Poisoning & Drug Overdose, 6e >

Chapter 68. Ethylene Glycol and Other Glycols

Thanjira Jiranantakan, MD; Ilene B. Anderson, PharmD

Ethylene Glycol and Other Glycols

Ethylene glycol is the primary ingredient (up to 95%) in antifreeze. It sometimes is consumed intentionally as an alcohol substitute by alcoholics and is tempting to children and pets because of its sweet taste. Intoxication by ethylene glycol itself causes inebriation and mild gastritis; more importantly, its metabolic products cause metabolic acidosis, renal failure, and death. Other glycols may also produce toxicity (Table II–24).

Loading [Contrib]/a11y/accessibility-menu.js

Table II-24 Other Glycols

Compounds	Toxicity and Comments	Treatment
Diethylene glycol	Highly nephrotoxic. Renal failure, coma, metabolic	Ethanol and
(DEG)	acidosis, and death have been reported after ingestion	fomepizole may be
	as well as repeated dermal application in patients with	effective. Hemodialys
	extensive burn injuries. Most reported incidents were	indicated for patients
	from adulteration of consumer products or	with anuric renal fail
	medications. Gastritis, hepatitis, pancreatitis, and	or severe metabolic
	delayed neurologic sequelae also reported after	acidosis nonresponsi
	ingestion. Metabolic acidosis may be delayed longer	to medical treatment
	than 12 hours after ingestion. Estimated human lethal	
	dose is 0.05–2.0 g/kg. Calcium oxalate crystal	
	formation documented in animals but not humans	
	after fatal exposure. The metabolism of DEG is unclear;	
	however, a case report documents a good outcome	
	with fomepizole. Molecular weight is 106.	
Dioxane (dimer of	May cause coma, liver and kidney damage. The vapor	Role of ethanol and
ethylene glycol)	(>300 ppm) may cause mucous membrane irritation.	fomepizole is unknov
	Dermal exposure to the liquid may have a defatting	but they may be
	action. Metabolites unknown. Molecular weight is 88.	effective.
Dipropylene glycol	Relatively low toxicity. Central nervous system	Supportive care. The
	depression, hepatic injury, and renal damage have	is no role for ethanol
	occurred in animal studies after massive exposures.	therapy.
	There is a human report of acute renal failure,	
	polyneuropathy, and myopathy after an ingestion of	
	dipropylene glycol fog solution but no reports of	
	acidosis or lactate elevation. Molecular weight is 134.	
Ethylene glycol	Clinical toxic effects include lethargy, coma, anion gap	Ethanol, fomepizole,
monobutyl ether	metabolic acidosis, hyperchloremia, hypotension,	and hemodialysis ma
(EGBE,	respiratory depression, hemolysis, renal and hepatic	be effective.
2-butoxyethanol,	dysfunction; rare disseminated intravascular	
butyl cellosolve)	coagulation (DIC), noncardiogenic pulmonary edema,	
	and acute respiratory distress syndrome (ARDS).	
	Oxalate crystal formation and osmolar gap elevation	
	have been reported, but not in all cases. Serum levels	
	in poisoning cases have ranged from 0.005 to 432	

Compounds	Toxicity and Comments	Treatment
	mg/L. Butoxyethanol is metabolized by alcohol	
	dehydrogenase to butoxyaldehyde and butoxyacetic	
	acid (BAA); however, the affinity of alcohol	
	dehydrogenase for butoxyethanol is unknown.	
	Molecular weight is 118.	
Ethylene glycol	Calcium oxalate crystals have been reported in	Ethanol and
monoethyl ether	animals. Animal studies indicate that EGEE is	fomepizole may be
(EGEE,	metabolized in part to ethylene glycol; however, the	effective.
2-ethoxyethanol,	affinity of alcohol dehydrogenase is higher for EGEE	
ethyl cellosolve)	than for ethanol. One patient developed vertigo,	
,	unconsciousness, metabolic acidosis, renal	
	insufficiency, hepatic damage, and neurasthesia after	
	ingesting 40 mL. Teratogenic effect has been reported	
	in humans and animals. Molecular weight is 90.	
Ethylene glycol	Delayed toxic effects (8 and 18 hours after ingestion)	Effectiveness of
monomethyl ether	similar to those of ethylene glycol have been reported.	ethanol and fomep
(EGME,	Calcium oxalate crystals may or may not occur.	uncertain; in one
2-methoxyethanol,	Cerebral edema, hemorrhagic gastritis, and	report, fomepizole
methyl cellosolve)	degeneration of the liver and kidneys were reported in	not prevent acidos
	one autopsy. Animal studies indicate that EGME is	
	metabolized in part to ethylene glycol; however, the	
	affinity of alcohol dehydrogenase is about the same for	
	EGME as for ethanol. Oligospermia has been reported	
	with chronic exposure in humans. Teratogenic effects	
	have been reported in animals. Molecular weight is 76.	
Polyethylene glycols	Very low toxicity. A group of compounds with	Supportive care.
	molecular weights ranging from 200 to more than	
	4000. High-molecular-weight compounds (>500) are	
	poorly absorbed and rapidly excreted by the kidneys.	
	Low-molecular-weight compounds (200–400) may	
	result in metabolic acidosis, renal failure, and	
	hypercalcemia after massive oral ingestions or	
	repeated dermal applications in patients with	
	extensive burn injuries. Acute respiratory failure	
	occurred after accidental nasogastric infusion into the	
g [Contrib]/a11y/accessib	ilitv-menu.is	

Compounds	Toxicity and Comments	Treatment
	lung of a pediatric patient. Alcohol dehydrogenase	
	metabolizes polyethylene glycols.	
Propylene glycol (PG)	Relatively low toxicity. Lactic acidosis, central nervous	Supportive care,
	system depression, coma, hypoglycemia, seizures, and	sodium bicarbonate.
	hemolysis have been reported rarely after massive	There is no role for
	exposures or chronic exposures in high-risk patients.	ethanol therapy.
	Risk factors include renal insufficiency, small infants,	Hemodialysis is
	epilepsy, burn patients with extensive dermal	effective but rarely
	application of propylene glycol, and patients in alcohol	indicated unless renal
	withdrawal receiving ultra-high doses of IV lorazepam	failure or severe
	or diazepam. Osmolar gap, anion gap, and lactate are	metabolic acidosis
	commonly elevated. PG levels of 6–42 mg/dL did not	unresponsive to
	result in toxicity after acute infusion. A PG level of 1059	medical treatment.
	mg/dL was reported in an 8-month-old with extensive	Discontinue any drugs
	burn injuries after repeated dermal application (the	containing PG.
	child experienced cardiopulmonary arrest). A level of	
	400 mg/dL was measured in an epileptic patient who	
	experienced status epilepticus, respiratory depression,	
	elevated osmolar gap, and metabolic acidosis.	
	Metabolites are lactate and pyruvate. Molecular weight	
	is 76.	
Triethylene glycol	Uncommon intoxication in humans. Coma, metabolic	Ethanol and
	acidosis with elevated anion gap, osmolar gap of 7	fomepizole may be
	mOsm/L reported 1–1.5 hours after ingestion of one	effective.
	"gulp." Treated with ethanol and recovered by 36	
	hours.	

Mechanism of toxicity

- Ethylene glycol is metabolized by alcohol dehydrogenase to glycoaldehyde, which is then metabolized to glycolic, glyoxylic, and oxalic acids. These acids, along with excess lactic acid, are responsible for the anion gap metabolic acidosis. Oxalate readily precipitates with calcium to form insoluble calcium oxalate crystals. Tissue injury is caused by widespread deposition of oxalate crystals and the toxic effects of glycolic and glyoxylic acids.
- **Pharmacokinetics.** Ethylene glycol is well absorbed. The volume of distribution is about 0.6–0.8

 L/kg. It is not protein bound. Metabolism is by alcohol dehydrogenase, with a half-life of about 3–5

 Loading [Contrib]/a11y/accessibility-menu.js

hours. In the presence of ethanol or fomepizole (see below), both of which block ethylene glycol metabolism, elimination is entirely renal, with a half-life of about 17 hours.

- Other glycols (see Table II–24). Propylene and dipropylene glycols are of relatively lower toxicity, although metabolism of propylene glycol creates lactic acid. Polypropylene glycol and other highmolecular-weight polyethylene glycols are poorly absorbed and virtually nontoxic. However, diethylene glycol and glycol ethers produce toxic metabolites with toxicity similar to that of ethylene glycol.
- II. **Toxic dose.** The approximate lethal oral dose of 95% ethylene glycol (eg, antifreeze) is 1.0–1.5 mL/kg; however, survival has been reported after an ingestion of 2 L in a patient who received treatment within 1 hour of ingestion.

III. Clinical presentation

- Ethylene glycol
 - 1. **During the first few hours** after acute ingestion, the victim may appear intoxicated as if by ethanol. The osmole gap (See Serum osmolality and osmole gap) is increased, but there is no initial acidosis. Gastritis with vomiting may also occur.
 - 2. **After a delay of 4–12 hours,** evidence of intoxication by metabolic products occurs, with anion gap acidosis, hyperventilation, convulsions, coma, cardiac conduction disturbances, and arrhythmias. Renal failure is common but usually reversible. Pulmonary edema and cerebral edema may also occur. Hypocalcemia with tetany has been reported.
- Other glycols (see Table II–24). Diethylene glycol and glycol ethers are extremely toxic and may produce acute renal failure and metabolic acidosis. Calcium oxalate crystals may or may not be present.
- IV. **Diagnosis** of ethylene glycol poisoning usually is based on the history of antifreeze ingestion, typical symptoms, and elevation of the osmole and anion gaps. Oxalate or hippurate crystals may be present in the urine (calcium oxalate crystals may be monohydrate [cigar-shaped] or dihydrate [cuboidal]). Because many antifreeze products contain fluorescein, the urine may exhibit fluorescence under a Wood's lamp. However, false-positive and false-negative Wood's lamp results have been reported.
 - Specific levels. Tests for ethylene glycol levels are usually available from regional commercial toxicology laboratories but are difficult to obtain quickly.
 - 1. Serum levels higher than 50 mg/dL usually are associated with serious intoxication, although lower levels do not rule out poisoning if the parent compound has already been metabolized (in such a case, the anion gap should be markedly elevated). Calculation of the osmole gap (See Serum osmolality and osmole gap) may be used to estimate the ethylene glycol level.

Loading [Contrib]/a11y/accessibility-menu.js

- 2. False-positive ethylene glycol levels can be caused by elevated triglycerides (see Table I–33) and by 2,3-butanediol, lactate, glycerol, and other substances when glycerol dehydrogenase is used in some enzymatic assays. An elevated ethylene glycol level should be confirmed by gas chromatography (GC).
- 3. Elevated concentrations of the toxic metabolite **glycolic acid** are a better measure of toxicity but are not widely available. Levels less than 10 mmol/L are not toxic. *Note:* Glycolic acid can produce a false-positive result for lactic acid in some assays.
- 4. In the absence of a serum ethylene glycol level, if the osmole and anion gaps are both normal and the patient is asymptomatic, serious ingestion is not likely to have occurred.
- Other useful laboratory studies include electrolytes, lactate, ethanol, glucose, BUN, creatinine, calcium, hepatic aminotransferases (ALT, AST), urinalysis (for crystals and Wood's lamp examination), measured osmolality, arterial blood gases, and ECG monitoring. Serum betahydroxybutyrate levels may help distinguish ethylene glycol poisoning from alcoholic ketoacidosis, which also may cause increased anion and osmole gaps. (Patients with alcoholic ketoacidosis may not have markedly positive tests for ketones, but the beta-hydroxybutyrate level will usually be elevated.)

V. Treatment

- Emergency and supportive measures
 - Maintain an open airway and assist ventilation if necessary (See Airway and Breathing).
 Administer supplemental oxygen.
 - 2. Treat coma (See Coma and stupor), convulsions (See Seizures), cardiac arrhythmias (See QRS interval prolongation, Tachycardia, and Ventricular dysrhythmias), and metabolic acidosis (See Anion gap metabolic acidosis) if they occur. Observe the patient for several hours to monitor for development of metabolic acidosis, especially if the patient is symptomatic or there is known co-ingestion of ethanol.
 - 3. Treat hypocalcemia with IV calcium gluconate or calcium chloride (See Calcium).
- Specific drugs and antidotes
 - 1. Administer **fomepizole** (See Fomepizole (4-Methylpyrazole, 4-Mp)) or **ethanol** (See Ethanol) to saturate the enzyme alcohol dehydrogenase and prevent metabolism of ethylene glycol to its toxic metabolites. Indications for therapy include the following:
 - Ethylene glycol level is higher than 20 mg/dL.
 - History of ethylene glycol ingestion is accompanied by an osmole gap greater than 10

Loading [Contrib] A Ps/Access Bility-menuted for by ethanol or other alcohols.

- 2. Administer **pyridoxine** (See Pyridoxine (Vitamin B₆)), **folate** (See Fomepizole (4-Methylpyrazole, 4-Mp)), and **thiamine** (See Thiamine (Thiamin, Vitamin B₁)), cofactors required for the metabolism of ethylene glycol that may alleviate toxicity by enhancing metabolism of glyoxylic acid to nontoxic metabolites.
- **Decontamination** (See Decontamination). Perform lavage (or simply aspirate gastric contents with a small, flexible tube) if the ingestion was recent (within 30–60 minutes). Activated charcoal is not likely to be of benefit because the required effective dose is large and ethylene glycol is rapidly absorbed, but it may be given if other drugs or toxins were ingested.
- Enhanced elimination. The volume of distribution of ethylene glycol is 0.6–0.8 L/kg, making it accessible to enhanced elimination procedures. Hemodialysis efficiently removes ethylene glycol and its toxic metabolites and rapidly corrects acidosis and electrolyte and fluid abnormalities.
 - 1. Indications for hemodialysis include the following:
 - Suspected ethylene glycol poisoning with an osmole gap greater than 10 mOsm/L not accounted for by ethanol or other alcohols and accompanied by metabolic acidosis (pH <7.25-7.30) unresponsive to therapy.
 - Ethylene glycol intoxication accompanied by renal failure.
 - Ethylene glycol serum concentration greater than 50 mg/dL unless the patient is asymptomatic and is receiving fomepizole or ethanol therapy.
 - Severe metabolic acidosis in a patient with a history of ethylene glycol ingestion, even if the osmole gap is not elevated (late presenter).
 - 2. End point of treatment. The minimum serum concentration of ethylene glycol associated with serious toxicity is not known. In addition, ethylene glycol levels are reported to rebound after dialysis ceases. Therefore, treatment with fomepizole or ethanol should be continued until the osmole and anion gaps are normalized or (if available) serum ethylene glycol and glycolic acid levels are no longer detectable.

McGraw Hill

Copyright © McGraw-Hill Education

All rights reserved.

Your IP address is 158.111.236.165

Terms of Use • Privacy Policy • Notice • Accessibility

Access Provided by: Stephen B. Thacker CDC Library

Silverchair

Loading [Contrib]/a11y/accessibility-menu.js