previous and following obser-
vation in the same activity (only for two people for whom 11 and 13 min were
missing, respectively). To best illustrate and to avoid bias from inferring missing
data, and to avoid outlier activity, for each participant we selected the workday that
offered the most complete data (in amount of recorded time).

2.5. Air pollution exposure

We overlaid street-scale maps of nitrogen dioxide (NO2) concentrations in
Barcelona on our time-location data to estimate exposures or urban air pollution in
our population sample. The NO2 annual mean map was obtained from an Atmo-
spheric Dispersion Modeling System (ADMS)-Urban model developed for the year
2008 on a 5 � 5 m grid (Barcelona Regional and Energy Agency of Barcelona, 2011;
Lao and Teixidó, 2011). We developed the following adjustment factors to assign
time-specific and microenvironment-specific concentration of each activity of each
participant throughout the day, after inspecting hour and location of each activity
from a combination of the GPS and diary data.

For the temporal adjustment we derived ratios, Ratioannual�t, between NO2

concentrations measured at a background monitoring station (MS) at time t (hour
and day specific), CMS�t, compared to the annual mean concentration measured at
the monitoring station, CMS�annual:
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Ratioannual�t ¼ CMS�t=CMS�annual

We then applied these ratios to the annual mean NO2 prediction at point P from

the dispersionmodel, CP�annual, to obtain the time-adjusted prediction at point P and
time t, CP�t:

CP�t ¼ CP�annual*Ratioannual�t

Additionally, we calculated adjustment factors for the hourly average concen-
tration on workdays (i.e., for each hour of the day, the average concentration com-
bining all workdays in a year) to provide more general profiles of exposures of our
volunteers. Hourly measurements used in the analysis were provided by the Gen-
eralitat de Catulunya from the monitoring station “Vall d’Hebron”, the urban back-
ground monitoring station with most complete NO2 data for one year (August 2010
to July 2011).

Microenvironmental adjustments were derived from air pollution sampling
campaigns conducted in Barcelona (See Table S1). In brief, indooreoutdoor ratios
were obtained from simultaneous measurements of NO2 at subjects’ residence
outside on a balcony or window sill and inside the home (Schembari et al., 2013). We
applied the same factor for all non-travel indoor environments (home, work, others).
For the travel microenvironments we used available black carbon (BC) measure-
ments as a proxy for NO2, assuming the behavior of these pollutants near traffic
sources to be comparable (Beckerman et al., 2008). We considered that concentra-
tions predicted by air pollution maps corresponded to concentrations experienced
by pedestrians, and applied ratios obtained from BC measurements made during
a 3-week monitoring campaign in Barcelona for the car, bike, bus, and walk modes
(de Nazelle et al., 2012). We assumed concentrations were the same in buses and
trams, and we averaged the bike and car ratios for motorcycles. As we did not have
any information for NO2 in metro or train systems and did not findmeasurements of
particulate matter of less than 2.5 mm in diameter (PM2.5) (Querol et al., 2012) to be
an appropriate proxy for NO2 in the metro, we conservatively assumed levels to be
equal to outside pedestrian-level exposures (Hong et al., 2005).

We assigned air pollution exposure to each participant in two ways: (1) con-
centration at the home address based on the annual mean of the map; and (2) time-
weighted concentrations as a function of time-space activity. For the first approach,
no adjustments were applied. For the second approach we compared exposure es-
timates obtained from (i) the annual mean of the map to those for which we inte-
grated, (ii) the temporal adjustment, (iii) the microenvironmental adjustment, and
(iv) both temporal and microenvironmental adjustment combined.

Finally we included inhalation rates derived from the physical activity measures
to estimate inhaled air pollution as a function of activity patterns. Inhalation rates
were calculated for each subject specific to their age, gender and weight, and energy
expenditure level for each 1-min observation using a series of stochastic equations
described elsewhere (de Nazelle et al., 2009), and for which probability functions
were set to their most likely value for the sake of illustration in this exercise. One-
minute average inhalation rates were then multiplied by the corresponding expo-
sure concentration to obtain the inhaled dose during that one-minute interval. We
then estimated the contribution of various activity spaces (at home, work, in transit)
to overall daily air pollution exposure and estimated daily inhalation of NO2. All
analyses were conducted using R 2.14.1 (2011 The R Foundation for Statistical
Computing).

3. Results

3.1. GPS and compliance

All 36 volunteers who enrolled in the study completed the full
protocol, except for one who did not complete the travel diary.
Volunteers were mostly young (average age 31 years), well-
educated (80% had university education) and two thirds female
(see Table S2).

All participants had at least one day, and on average 4.2 days, of
more than 10 h of CalFit data registered during the day and evening
(between 8 am and 10 pm, Table S3). Missing data were generally
due to the loss of battery power, or failure to turn CalFit back on
after cell phones shut down. On average less than 20% of daily
waking hours were missing, and 75% of the participants had less
than 0.5% of waking hours missing. At times during the day the
CalFit system was turned on but participants were not wearing the
cell phone (to charge the battery, because of aquatic activities, or in
non-compliance with the protocol). Inspection of the CalFit physi-
cal activity data indicated that on average volunteers had a little
over 3 days of at least 10 h of data registered when the phone was
actually worn. Almost half of the participants did not have a single
daywith 10 h ormore of GPS data recorded from satellite reception;
on average only 1 day per participant had 10 or more hours of
satellite data logged. As long as CalFit was working, some form of
GPS data, whether from satellite signal or cell towers, was recorded,
but the source was not necessarily identifiable due to lack of
detailed files.

When selecting for each participant theworkdaywithmost data
to perform the exposure analysis, we had to discard five partici-
pants due to insufficient data due to non-compliance, illness, or
technical problems. This left 31 individuals in the final analysis.

Fig. 1 depicts all the activity from the 31 volunteers on their
selected workday. On average for each day 22 h of CalFit data,
including 11 h of Satellite GPS data, were recorded; the remaining
hours were imputed to have full 24 h of data for each participant.

3.2. Time-activity profiles

Volunteers spent on average half of their time at home, where
energy expenditure averaged 1 MET, a third at work (average en-
ergy expenditure 1.5 METs), and 6% traveling or in outdoor recre-
ation (in movement) where the average energy expenditure
reached 3.3 MET (Fig. 3(A) and see Table S4). The least variation in
time spent in activity spaces between subjects was found for time
spent at home (5e18 h, or 23%e76% of the day, with coefficient of
variation (CV) ¼ 0.19), and the greatest variation was found for
times in other environments (13 volunteers only went to work
and home on their workdays, and others spent 20 min to 3 h in
“other” environments, CV ¼ 0.92). Volunteers spent from 30 min
to close to 4 h in transit on the selected day; the most common
transportation modes in our sample were bike, walk, and metro.

3.3. Exposure assessment

Exposure concentrations were estimated for each participant
according to the time, geoposition, and type of microenvironment
of each activity throughout the day, as illustrated in Fig. 2 for one
participant. Concentrations in the various activity spaces (home,
work, in transit, and in other indoor environments) are shown for
various adjustment methods in Table 1. When using solely the
annual mean air pollution maps, we saw little variation between
the average concentrations across individuals in the activity spaces
(around 54 mg/m3 each), but at the individual level, concentrations
at these locations could varied by as much as 40 mg/m3. Once
temporal adjustments were accounted for, contrasts between ac-
tivity spaces were larger: in-transit time had the highest value on
average, due to commute times occurring at time periods of highest
concentrations. The microenvironmental adjustments led to higher
exposure concentrations for travel activities compared to other
activities. The combined temporal and microenvironmental ad-
justments therefore led to the greatest contrasts, with the highest
exposures found in travel environments.

When we considered the impact of overall activity patterns on
exposures by calculating time-weighted daily concentrations
(Table 2), we found, compared to the traditionally used home
address concentration, as much as a 15 mg/m3 difference in NO2 for
an individual when using the annual mean map to estimate ex-
posures. When additionally applying temporal and micro-
environmental adjustment factors (full adjustment), we found as
much as a 50 mg/m3 difference in NO2 concentrations for an indi-
vidual. On average, the difference between the fully adjusted NO2
exposure assignment and the home address concentration was
13 mg/m3 (27% difference), with high variation across individuals
(standard deviations 24 mg/m3, or 44%). The correlation between
the “home address” and other methods was fairly high for the
annual mean map method and also when microenvironmental
adjustments were applied (Spearman coefficient ¼ 0.81 (95% CI



Fig. 1. Selected 31 days of CalFit data (circles represent GPS tracking of participants, color intensity represent energy intensity); background shading is NO2 concentration. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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0.6e0.9) and 0.78 (95% CI 0.6e0.9) respectively), but then
dropped and became non-significant when comparing with the
temporal adjustment method (Spearman coefficient ¼ 0.09 (95% CI
�0.2e0.4)).

Finally, when we integrated energy expenditure in the expo-
sure calculations and estimated air pollution inhalation (Fig. 3(D)
and see Table S5), we found that, on average, time at home,
which represented 51% of people’s time in a day, and similarly 54%
of daily time weighted exposures (Fig. 3(C) and see Table S6),
accounted for only 40% of individuals’ total inhaled dose. Time at
work, 33% of people’s daily activity, led to 29% daily time weighted
exposures and 28% of daily inhaled NO2. In contrast, volunteers
only spent 6% of their time in transit, yet this microenvironment
contributed to 11% of time weighted exposures in a day, and 24% of
daily inhaled NO2. Activities in “other” environments contributed
Fig. 2. Details of one day of ac
least to time-weighted exposures (7%) and inhaled dose (8%) but
had the most variable contributions across individuals (both per-
centages contribution CV ¼ 1.4), and home activities contributed
most and were the least variable (percent contribution CV ¼ 0.2
and 0.3 respectively). Travel activities contributed over five times
more to inhalation dose and more than four times more to daily
exposures to NO2 per amount of time spent in the activity than
any other activity.

4. Discussion

We conducted a study to demonstrate the use of CalFit for
tracking personal movements in the urban environment and
associated physical activity levels to improve air pollution exposure
assessment. To illustrate the utility of the novel smartphone
tivity for one participant.
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technology, the CalFit data were combined with modeled urban air
pollution concentrations and data from the literature to estimate
exposure and inhalation of urban air pollution accounting for the
daily activities. We found that the smartphone systemwas feasible
Table 1
NO2 (mg/m3) in different micro-environments according to different adjustment factors.

Environments Adjustment factors Mean

Home Annual mean map 54 �
Annual mean þ temporal trend 67 �
Annual mean þ penetration 55 �
Annual mean þ penetration þ temporal trend 67 �

Work Annual mean map 53 �
Annual mean þ temporal trend 61 �
Annual mean þ penetration 53 �
Annual mean þ penetration þ temporal trend 62 �

Other Annual mean map 54 �
Annual mean þ temporal trend 74 �
Annual mean þ penetration 55 �
Annual mean þ penetration þ temporal trend 75 �

In transit Annual mean map 56 �
Annual mean þ temporal trend 81 �
Annual mean þ penetration 81 �
Annual mean þ penetration þ temporal trend 115 �
for our study of a free-living population and was efficiently inte-
grated in a modeling framework to provide improvements in
exposure assessment compared to traditional methods. To our
knowledge, this is the first study to use smartphones as a means of
� SD Median
(p25, p75)

CV IQR Min Max

11 52 (47, 61) 0.2 14 38 76
26 57 (47, 89) 0.39 43 28 114
11 52 (48, 62) 0.2 14 38 77
26 57 (47, 90) 0.39 44 28 115
9 47 (47, 62) 0.17 15 45 74
26 55 (42, 73) 0.43 31 28 146
9 47 (47, 63) 0.17 16 45 75
26 56 (43, 73) 0.43 31 28 147
16 50 (45, 60) 0.29 16 35 93
50 65 (48, 81) 0.67 33 23 254
16 51 (45, 61) 0.29 16 35 94
50 66 (49, 82) 0.67 33 23 256
5 56 (52, 60) 0.09 9 45 66
25 75 (61, 93) 0.31 32 44 132
23 76 (60, 96) 0.29 36 51 130
49 94 (76, 158) 0.42 82 56 228



Table 2
Exposure estimates for various exposures adjustment factors for NO2.

Home
concentration
(mg/m3)

Time weighted average concentration (mg/m3)
with

Annual
mean
map

Temporal
trend

Penetration
factor

Penetration
factor and
temporal
trend

Mean 54 54 64 56 67
SD 11 6 22 6 22
Median 52 53 63 55 64
p.25% 47 50 46 51 48
p.75% 61 58 80 60 83
IQR 14 8 34 8 35
Min 38 42 30 42 31
Max 76 68 108 70 112
ICI 50 51 57 53 59
ICS 58 56 72 58 75
Spearman

coefficienta
e 0.81 0.09 0.78 0.09

a Spearman correlation coefficient between the “Home address” method and the
different time-weighted average methods.
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improving air pollution exposure assessment. We obtained CalFit
data for more than 10 waking hours a day (8 ame10 pm) for on
average four out of the five days of the study per participant. To
illustrate the relevance of the CalFit system, we showed that
compared to the traditionally used home-address method, ac-
counting for time-activity patterns by assigning specific temporal
and microenvironmental adjustment factors and accounting for
time spent in each microenvironment substantially changes
exposure concentrations: on average NO2 concentration assign-
ments increased by 24% and variability between individuals as
measured by the standard deviation doubled. We assessed the
contribution of each activity space to overall exposure concentra-
tions: on average, in our population, time spent at home con-
tributed to 54% of daily time-weighted NO2 concentrations and
time in transit 11%. A further benefit of CalFit is the measurement
of physical activity that allows a calculation of inhaled dose of
pollutants: for example, time at home on average accounted for 40%
of intake of NO2 and time in transit 24%. As a reference, these ac-
tivities occupied respectively 53% and 6% of volunteers’ times on
average.

Simulation studies have underscored the importance of travel
activity as a source of daily air pollution exposures accounting for
overall activity patterns (Gulliver and Briggs, 2005). Dons et al.
(2011) recently measured BC exposures with a portable micro-
aethalometer while tracking movements with a GPS system in
combination with an electronic diary in 16 individuals (8 couples).
They concluded that travel activity contributes the most to varia-
tions in personal exposures between people.

Our approach provides an additional element in assessing ex-
posures by allowing for estimates of intakes of air pollution, ac-
counting for energy expenditures. We thus obtained an estimate
closer to the actual internal dose to affect health than simply using
exposure concentrations. In experimental and scripted settings,
exercising while exposed to air pollutants has been shown to lead
to intermediary health impacts (Mills et al., 2007; Weichenthal
et al., 2011). We did not, however, include breathing method
(mouth or nose) in our calculation, nor did we attempt to estimate
the uptake of pollutants, whichmay also vary according to activities
(Daigle et al., 2003). The physical activity measurement error may
also vary according to the activity type, leading to systematic errors
in inhalation dose assessment as a function of activities. As with all
accelerometers, certain activities such as cycling are indeed par-
ticularly difficult to assess (Butte et al., 2012). Using GPS in
combination with accelerometers has been shown to improve
classification of cycling activities (Troped et al., 2008). For future
development of CalFit, an additional advantage over regular ac-
celerometers is the potential to identify activities and match
activity-specific energy expenditure algorithms, if these can be
developed.

The advantages of the ubiquitous sensing approach aremultiple.
Most prominent of all is the sheer amount of potential data
acquisition from billions of current and near-future smartphone
users worldwide. We have shown that the approach is feasible and,
according to feedback from volunteers, is of little intrusion to daily
functioning. In comparison, traditional approaches used to assess
activity patterns through activity or travel diaries are much more
burdensome for study respondents, leading to under- or mis-
reporting of travel activities (Bricka and Bhat, 2006). This was
confirmed in our study, as most participants complained about the
nuisance of filling out the travel log. Researchers have begun to use
GPS systems as a promising alternative to such diaries (Bricka et al.,
2012; Rodríguez et al., 2005).

The CalFit smartphone system has several advantages over
conventional GPS systems including: the geopositioning informa-
tion from mobile phone tower and Wi-Fi networks; the ability to
access data directly from live-populations without interference
from a study protocol handling external devices; and the integra-
tion of different measurements (i.e. with a single time-stamp), such
as physical activity, thus reducing lengthy merging and post-
processing of data. Other sensors could be integrated in the
future, such as air pollution, noise, and UV radiation.

CalFit shares some of major challenges with GPS datalogging
systems in general. One of the greatest hurdles encountered in
this study was the post-processing of GPS data. There are ad-
vantages to acquiring geopositioning from cell phone towers from
the internet provider when satellite reception fails: for example,
in places indoors or in narrow street canyons where satellite data
is typically unavailable, some location information may still be
gathered. The cell phone-tower positioning nevertheless tended
to be highly inaccurate in our study, and thus added noise to the
data, making trends more difficult to decipher. Few studies have
taken on the task of interpreting activity patterns from con-
tinuous person-based GPS data (most travel or physical activity
studies use data collected solely during the activity of interest and
not continuously). Schuessler and Axhausen (2009) used a series
of cleaning, smoothing and rule-based algorithms, and fuzzy logic
to identify activities with mostly a focus on trip detection,
including travel modes. Main inputs in the activity detection
algorithm were speed, acceleration, dwell time, and point density.
Unfortunately, while they were able to process a large amount of
data efficiently (6.65 days of data for close to 5000 subjects), they
had no data available (e.g. travel diary) to validate their approach.
Wu et al. (2011) in contrast thoroughly checked travel logs,
including follow-up calls, to establish a credible “gold standard” of
activity patterns against which they compared to two GPS post-
processing algorithms. Their models also used point density,
speed, and time sequencing as inputs, and performed well to
identify indoor and in-vehicle activities, but not so well for out-
door static or walking activities. Hence even when simplifying
activity patterns into only four categories and exploring various
complex modeling approaches (rule based and random forest),
still much work is needed to successfully identify activity
patterns.

The integrated personalized monitoring and air pollution
modeling framework, however, is limited by the quality and spe-
cificity of available air quality data. For instance, in our illustration
temporal and microenvironmental adjustments are basic, using
single microenvironmental ratio factors from ancillary studies or
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existing literature and a fixed monitoring station to scale hourly
concentrations across the activity spaces. Such uncertainties can be
reduced with improved spatial temporal mapping or better char-
acterized through Monte Carlo simulations for example (de Nazelle
et al., 2009). Furthermore air pollution sensors could be connected
to the smartphone to obtain measured data, without having to rely
on modeled data.

The novelty of this paper is not in assessing time activity
patterns, air pollution exposure, and/or physical activity, which
has been conducted and described before, but in the use of
widely used smartphones in obtaining and integrating this in-
formation which enables the collection of such data in much
larger populations on an individual level. This paper demon-
strates a promising use of smartphones for exposure assessment
and highlights some further challenges with GPS data processing
and automated activity recognition algorithms. Ubiquitous and
participatory sensing technology provides new data collection
opportunities to measure activity patterns, including levels of
energy expenditure on a much wider scale than has been pos-
sible so far. Combined with air pollution modeling, or, fairly soon,
measurements, it provides rich data that can reduce exposure
measurement error and improve exposure estimates in epi-
demiological studies.
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