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Aim: Trauma exposure is a necessary, but not deterministic, contributor to post-traumatic stress disor-
der (PTSD). Epigenetic factors may distinguish between trauma-exposed individuals with versus without
PTSD. Materials & methods: We conducted a meta-analysis of PTSD epigenome-wide association studies
in trauma-exposed cohorts drawn from civilian contexts. Whole blood-derived DNA methylation levels
were analyzed in 545 study participants, drawn from the three civilian cohorts participating in the PTSD
working group of the Psychiatric Genomics Consortium. Results: Two CpG sites significantly associated
with current PTSD in NRG1 (cg23637605) and in HGS (cg19577098). Conclusion: PTSD is associated with
differential methylation, measured in blood, within HGS and NRG1 across three civilian cohorts.
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Post-traumatic stress disorder (PTSD) is a debilitating mental disorder that occurs following exposure to a life-
threatening event. Symptoms include: intrusive recollections and persistent avoidance of stimuli associated with
the traumatic event; negative alterations in cognition and mood; and notable changes in arousal and reactivity, all
of which must persist for at least 1 month following trauma and be accompanied by a high degree of social and/or
occupational impairment [1]. PTSD confers a high public health burden, with lifetime prevalence rates estimated
at 6.8% in the USA [2] and 3.9% globally [3]. These estimates, however, are eclipsed by the prevalence of trauma
exposure, which ranges from 60 to 90% among US adults, depending on the population being considered [4,5],
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and 70% globally [6]. The marked difference in prevalence between trauma exposure and PTSD onset suggests that
distinct characteristics may distinguish between individuals with versus without the disorder.

Epigenetic factors – mechanisms that regulate gene function without altering underlying DNA sequence – have
gained prominence as potential markers of PTSD risk, in part because of their ability to change in relation to lived
experiences [7], including stressful and traumatic exposures [8]. Many of these findings have centered on loci involved
in neurogenesis and/or neuronal plasticity and hypothalamic–pituitary–adrenal (HPA) axis signaling [9]. For
example, work in animal models has shown that a PTSD-like phenotype is associated with increased hippocampal
DNA methylation in Bdnf [10]. Similarly, exposure to early life adversity – a key risk factor for PTSD during
adulthood [11] – has been associated with increased hippocampal DNA methylation levels in the glucocorticoid
receptor in both rodent [12] and human post mortem studies [13]. Although brain-based work examining global
epigenetic processes such as histone deacetylase activity is possible in living humans via the use of PET tracers [14],
examination of DNA methylation at specific CpG sites of interest is not yet tractable; nevertheless, studies performed
in blood have also shown alterations in DNA methylation at these loci among individuals with PTSD (reviewed
in [9]), albeit with directions of effect which sometimes differ from brain-based findings in rodents.

Although previous locus-specific studies have helped to demonstrate that traumatic exposures are associated with
changes in DNA methylation, such studies can miss identifying changes in additional genomic sites relevant to
PTSD that are not captured by a priori hypotheses. A handful of studies have demonstrated PTSD-associated
DNA methylation profiles in immune-related gene clusters using genome-scale, epigenome-wide association study
(EWAS) approaches [15,16], although these studies have been modest in size and relied on early versions of available
genome-scale DNA methylation arrays. A few EWAS studies have reported results based on newer versions of
such genome-scale technologies in the context of PTSD; yet they, too, have been quite modest in size [17], have
focused more explicitly on the integration of gene expression and DNA methylation data [18], or have included
only male first responders and military personnel [19,20]. Moreover, given the potential heterogeneity within and
among cohorts in relation to type, timing and duration of trauma exposures, which may increase variability within
smaller samples and thus dilute potential signals of PTSD-associated differential methylation, it is critical to employ
approaches that maximize power by combining data from single, smaller scale studies. Limited work comparing
military versus civilian contexts more broadly indicates that military-related PTSD is accompanied by more severe
symptomatology [21,22] but that civilian-related PTSD is associated with distinct patterns of brain activity in the
default mode network [23], suggesting distinct clinical and brain network profiles may characterize PTSD onset
due to these diverging social contexts. Finally, extant EWAS studies have not typically accounted for childhood
maltreatment or smoking, both of which are associated with PTSD [11,24] and related to epigenetic differences [25].

To address this, here we use meta-analysis to test whether current PTSD is associated with differential methylation
in civilian cohorts participating in the PTSD working group of the Psychiatric Genomics Consortium (PGC) [26].
We focus specifically on cohorts comprised of individuals recruited from civilian contexts in order to maximize
our potential to discern PTSD-associated differential methylation in noncombat situations. We hypothesize that
DNA methylation differences will distinguish individuals with current PTSD from trauma-exposed controls in
three civilian cohorts; and a subset of these differences will remain following the control for important potential
confounders, including gender and smoking status, as well as potential moderators, specifically exposure to child-
hood maltreatment [18]. To provide context to these findings, we also identify the likely transcript variants expressed
in PTSD-relevant tissues associated with our topmost hits, and conduct exploratory secondary analyses of the
relation between PTSD-associated differential methylation and mRNA expression, in order to assess the potential
functional significance of observed differential methylation.

Methods
PGC-PTSD workgroup
The PGC-PTSD workgroup was established in 2013 in order to facilitate the sharing of genomic data across
multiple cohorts to support large-scale studies of PTSD genetics [26]. Several subgroups within this workgroup
have been established, including a PCG-PTSD Epigenetics Workgroup, which provided the data used for the work
reported in this study. Within this workgroup, epigenomic data were available from a total of three civilian cohorts.
These cohorts are described in more detail below.
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Cohort descriptions
Detroit Neighborhood Health Study

See reference for details [15]. Briefly, the Detroit Neighborhood Health Study (DNHS) is an epidemiologic,
community-based sample of adult (18 years or older) participants recruited as part of a representative sample of
adult Detroit residents. DNHS participants (n = 1547 at the baseline wave) were assessed for PTSD symptoms
using the PTSD checklist (PCL-C), a 17-item self-report measure of Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV) symptoms, and additional questions about duration, timing and impairment or disability due
to the symptoms [27]. Participants were initially asked to identify potentially traumatic events that they experienced
in the past from a list of 19 events. PTSD symptoms were then assessed by referencing two traumatic events that the
respondent may have experienced: one that the participant regarded as the worst and one randomly selected event
from the remaining potentially traumatic events a respondent may have experienced. Respondents were considered
affected by lifetime PTSD if all six DSM-IV criteria were met in reference to either the worst or the random event.
Current PTSD is defined in the DNHS as meeting the criteria for lifetime PTSD, with symptoms reported during
the past month. Controls for this study had a history of trauma exposure but did not meet criteria for lifetime or
current PTSD.

Childhood maltreatment was assessed in the DNHS using questions from the Conflict Tactics Scale [28], the
Childhood Trauma Questionnaire [29], and Wyatt’s eight-item interview guide as implemented in the Nurse’s Health
Study II [30]. Conflict Tactics Scale items assessed physical and emotional abuse before age 11, and the Childhood
Trauma Questionnaire assessed physical and sexual abuse before age 18. Response options were rated on a five-point
scale that ranged from ‘never true’ to ‘very often true’. In total, sexual and emotional abuse were assessed with two
questions each and physical abuse with seven questions. Scores were summed to create a continuous measure for
each abuse type. Physical abuse was dichotomized at a score of four or greater, emotional abuse at a score of three
or greater, and sexual abuse at a score of one or greater. The DNHS was approved by the institutional review board
at the University of Michigan and University of North Carolina at Chapel Hill.

Grady Trauma Project

See reference for details [31]. In brief, the Grady Trauma Project (GTP) is comprised of participants recruited through
waiting rooms of primary care or obstetric-gynecological clinics at Grady Memorial Hospital in Atlanta. Current
and lifetime PTSD diagnosis was assessed by clinical psychologists using the Clinician-Administered PTSD Scale
for DSM IV (CAPS-4) [32] or the Mini International Neuropsychiatric Interview DSM IV (MINI), an instrument
designed to assess major Axis 1 disorders with high validity and reliability [33,34]. For this study, cases were specified
as having current PTSD, and controls had no current or lifetime history of the disorder. Demographic variables
including age, sex and race were assessed through self report. DNA methylation data used in this study is available
at (GSE72680). The institutional review boards of Emory University School of Medicine and Grady Memorial
Hospital approved this study.

In GTP, childhood maltreatment was assessed using the Childhood Trauma Questionnaire [29]. Items for each
type of abuse added together and transformed into categories of ‘none to minimal’, ‘low to moderate’, ‘moderate to
severe’ and ‘severe to extreme’. Each abuse type was dichotomized by the ‘severe to extreme’ criteria. In both DNHS
and GTP, a dichotomous childhood maltreatment variable was defined as experiencing two or more abuse types.

World Trade Center 9/11 first responders

See reference for details [35]. In brief, the World Trade Center (WTC) cohort was established based on a screening
of treatment-seeking first responders who served as rescue and recovery workers during and after the WTC disaster.
First responders were administered the Structured Clinical Interview for DSM-IV (SCID) PTSD module with
interval instructions (i.e., worst episode of symptoms since 9/11/2001) and SCID items were modified to assess
PTSD symptoms in relation to traumatic WTC exposures. The Committees on Research Involving Human Subjects
at Stony Brook University approved the study.

DNA methylation quality control
Each cohort’s Illumina HumanMethylation450 data were processed through a previously described pipeline that
was developed to optimize performance of association testing in cohorts contributing to the EWAS arm of the
PTSD PGC [36]. Briefly, following an inspection of control probes to confirm each step of the Infinium protocol,
background normalized β-values along with the methylated and unmethylated signals and detection p-values were
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imported into R for processing and analysis [37]. Samples with probe detection call rates <90% and those with an
average intensity value of either <50% of the experiment-wide sample mean or <2000 arbitrary units (AU) were
removed using the R package CpGassoc [38]. Probes that cross hybridized between autosomes and sex chromosomes
were removed and probes with detection p-values >0.001 or those based on less than three beads had their
methylation values set to missing [39]. CpGs with missing data for >10% of samples were also excluded from
analysis. Beta Mixture Quantile Normalization was used to normalize the distribution of types I and II probes [40].
Following normalization, the ComBat procedure in the R package SVA was used to remove chip and positional
effects controlling for gender and PTSD status [41]. Since β-values have been shown to be heteroskedastic, β-values
were logit transformed into M-values prior to analysis [42].

Ancestry
For the DNHS and WTC cohorts, ancestry principal components (PCs) were estimated using probes within one
base pair of SNPs. The second, third and fourth PCs, which have been shown to control for variation in methylation
by ancestry [36], were included as covariates in all statistical models to control for potential differential methylation
by ancestry [43]. In GTP, the first, second and third PCs from genome-wide genetic data were estimated as previously
described and included in all analyses to control for ancestry [31].

Cell type estimation
DNA methylation varies by cell type, which can confound analyses of whole blood if the cell type proportions
in whole blood are also impacted by the disease of interest. All three cohorts estimated the proportions of CD8,
CD4, natural killer, B cells, monocytes and granulocytes in each individuals’ blood sample using publicly available
reference data (GSE36069) and the method implemented in the R package minfi [44,45]. Estimated proportions of
CD8, CD4, natural killer, B cells, and monocytes were included as covariates in all statistical analyses.

Statistical analysis
Meta analysis

Within each cohort, M-values were modeled as a linear function of current PTSD (vs trauma-exposed controls
without lifetime PTSD), controlling for age, sex, estimated cell proportions and ancestry PCs. Using the empirical
Bayes method in the R package limma [46], moderated t-statistics were calculated for each CpG site, converted into
one-sided p-values to capture the direction of effects, and then transformed into z-scores. Next, weights for each
cohort’s z-score were calculated based on square root of the sample size of the cohort relative to the total sample
size across cohorts. Finally, the weighted z-scores were combined and two-sided p-values calculated. In order to
account for multiple hypothesis testing, p-values were adjusted using the false discovery rate (FDR) procedure with
the type I error rate level set to 0.05 based on the number of CpG sites included in the analysis after quality-control
procedures were applied across all cohorts [47]. Cochran’s Q test and I2 were calculated to assess heterogeneity of
results across studies [48,49].

Power analysis

We performed a post hoc power analysis [50] using DNHS data as a reference for CpG site variation to assess
the power to detect an effect size equivalent to that reported in our top hit. The power to detect a differentially
methylated CpG site depends on the percent difference in methylation between cases and controls, the pooled
variation in methylation across CpG sites, and the number of cases and controls [51]. A mean difference between
PTSD cases and controls of 3% (i.e., the difference reported in our top hit) requires that we assume a maximum
pooled standard deviation of 0.09; this assumption appears reasonable for our reference dataset, in which 96% of
CpG sites have a standard deviation of 0.09 or less. Assuming these parameters, our EWAS of n = 545 would have
80% power to detect a 3% difference in methylation between cases and controls if the sample included 180 cases.
Our current sample exceeds this (n cases = 198), thus we are well powered to detect an effect size comparable to
our top hit.

Sensitivity analyses
A number of sensitivity analyses were conducted for PTSD-associated CpG sites. First, we conducted a gender-
stratified meta-analysis to explore whether results from the meta-analysis were driven by a specific gender. Second,
since DNA methylation is known to vary with tobacco smoking [25], we conducted a second EWAS including
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a dichotomous variable to control for whether a participant was a current smoker. Third, we hypothesized that
childhood maltreatment may moderate the relationship between PTSD and DNA methylation, as suggested by
previous work [18]. In the two cohorts (DNHS and GTP) with information on childhood maltreatment, we therefore
conducted two additional analyses: one including childhood maltreatment as a covariate and another including
an additional interaction term with PTSD to assess whether childhood trauma had an effect on the relationship
between DNA methylation and adult PTSD status. Finally, to assess whether participant ancestry was driving the
observed association between PTSD and DNA methylation at our topmost sites, we evaluated our FDR-significant
findings within self-reported African–Americans only (while continuing to control for ancestry-related PCs); this
represented the largest race/ethnic group within our civilian cohorts (63%).

Methylation-expression correlation
Correlation of blood-derived DNA methylation and mRNA expression in PTSD-associated CpG sites was examined
in a subset of samples with available data from the DNHS [52] and GTP [53], respectively, for expression probes
passing quality control (QC) cutoffs. In the DNHS, raw gene expression was quantified using the Illumina HT-
12V4 Expression BeadChip (Illumina, San Diego, CA, USA) and normalized using quantile normalization. For
NRG1, a subset of 71 trauma-exposed DNHS participants (16 with current PTSD) with both gene expression
and methylation data was available; correlation between NRG1 expression (probe ILMN 1737252) in arbitrary
florescence units and DNA methylation at probe cg23637605 was tested in these 71 individuals. For HGS,
correlation between expression (probe ILMN 1715994) and DNA methylation at cg19577098 was assessed in the
same subset of 71 DNHS participants analyzed for NRG1; in addition, HGS expression in 133 trauma-exposed
GTP study participants (32 with current PTSD) was assessed using the Illumina HT12v4 expression beadchip
(dataset GSE58137) and normalized using quantile normalization. The probe interrogating NRG1 expression
(ILMN 1737252) did not pass QC in the GTP cohort and, thus, could not be included in the analyses.

Expression of NRG1 & HGS transcript variants in whole blood & brain
To assess cross-tissue expression variation of transcript variants associated with our topmost hits, we accessed
published RNAseq data from 327 samples corresponding to five CNS tissues previously implicated in PTSD
(frontal cortex [ba9], hippocampus, amygdala, hypothalamus, brain cortex [54]) as well as whole blood, of the
Genotype Tissue Expression Consortium (GTEx) [55]. Expression values for each transcript variant in each sample
were quantified by GTEx in fragments per kilobase of exon per million reads, and transcript variants from
Ensembl [56] annotations were compared with previously published annotations from the National Center for
Biotechnology Information (NCBI) [57] for the relevant genomic loci.

Results
Demographic characteristics
The demographics of each cohort and the combined meta-analytic sample are presented in Table 1. Of the 545
participants, 36% had a current diagnosis of PTSD, 54% were male, 76% were nonsmokers and 63% were African–
American. In addition, 23% of the sample was comprised of current smokers. In the combined DNHS and GTP
sample for which childhood maltreatment data were available, 29% reported two or more types of maltreatment.

Primary meta-analysis results
A total of 455,405 CpG sites were included in the meta-analysis across all three cohorts. Of these, 25,168 were
nominally associated with PTSD, but only two CpG sites remained significant after multiple test correction:
cg23637605 in NRG1 and cg19577098 in HGS. Results from the meta-analysis are presented as a Manhattan plot
in Figure 1. On average, across all cohorts, participants with current PTSD had lower methylation at both CpG
sites than control participants. The forest plots in Figures 2 and 3 present the effect for each locus in each cohort
and in the overall meta-analysis. In addition, the top ten CpG sites from the primary meta-analysis are presented
in Table 2, along with the β-values in cases and controls, the nominal and FDR-corrected p-values, and Q- and
I2 estimates of between-study heterogeneity. Six of the top ten PTSD-associated CpG sites fall in gene bodies,
whereas three are found in intergenic regions and one is found in a 5′UTR. Five of the top ten CpGs show lower
methylation in PTSD cases versus trauma-exposed controls, with the CpG in NRG1 showing the largest difference
in β-values between the two groups (∼3%).
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Table 1. Clinical and demographic description of each cohort.
Variable DNHS GTP WTC Total

Sample size 100 265 180 545

Mean age (SD) 53.6 (14.0) 41.9 (12.4) 49.7 (8.3) 46.6

Current PTSD 40% 28% 47% 36%

Male 40% 29% 100% 54%

Smoking, %:†

– Current 32% 30% 9% 23%

– Nonsmokers 67% 70% 91% 76%

Race:

– White 13% 5% 76% 30%

– Black 87% 94% 4% 63%

– Other 0% 1% 20% 7%

Childhood maltreatment, %:†

– 2+ types 16% 34% – 29%

– �2 types 77% 64% – 68%

†Percentages do not total to 100 due to missing data.
DNHS: Detroit Neighborhood Health Study; GTP: Grady Trauma Project; PTSD: Post-traumatic stress disorder; SD: Standard deviation; WTC: World Trade Center.
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Figure 1. Manhattan plot showing CpG sites associated with post-traumatic stress disorder following false
discovery rate correction. X axis depicts the chromosomal location of each CpG site, indicated in circles; Y axis depicts
the p-value of each CpG site’s association with current post-traumatic stress disorder in negative log scale.
cg23637605 = NRG1; cg19577098 = HGS.
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Figure 2. Forest plot showing the β-coefficients for the
effect of current post-traumatic stress disorder on
methylation at cg23637605 (NRG1) from the linear
regression within each cohort and the combined effect
from the meta-analysis in our primary analysis.
DNHS: Detroit Neighborhood Health Study; GTP: Grady
Trauma Project; WTC: World Trade Center.
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Figure 3. Forest plot showing the β-coefficients for the
effect of current post-traumatic stress disorder on
methylation at cg19577098 (HGS) from the linear
regression within each cohort and the combined effect
from the meta-analysis in our primary analysis.
DNHS: Detroit Neighborhood Health Study; GTP: Grady
Trauma Project; WTC: World Trade Center.

Sensitivity analyses
Table 3 shows that controlling for current smoking did not attenuate the significance of either CpG site identified
by our primary analyses. In addition, both CpG sites showed nominally significant differences in association
with PTSD in both male- and female-only meta-analyses, with directions of effects consistent with the primary
analyses (i.e., lower DNA methylation among those with PTSD; Table 4). Supplementary Table 1 shows that when
childhood maltreatment was included as a covariate, the effect of PTSD remained consistent and significant after
FDR correction for cg23637605 and nominally significant for cg19577098, but that childhood maltreatment was
not significantly associated with either CpG. To assess whether childhood maltreatment moderated the relationship
between PTSD and DNA methylation, as suggested by previous work [18], we tested a model that included the PTSD
× childhood maltreatment interaction term. Nominally significant associations with PTSD remained for both CpG
sites, but neither was significant after FDR adjustment. However, neither the effect of childhood maltreatment nor
the interaction term was significant, indicating that the main effect of PTSD is relatively unaffected by exposure
to childhood maltreatment for the two CpG sites identified in our primary analyses. Finally, analyses limited to
participants of African–American ancestry (n = 336; Supplementary Table 2) showed that DNA methylation at
NRG1 remained associated with PTSD (FDR = 0.04), with the same direction of effect as in our primary model
and retained its position as the top site associated with the disorder. Results for HGS among African–Americans
only were attenuated to nonsignificance (FDR = 0.33) but retained the same direction of effect as in our primary
model.

Correlation between methylation & expression of NRG1 & HGS
NRG1 methylation at cg23637605 and expression of NRG1 in blood correlated significantly in individuals with
current PTSD in the DNHS cohort (R2 = 0.47, p = 0.003), but not in trauma-exposed controls (R2 = 0.021,
p = 0.23; Figure 4). Of note, the NRG1 probe ILMN 1737252 is annotated to NM 013962, but matches multiple
NRG1 transcript variants. In contrast, analyses of HGS in the DNHS cohort showed no significant correlation
between DNA methylation at cg19577098 and HGS expression either in individuals with current PTSD (R2 = 0.18,
p = 0.1) or trauma-exposed controls (R2 = 0.0041, p = 0.14). The lack of correlation in HGS was also observed in
the GTP cohort (cases: R2 = 0.042, p = 0.27; controls: R2 = 0.001, p = 0.76).

Expression of NRG1 & HGS in selected tissues
NRG1 is a complex locus that generates six major types of protein, types I through VI, determined through the
use of differing 5′ exons, and more than 20 transcript variants that vary in their expression levels among and
within tissues, including the brain [58,59]. In blood, the major NRG1 transcript variant is ENST0000518206
(Supplementary Figure 1). This variant is most similar to a type I transcript variant, which is predicted to produce
a 126aa protein that only includes the EGF-like domain that is conserved among all NRG1 types. The major
transcript variant of NRG1 expressed in the amygdala, cortex, frontal cortex, hippocampus and hypothalamus is
ENST0000520502, which uses the type III promoter to produce the SMDF transcript variant. The high expression
of this transcript variant in these tissues is consistent with previous work showing that a majority of all NRG1
expression consists of this variant in the cerebral cortex [60]. The major HGS transcript variant expressed (fragments
per kilobase of exon per million reads ≥10) in amygdala, cortex, frontal cortex, hypothalamus and blood is the
full-length variant, ENST000003291388 (NM 004712); a secondary variant, ENST00000573320, which only
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Figure 4. NRG1 methylation and expression correlation in the Detroit Neighborhood Health Study. Correlation
(p ≤ 0.01) of methylation (β) at cg23637605 and expression (arbitrary units) in n = 16 with current PTSD (red) and
n = 55 trauma exposed controls without PTSD (blue) in samples from the Detroit Neighborhood Health Study. Lines
represent the linear best fit, and gray areas the 95% CI of the linear best fit.
PTSD: Post-traumatic stress disorder.

contains the 3′ end of the major transcript variant, is also expressed at similar levels in these tissues (Supplementary
Figure 2).

Discussion
Trauma exposure is required for a PTSD diagnosis, yet not all trauma-exposed individuals go on to develop the
disorder. PTSD therefore affords a unique opportunity to identify characteristics that distinguish individuals with
versus without the disorder. Through a meta-analysis of existing EWAS data associated with PTSD in civilian
samples, we identified two CpG sites that reached genome-wide significance in our primary analysis: one located in
NRG1, a gene involved in neural development and synaptic plasticity that is also associated with cardioprotective
effects [59,61], and another located in HGS, a gene associated with endocytosis and exocytosis [62,63]. These results
were robust to adjustment for current smoking and, for NRG1, robust to adjustment for exposure to childhood
maltreatment, raising the possibility that this locus in particular may serve as a potential biomarker of PTSD
even among those with adverse early life experiences; gender-stratified analyses, however, attenuated both sites to
nonsignificance, perhaps due to limited power. Taken together, these results provide initial evidence that PTSD is
associated with differential methylation within NRG1 and HGS in cohorts comprised of individuals recruited from
civilian contexts.

NRG1 is involved in multiple biological processes relevant to neural development and function. Much of its
role is enacted through pairing with ErRB receptor tyrosine kinases, which enables signaling to affect neuronal
migration, axon guidance, myelination, synapse and neuromuscular junction formation, and oligodendrocyte
development [59]. The type III transcript variant, identified here as the likely variant expressed in brain regions
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relevant to PTSD, nevertheless plays a prominent role in Schwann cell development and peripheral myelination [64].
Previous behavioral work in rodents has also implicated Nrg1 dysregulation in altered HPA axis reactivity [65,66]

and anxiety-relevant phenotypes [65–68], indicating a role for this gene in not only neural development, but also
HPA axis functioning. More specifically, rats with reduced type II Nrg1 transcript levels showed increased basal
corticosterone concentrations, reduced corticosterone concentrations following acute stress, and sustained reactivity
to novel environments [65], suggesting that proper expression of this transcript variant in the brain plays an important,
possibly protective role in shaping response to stress.

Although the complexity of the NRG1 locus, along with its wide range of transcript variants that show tissue- [60]

and developmental [60,69] expression differences, makes it challenging to infer the precise impact of our observed
PTSD-associated differential methylation at this locus, genomic variation across this gene has previously been
linked to schizophrenia in multiple meta-analyses [70–73], and type III transcript variants have been reported as
being upregulated in leukocytes obtained from individuals with schizophrenia [74]; it has also been linked to bipolar
disorder in select candidate gene studies [75,76]. While NRG1 has not been previously linked to PTSD, we note that
the largest genome-wide association study (GWAS) of PTSD published to date identified ErbB-related signaling
pathways in three of the five topmost pathways implicated by the GWAS results [77], including ErbB4, the receptor
that can interact directly with NRG1 and that plays a preferential role in CNS development and function [64].
Collectively, these findings suggest that genomic variation in NRG1 may confer a broad risk for mental disorders,
including PTSD.

In contrast to our topmost hit, our second hit, HGS, has been linked only marginally to mental disorders,
specifically Alzheimer’s disease, in previous work [78]. In addition, it has not, to our knowledge, been implicated in
modulating HPA axis signaling or function. Nevertheless, its protein product does appear to play a role in both CNS-
and immune-related functions, both of which have been implicated in PTSD [79]. HGS is a key protein involved
in the endosomal sorting complex required for transport, a multiprotein complex that serves to deliver G protein-
coupled receptors, including neuromodulators such as δ-opioid and β-adrenergic 2 receptors for downregulation
and/or degradation, often following ubiquitination [80,81]. The gene has been implicated in peripheral development
and activation of B cells [82] and in the secretion of exosomes by dendritic cells [83]. Deficiency in HGS expression
has been linked to increases in both IL6 and TNF-α signaling [83,84], suggesting the gene plays a role in immune
and inflammatory processes. Intriguingly, the gene has been annotated as belonging to the Internalization of ErbB1
pathway [85], further implicating ErbB-related signaling pathways in PTSD pathophysiology. Although the relevance
of our blood-based findings in relation to the brain is unclear at this time, it is worth noting that in mice with
neuron-specific knockout of HGS, ubiquitinated proteins were observed to accumulate in brain tissue at 5 weeks,
and hippocampal neurodegeneration was detectable at 8 weeks, suggesting a key role for the gene in promoting
neuronal survival [86]. Thus, although existing studies have not implicated this locus in PTSD etiology per se,
findings from the studies described here provide evidence that HGS is involved in multiple biological processes
whose dysregulation has been previously linked to PTSD [79].

Of note, our secondary analyses showed that methylation and expression were correlated at NRG1 but not HGS.
In the DNHS, blood-based expression of NRG1 appears to be actively regulated by DNA methylation measured
in the same tissue, but only among individuals with current PTSD; trauma-exposed individuals showed no such
association. In contrast, DNA methylation of our HGS hit was not significantly associated with expression in either
the DNHS or GTP samples. Although these preliminary NRG1 findings await replication, these results suggest
that PTSD-associated DNA methylation has varying effects on gene expression, with effects that are sometimes,
but not always, evident at the transcript level.

Our findings should be interpreted in light of a number of study limitations. First, our investigation was
necessarily limited to CpG sites included on the 450K BeadChip, which represent only a fraction of the CpG sites
in the human genome; thus, we are likely missing other, important CpG sites associated with PTSD that are not
present on this array. Future work using the more comprehensive MethylationEPIC BeadChip DNA methylation
microarray, or whole genome bisulfite sequencing of entire genomes, should help to address this shortcoming.
Second, our findings are based on blood-derived DNA, and we are currently unable to make inferences about DNA
methylation levels among individuals with PTSD at the identified sites within the target organ of interest, that is,
the brain. Future investigations of brain tissue from PTSD Brain Banks, presently under development, may help to
illuminate the correspondence between our observed PTSD-associated biomarkers in direct findings in the brain.
Third, the DNHS and GTP studies assessed PTSD for worst exposure occurring across the life course, while for the
WTC cohort, PTSD was determined only in relation to WTC exposures. Thus our sensitivity analysis adjusting
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for childhood exposure and investigating its potential moderating effects in our top hits was limited to the former
two cohorts. Future studies are needed to confirm our finding that PTSD is associated with DNA methylation
in NRG1 when adjusting for childhood maltreatment in samples that include the WTC as well as other civilian
cohorts. Fourth, our secondary analyses of DNA methylation and expression were limited to cohorts with available
data and to probes that passed QC filters; as such our observations for this portion of the study are based on a more
limited sample than the meta-analysis, and should be interpreted with caution. We anticipate an increase in the
availability of paired DNA methylation-expression data through ongoing work within the PGC PTSD workgroup
that will help determine the replicability of the current results. Fifth, we did not control for possible effects of
comorbid conditions on DNA methylation, due in part to a lack of good measures across a range of psychiatric
diagnoses in addition to PTSD. Finally, a limitation of the results from our isoform analysis is that, for NRG1, the
Ensembl and NCBI annotations in these regions do not match completely. Ensembl is missing many of the types
II and V isoforms that are present in NCBI, and NCBI is missing some of the novel isoforms that are present in
Ensembl. Future work to resolve the annotation of this genomic region, which is strongly implicated in disorders
such as PTSD and schizophrenia, will help the comparison of future high-throughput analyses with each other and
with existing literature.

Despite these limitations, our study includes several strengths, including the use of a well-developed, standardized
preprocessing pipeline applied across multiple cohorts [36] and the use of meta-analytic techniques to increase the
power of our PTSD-related analyses. Our efforts have identified preliminary evidence for two DNA methylation-
based epigenetic associations with current PTSD across three civilian cohorts; one of these, NRG1, falls in a gene
previously implicated in schizophrenia, and the other, HGS, is involved in critical biological processes that impact
immune function and neuronal survival. These findings should be replicated in larger, independent samples and
in additional cohorts as they become available through the PGC PTSD; if they hold, future, longitudinal studies
should be conducted to determine whether these PTSD-associated DNA methylation differences exist prior to
trauma exposure and thus serve as a vulnerability marker or biomarker of risk prognosis [87], or whether they arise
following onset of the disorder.

Summary points

• Post-traumatic stress disorder (PTSD) is a debilitating mental disorder that occurs following exposure to a
life-threatening event.

• The marked difference in prevalence between trauma exposure and PTSD onset suggests that distinct
characteristics, including epigenetics, may distinguish between individuals with versus without the disorder.

• We used meta-analysis to test whether current PTSD is associated with differential methylation in cohorts
comprised of individuals recruited from civilian settings. We focused specifically on civilian contexts in order to
maximize our potential to discern PTSD-associated differential methylation in noncombat situations.

• Blood-based DNA methylation measures from epigenome-wide association studies of PTSD were obtained from
the 545 participants drawn from three civilian cohorts participating in the epigenome-wide association studies
arm of the PTSD working group of the Psychiatric Genomics Consortium.

• DNA methylation at two CpG sites significantly associated with current PTSD, controlling for gender, age, blood
cell composition and ancestry: cg23637605, located in NRG1 (false discovery rate p = 0.021); and cg19577098
located in HGS (false discovery rate p = 0.033).

• Results were robust to adjustment for smoking and, in NRG1, exposure to childhood maltreatment.

• Complimentary analyses in a subset of samples showed significant associations between DNA methylation and
mRNA expression in NRG1 but not HGS.

• NRG1 is important in neural development and synaptic plasticity and has been previously implicated in
schizophrenia; HGS plays a role in CNS and immune-related functions.

• This is the first report of PTSD-associated variation at both of the identified loci.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: https://www.futuremedicine.com/d

oi/suppl/10.2217/epi-2018-0049
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