Journal of Exposure Science & Environmental Epidemiology (2018) 28:381-391
https://doi.org/10.1038/541370-017-0009-6

ARTICLE
®

Check for

Predicting polycyclic aromatic hydrocarbons using a mass fraction
approach in a geostatistical framework across North Carolina

Jeanette M. Reyes' - Heidi F. Hubbard? - Matthew A. Stiegel® - Joachim D. Pleil*® - Marc L. Serre®

Received: 19 April 2017 / Revised: 6 October 2017 / Accepted: 27 October 2017 / Published online: 9 January 2018
© Nature America, Inc., part of Springer Nature 2018

Abstract

Currently in the United States there are no regulatory standards for ambient concentrations of polycyclic aromatic
hydrocarbons (PAHSs), a class of organic compounds with known carcinogenic species. As such, monitoring data are not
routinely collected resulting in limited exposure mapping and epidemiologic studies. This work develops the log-mass
fraction (LMF) Bayesian maximum entropy (BME) geostatistical prediction method used to predict the concentration of nine
particle-bound PAHs across the US state of North Carolina. The LMF method develops a relationship between a relatively
small number of collocated PAH and fine Particulate Matter (PM2.5) samples collected in 2005 and applies that relationship
to a larger number of locations where PM2.5 is routinely monitored to more broadly estimate PAH concentrations across the
state. Cross validation and mapping results indicate that by incorporating both PAH and PM2.5 data, the LMF BME method
reduces mean squared error by 28.4% and produces more realistic spatial gradients compared to the traditional kriging
approach based solely on observed PAH data. The LMF BME method efficiently creates PAH predictions in a PAH data
sparse and PM2.5 data rich setting, opening the door for more expansive epidemiologic exposure assessments of ambient
PAH.

Keywords Ambient exposures - PAHs * Bayesian maximum entropy * Mass fraction - Geostatistics

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a class of
organic compounds containing two or more fused aromatic
rings created through incomplete fuel combustion from a
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variety of sources including biofuel burning, wildfires, coal
production, etc. [1, 2]. Several species of PAHs and their
metabolites have been designated by the United States
Environmental Protection Agency (US EPA) as being
probable human carcinogens [3—6]. Currently the EPA only
has PAH regulatory standards for drinking water and the
National Institute for Occupational Safety and Health
(NIOSH) has established occupational exposure limits to
coal tar pitch volatiles [7]. International organizations and
other countries have established ambient concentration
guidelines for one of the more toxic PAHs, benzo(a)pyrene
[8]. However, currently in the US there are no regulatory
standards for ambient concentrations of PAHs. Compared to
regulated ambient air pollutants, there are few epidemiolo-
gic studies that have utilized observed data or explored
ambient exposures to different PAHs, which can be costly
to measure [9, 10]. From a geostatistical perspective, limited
ambient observed data have resulted in few studies creating
maps of PAHs concentrations [11-14]. Others have used
chemical transport models (CTMs) to predict PAH con-
centrations [8, 15, 16]. However, these studies are also
limited in number. As a result, there is a gap in the literature
exploring ambient PAH exposures and their associations
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with various health endpoints. Short-term health effects
include eye and skin irritation, nausea and vomiting while
long-term health effects include increased risk to skin, lung
and bladder cancer as well as cardiopulmonary mortality
[7]. While many of these health effects are associated with
either occupational exposures or drinking water exposures,
the relationship between ambient concentrations of PAH to
their associated health effects has not been well explored.

Both inside and outside the US there is a lack of con-
sistent PAH observed monitoring outside of monitoring
campaigns conducted for specific studies. In contrast to the
data sparse environment of PAH observed data, particulate
matter 2.5 pm in diameter (PM2.5) exists in a data rich
environment with a vast, consistent, historical monitoring
network across the US [17, 18]. Currently there are 16 EPA
designated priority PAHs, nine of which are particle-bound
[13]. Thus, a portion of PM2.5 may be particle-bound PAH.
Currently, the US state of North Carolina has no maps
displaying PAH concentrations using observed data. This
study explores the relationship between PM2.5 and PAH
and is an extension of previous work done by Allshouse
et al. [13] that developed the log-mass fraction (LMF)
Bayesian maximum entropy [19, 20] (BME) geostatistical
method and applied this method to model the distribution of
PAH near the World Trade Center after 11 September. The
observational PAH data used in that work came from the
analysis of 243 PM2.5 filters from four sites spanning
approximately 200 days split between the sites near and
around ground zero set up following 11 September.

In this work we analyze the PAH content of PM2.5 filters
collected across the US state of North Carolina and
implemented the LMF BME method to predict PAH con-
centration at unmonitored locations, creating the first maps
of PAH across North Carolina for 2005 using observed
data. Furthermore, we compare the LMF BME method with
a simple linear regression (LR) BME method and more
traditional geostatistical methods for the first time. Methods
are evaluated through cross validation. Predictive maps are
used to visualize the probability of exceeding PAH cutoff
concentrations. Lastly, a comparison is performed between
the LMF BME and other methods to learn how the rela-
tionship between PAH concentrations near wildfires may
change for different prediction methods. These results
provide a way for which a data sparse environment can be
exploited in an efficient manner in conjunction with a data
rich secondary data (e.g. PM2.5 data) environment in which
the resulting relationship between the two can be applied to
estimate concentrations of data sparse air pollutants else-
where in a given domain. This cost-effective method, in
terms of analyzing observed data, can be applied to other air
pollution parameters that have not yet been previously
mapped. This methodology opens the door for greater
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epidemiologic studies exploring the association between
ambient concentrations of PAHs and various health
endpoints.

Materials and methods
Observed PM2.5 and PAH data

Daily PM2.5 filters in North Carolina during 2004-2005
were collected as part of the monitoring effort needed to
provide the data reported in the EPA’s Air Quality Systems
(AQS) data base [17]. Of the PM2.5 filters collected during
this time period, we selected 84 filters collected in 2005 and
analyzed them for the following nine species of PAHs: benz
(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)
fluoranthene, benzo(e)pyrene, benzo(a)pyrene, indeno
(1,2,3-cd)pyrene, benzo(g,h,i)perylene, dibenzo(a,h)anthra-
cene and the summation of the nine PAH species called
Total PAH. PM2.5 has units of pg/m® and PAH has units of
ng/m?.

The LR and LMF method

There are approximately 8,000 space/time locations for the
state of North Carolina in 2005 where daily PM2.5 is
observed and recorded in AQS. PAH was estimated at these
locations using surrounding PAH and PM2.5 information.
There were two different PAH estimation methods: (1) a LR
method consisting of a regression created from paired
PM2.5 and PAH in an estimation neighborhood in which
PAH is then predicted at locations where PM2.5 is known
and (2) a LMF method that assumes the ratio of
PAH/PM2.5 is constant within an optimized estimation
neighborhood in which PAH is then predicted by applying
the ratio at locations where PM2.5 is known.

Let p;, be the PAH space/time locations where PAH was
directly measured from a PM2.5 filter, where the location of
the ith PAH measurement is denoted as p; = (s;t;) €py,
where s; is the spatial coordinate and ¢; is the time coordi-
nate. Let p; be the space/time locations where PAH is
estimated from PM2.5, in which the location of the jth
individual estimate is denoted as p; € p;.

The LR method is a simple linear regression of PAH
with respect to PM2.5. This linear regression can be
expressed at the p; locations (where both PAH and PM2.5
are measured) as:

In(PAH,) = 8, + f; In(PM2.5,) (1)

The subsequent sections describe how the parameters £,
and p; are estimated. The relationship in Eq. 1 can then be
used to estimate PAH at the p; locations (where only PM2.5
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is measured) with the distribution

In(PAH) ~ N (Ji; + i, In(PM2.5)), o2y ) 2)

where 67 ; 1s the linear regression prediction variance.

The LMF method was defined by Allshouse et al. [13] as
expressing the relation between PAH and PM2.5 at the p;
locations as

PAH;
LMF,; =1
’ n(PM2.5,-> 3)
which can be rewritten as
In(PAH;) = LMF + In(PM2.5;) 4)

This approach is attractive because it uses only one
parameter, namely LMF, to estimate PAH based on PM2.5,
making the LMF more parsimonious and more localized
around the estimation location of interest. At locations p;
where only PM2.5 is measured, the mean pyvg; and var-
iance o7 \y; of LMF can be estimated as

Nove(p;)
HimEj = Z LMF;/Niur (p;) (5)
pa

Nk (p;)
6wy = (LMFi— piey) / (Nove(py) = 1) (6)
i=1
Nime(p)) is the number of LMF; values closest to the
space/time location p;. The optimization of Npmg(p)) is
described next.
The relationship in Eq. 3 can then be used to estimate
PAH at locations p; (where only PM2.5 is measured) as

In(PAH;) ~ N(/}LMF ;+1In(PM2.5)), 67 J) (7)

Equation 7 becomes a component described in the sec-
tion “BME estimation methodology”. In the limiting case,
the LMF and LR methods are equivalent when Sy = ppmr;
and ;= 1.

Neighborhood optimization

The parameters Nir(p;) and Npvp(p;) are optimized using
the following methodology. For each of the 84 space/time
PAH measurements, the measured PAH is excluded and re-
estimated based on the collocated PM2.5 using either the
LR method (Eq. 2) or the LMF method (Eq. 7) calibrated
based on the paired PAH/PM2.5 values located in a local
neighborhood of the excluded PAH value. This local
neighborhood consists of the n, the number of observed data
ranging from 1 to 84, closest pairs, where space/time
proximity is defined based on the space/time distance
d=r + STM x t, such that r (km) is the spatial distance,
t (day) is the time difference and STM (km/day) is the
space/time metric. A given choice of the parameters n and

STM creates 84 errors between the measured and re-
estimated PAH value, from which a mean squared error
(MSE) is calculated (Figure S1). This MSE is calculated for
75,600 different combinations of n and STM for each PAH
and method (i.e. LR and LMF). For each PAH, the
parameters Npg(p;) and Npyp(p;) are selected by choosing
the n and STM that produced the lowest MSE. Due to the
number of parameters of the LMF and LR methods (i.e. one
parameter for LMR and two for LR), Nir(p;) 22 while
Nime(pj) 2 1. See Christakos and Serre (1999) for a more
detailed explanation of the STM [21].

The values found for Nig(p;) and Npye(p;) for each
PAH are then applied to all p; locations to estimate
the corresponding PAH using Eqgs. 2 and 7. The optimized
n and STM were only used for the optimization of
parameters Nig(p;) and Npyp(p;). These PAH estimates
become input data in the BME estimation framework
described next.

BME estimation methodology

BME provides a mathematically rigorous geostatistical
space/time framework for the estimation of PAH at loca-
tions where neither PAH or PM2.5 are monitored [19, 20].
BME can incorporate information from multiple data
sources and is implemented using the BMEIlib suite of
functions in MATLAB™ [21, 22]. The buttress of BME
has been detailed in other works [21, 23, 24], and can be
summarized as performing the following steps: (1) gather-
ing the general knowledge base (G-KB) and site-specific
knowledge base (S-KB) characterizing the Space/Time
Random Field (S/TRF) X(p) representing a process at p, (2)
using the maximum entropy principle of information theory
to process the G-KB in the form of a prior Probability
Distribution Function (PDF) f;, through a mean trend and
an isotropic covariance model, (3) integrating S-KB in the
form of a PDF f with and without measurement error using
an epistemic Bayesian conditionalization rule (i.e. in this
work, a priori information is updated on observed data) to
create a posterior PDF fx and (4) creating space/time
predictions based on the analysis. All the code and data
used for the analysis presented in this work are available
from https://github.com/reyesjimUNC/ReyesEtAl_JESEE
PAH.

In this study, we use an S/TRF to describe the variability
of PAH across North Carolina in 2005. In this work x;, are
the observed PAH data and fs(x,) are obtained at the loca-
tions where PAH is estimated from PM2.5 observations
through either the LR (Eq. 2) or the LMF (Eq. 7) method.
We can then calculate x;, the predicted daily PAH at the
unmonitored location p;. More information about the pre-
diction methodology can be found in the Supplementary
Information.
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Table 1 Optimized n closest
observed data locations (as

Linear regression

Log-mass fraction

determined by the space/time PAH n  S/T metric MSE n  S/T metric MSE

metric) corresponding to the (km/days) (ng/m*)* (km/days) (ng/m*)*

minimized mean squared error

validation statistic calculated Benz(a)anthracene 14 0.891 1.128 5 0.839 0.908

through the linear regressionand  cprygene 7 0.600 0.979 5 0.839 0.799

mass fractions methods across

the nine PAHs, with Total PAH Benzo(b)fluoranthene 7  0.863 1.358 5 0.899 1.180

being the summation. Bolded Benzo(k)fluoranthene 14 0.895 1.375 5 0.842 1.046

numbers indicate the lowest Benzo(e)pyrene 14 0.895 1.006 2 0.868 0.726

MSE for each PAH across the

neighborhood optimization Benzo(a)pyrene 14 0.895 1.332 5 0.899 1.417

methods Indeno(1,2,3-c,d)pyrene 14 0.891 0.892 2 0.868 0.702
Benzo(g,h,i)perylene 14 0.895 0.757 2 0777 0.742
Dibenzo(a,h)anthracene 14 0.772 1.532 3 0.820 1.115
Total PAH 14 0.895 0.890 3 0.820 0.675

Leave-one-out cross validation (LOOCV) accuracy
analysis

To assess the prediction accuracy of the LMF and LR
methods, a LOOCV accuracy analysis is performed. For
each monitoring station where observed PAH data exist, all
observed data from a given station are removed one at a
time and a BME prediction was conducted (without recal-
culating f;) to obtain the BME predictions at that station
using all the remaining observed and estimated data.

The difference between each mean predicted PAH X; and
observed PAH value ; is the prediction error, ¢; = X; — X;.
The prediction accuracy was quantified based on prediction
error statistics, which include the mean error (ME, ng/m3),
variance of errors (VE, (ng/m3)2), root mean squared error
(RMSE, ng/m3), MSE (ng/m3)2 and the squared of the
Pearson correlation coefficient (7%, unitless) calculated
between observed and mean predicted values. LMF BME
and LR BME predictions were then compared to kriging (i.e.
predictions created only using observed PAH data) and
cokriging (i.e. predictions created using both PAH and
PM2.5 observed data).

Fire comparisons

Wildfires contribute to a sizable percentage of PAH emis-
sions in the US [2]. The mean difference in PAH con-
centrations near known wildfire locations were estimated.
PAH was estimated on a grid across North Carolina on days
with observed PAH data. PAH was estimated using four
different prediction methods: (1) kriging, (2) cokriging, (3)
LR BME and (4) LMF BME. Fire data were obtained from
the Federal Wildfire Fire Occurrence website [25]. All fires
greater than or equal to one acre in North Carolina, Virginia,
Tennessee and South Carolina were collected in 2005 on
days for which PAH observed data were measured where the
start and control date of the fires were known (n =213). A
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two-tailed two-sampled r-test (assuming unequal variances)
is calculated on the PAH predictions on a grid at a 5% sig-
nificance level. The significance test is performed on all grid
predictions within 100 km of known fire locations and all
grid predictions outside of 100 km.

Results and discussion
Neighborhood optimization

A log-transformation of PM2.5 and PAH were taken due to
the skewness of observed values. For each PAH and BME
estimation method (i.e. LR and LMF), the optimal values of
the parameters n and STM defining the estimation neigh-
borhood were selected such that it minimized the MSE.
Across each PAH the n closest observed data that optimized
the estimation neighborhood was always smaller for the
LMF method compared to the LR method (Table 1). Gen-
erally, we expect that the calibration of the LMF method
requires less paired PAH/PM2.5 values because it is more
parsimonious (i.e. has less parameters) than the LR method.
Indeed, we find that the parameter n ranges from 2-5 for the
LMF method whereas n ranges from 7-14 for the LR
method. Benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene
and benzo(e)pyrene require n =2 from the LMF method,
the least amount of paired PAH/PM2.5 values across
all PAHs. Seven out of nine PAHs in the LR method require
n=14.

Across each PAH and Total PAH, the minimized MSE
was consistently lower for the LMF method than the LR
method with the exception of benzo(a)pyrene. With these
optimized neighborhoods, estimates were created by each
method and each PAH is predicted across North Carolina
using BME.

The PAH estimation neighborhood for the LMF
method is smaller than the LR method. Out of the
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(a)

Fig. 1T Maps of mean benzo(b)fluoranthene concentration for North
Carolina on April 16, 2005 across the four prediction methods: (a)
kriging, (b) cokriging, (c) linear regression BME, (d) log-mass fraction

previously mentioned studies, very little use observed
PAH data and of those studies that do, most observed
data come from short-lived monitoring campaigns. The
results presented in this work utilize long-term, estab-
lished PM2.5 regulatory monitoring sites. PM2.5 data is
comparatively plentiful. Previously, data fusion methods
have blended together multiple air pollutants that have
different spatial supports [26, 27]. By developing a
relationship between a few PAH observations and several
PM2.5 observations, the door is opened to applying this
relationship to a network with a large amount of publicly
available data. Data sparse environments (e.g. PAH) can
benefit from data rich secondary environments (e.g.
PM2.5). However, for this relationship to be fully
exploited, it must be constructed in such a manner that
best utilizes the limited data set. That is, the relationship
between PAH and PM2.5 must be parsimonious. The
LMF method has only one parameter to be estimated,
namely, LMF (Eq. 6). The minimum number of observed
data needed to construct a PAH estimation is low with
Nime(pj) 2 1. The PAH estimates created from the LMF
method required less observed data than the LR method.
We hypothesize that this increase in the number of para-
meters makes the LR model less parsimonious, requiring
more paired PAH and PM2.5 to optimize the estimation
neighborhood. The PAH paired data is then outside of the
relevant air shed of estimation.

0.25

BME (ng/m®). Square markers indicate observed data, circle markers
indicate PAH estimates, Xs mark known fires for that day with a 100
km buffer

PAH prediction maps

This work created the first maps of predicted PAH in space/
time across the US state of North Carolina for 2005 using
observed data. Each of the nine PAHs was predicted on a
grid across North Carolina every day observed PAH data
were collected (41 days) in 2005 for the four prediction
methods: kriging, cokriging, LR BME and LMF BME.
Estimation method parameters can be found in Supplemen-
tary Information (Tables S1 and S2). Mean prediction maps
of benzo(b)fluoranthene for the four methods are displayed
across North Carolina on April 16, 2005 with observed and
PAH estimates pictured (Fig. 1). The kriging map con-
sistently predicts the highest PAH concentrations across the
four methods at unmonitored locations with the least rea-
listic gradient. Kriging has difficulty distinguishing between
multiple PAH fronts and plumes. The minimal gradation is
influenced by the sparse data. Predictions made far from
observed data therefore had a large associated variance. The
sparse data was only able to pick up the coarsest of PAH
gradients. The cokriging map is visually similar to the kri-
ging map. The cross-covariance relationship between PAH
and PM2.5 contributed little to the cokriging predictions
(Table S2). The prediction map becomes visibly different
for the LR BME method. The gradient for the LR BME
method falls more in line with a geographical pattern across
the state. There is an increase in concentration in Eastern
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North Carolina compared with the kriging and cokriging
maps. The LMF BME prediction method produces the
lowest PAH concentrations across large sections of the
state. Across all four methods, the relatively highest con-
centrations were found in Western North Carolina and
concentrations become increasingly more refined across
methods. The LMF map is the only map to show two dif-
ferent PAH concentration fronts: one in the western part of
the state and another separate front in Eastern North
Carolina.

Few other studies have created maps of ambient PAH
concentrations across a given area using geostatistical
methods from observed data. These limited studies are due
in part to the lack of observed data, much like the mapping
scenario presented in this work and previous works [13].
One previous study fit a temporal trend comparing a few
long-running PAH stations from the Great Lakes region of
the US and a few stations across Europe. However, only a
temporal trend was fit through a regression and a spatial
interpolation was not conducted [28]. One of the few stu-
dies that created maps over a large area, displayed benzo(a)
pyrene across Europe for 1990, 2001 and 2005 using a
transport model [8]. Another study creating maps of PAH
across Europe utilized kriging to estimated benzo(a)pyrene
for 2012 using two different CTMs as data [15]. A study in
Portugal used observed PAH data extracted from lichen and
created maps using kriging [11, 12]. Land use regression
models have also been used to estimate PAH [29, 30]. Few
studies have investigated PAH bound to PM [31]. The
closest study to the LR BME method presented in this work
used a monitoring campaign along with personal monitors
to analyze PAH from PM2.5 in which predictions were
made at unmonitored locations using kriging in Kaohsiung
city, Taiwan [14]. A regression model with a variety of
explanatory variables was then applied to PM2.5 data to
predict PAH. With only a handful of observed PAH data
taken throughout the year, the LR BME and LMF BME
method can create estimates with a corresponding uncer-
tainty that was incorporated into the BME framework.
Incorporating the PAH estimates added to the set of avail-
able data ultimately used for prediction allowing for
increased spatial variation. Of the BME methods, LMF
BME was superior in terms of visually distinguishing spa-
tial variations of mean predicted PAH concentrations across
the state.

Cross-validation

A LOOCYV analysis was performed across 2005 using the
four prediction methods. Summary statistics were calculated
showing performance for Total PAH (Table 2). Cross
validations statistics for all 9 PAHs can be found in Sup-
plementary Information (Table S3). For Total PAH, ME
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Table 2 Leave-one-out cross validation statistics for Total PAH
(summation of the nine PAHs) comparing observed and predicted
concentrations across the four prediction methods for North Carolina
in 2005

Statistic Kriging Cokriging Linear Log-mass
regression BME fraction BME

ME (ng/m*)  —0.145 —0.137  —0.102 —0.042

VE (ng/m*?  0.806 0.782 0.764 0.591

RMSE (ng/m®) 0.904  0.890 0.875 0.765

MSE (ng/m*? 0.818  0.792 0.766 0.586

7 (unitless) 0.747  0.752 0.744 0.821

ME mean error, VE variance of error, RMSE root mean squared error,
MSE mean squared error, r* Pearson correlation coefficient squared

decreases from kriging to LMF BME. ME is negative across
each prediction method meaning that overall, the methods
under-predicts observed Total PAH concentrations. ME is
highest in magnitude for kriging and closest to zero for
LMF BME. There is a 58.8% reduction in ME from LR
BME to LMF BME. There is less variation in error from
kriging to LMF BME as seen through a 26.7% reduction in
VE from kriging to LMF BME. There is a consistent
reduction in MSE across the four prediction methods. There
is a 28.4% reduction in MSE from kriging to LMF BME.
The correlation coefficient increases across methods. There
is a 10.3% increase in > from LR BME to LMF BME. The
performance statistics from kriging are similar to cokriging.
This echoes the results seen in the prediction maps. Tradi-
tional incorporation of PM2.5 as a co-pollutant through
cokriging adds little to the predictive capacity of PAH.
Incorporating PM2.5 with the BME methods showed more
substantial improvements in the cross-validation statistics,
with the best performance obtained through the LMF BME
method.

The LMF BME method consistently outperformed the
other comparison methods as seen visually through maps
and through the LOOCYV statistics. Of the four prediction
methods, kriging performed the worst. Kriging predictions
were driven exclusively by the observed data. Cokriging
performed similarly to kriging. Cokriging is an intuitive
choice for collocated, ambient, environmental parameters in
a geostatistical setting. In the literature, to the best of our
knowledge, cokriging has not been used to predict ambient
PAH concentrations, making it an ideal candidate method to
explore. In this work the cokriging cross-covariance is able
to capture the relationship between PAH and PM2.5.
However, as seen through predictive maps and through
cross validation, the cokriging incorporation of PMZ2.5
contributes little in terms of predictive capacity. Linear
regression is another intuitive choice with collocated data.
The LR BME method shows a marked improvement
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Fig. 2 Probability of annual benzo(a)pyrene exceeding 0.25 ng/m3 across North Carolina in 2005 as predicted by (a) kriging, (b) cokriging, (c)

linear regression BME and (d) log-mass fraction BME

visually and through estimation accuracy. The LR method is
able to estimate PAH at PM2.5 space/time locations using
an optimized neighborhood customized for each PAH.
However, LR performed consistently worse than the LMF
method. The LR method uses two parameters (i.e. f
and f,) while the LMF method uses only one. We hypo-
thesize that this difference in the number of parameters
influences cross validation performance.

Probability of exceedance

In a geostatistical framework, predictions come in the form
of a PDF with a corresponding mean and variance. With
this PDF, the probability of exceeding a given value can be
calculated. An annual benzo(a)pyrene concentration of
0.25 ng/m> has been suggested in the United Kingdom [8].
With this standard in mind, the probability of exceeding this
cutoff was calculated for annual benzo(a)pyrene con-
centrations on a grid in North Carolina in 2005 for each
prediction method by taking the mean and variance of daily
benzo(a) pyrene predictions (Fig. 2). Overall PAH con-
centration decrease across methods, thus the probability of
exceeding the 0.25ng/m’ cutoff in turn decreases from
kriging to LMF BME. Across methods, the region of the
state with the relatively highest probability of exceedance is
maintained as Western North Carolina as well as the border
with the US state of South Carolina. Across all prediction

methods, the probability of exceedance remained relatively
low with the maximum probability of exceedance remaining
below 0.50. The area covered from increasing probabilities
of exceedance increases across the four prediction methods
(Table 3). The cokriging method had the lowest maximum
probability of exceedance (i.e. 0.16) across the annual
prediction locations with 54,432 km? having a probability
of exceedance 20.15. We see the BME methods were better
able to differentiate areas of high and low probabilities of
exceedance. The LMF BME was best able to distinguish the
maximum probability of exceedance. Neither the kriging
nor the cokriging maps contain any area with a probability
of exceedance 20.30. The LMF BME method has 2.5 times
the area with 20.30 probability of exceedance compared to
the LR BME method (i.e. 6,480km? and 2,592 km?
respectively). Through having more realistic ambient pre-
dictive gradients, the LMF BME method becomes an
effective tool to identify areas of exceedance of different
PAH concentrations.

Association with wildfires

The mean difference in PAH predictions (for the nine PAHs
and Total PAH) as calculated through the four prediction
methods was found through a two-sampled #-test comparing
areas near (100 km) and far (>100 km) from known wildfire
locations predicted across all days with observed data in
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Table 3 Area (in km? covered corresponding to increasing
probabilities of exceeding the average annual benzo(a)pyrene
standard of 0.25 ng/m® among the prediction locations in and around
North Carolina in 2005

Probability of 20.10 20.15 20.20 =20.25 =20.30
exceedance

Kriging 162,000 119,232 5,184 O 0
Cokriging 143,856 54,432 0 0 0

Linear regression BME 164,592 139,968 36,288 10,368 2,592
Log-mass fraction BME 156,816 116,640 28,512 15,552 6,480

2005 (Table 4). For the LMF method, all nine PAHs and
Total PAH showed a statistically significant difference
between predictions near versus far from fires. For the LR
method six PAHs and Total PAH showed a significant dif-
ference. For both kriging and cokriging four PAHs and Total
PAH showed a significant difference greater than zero. Of
those PAHs that showed a significant difference greater than
zero, the LMF method had the largest differences across
eight PAHs (i.e. benzo(gh,)perylene being the exception)
and Total PAH. Known fire locations for April 16, 2005 are
marked along with a 100 km radial buffer surrounding each
location (Fig. 1). Across prediction methods, PAH con-
centrations are higher within/near these buffers. Indeed,
benzo(b)fluoranthene (depicted in Fig. 1) was one of the four
PAHs (along with Total PAH) that showed both a significant,
positive difference across all four prediction methods.

This work investigates ambient concentrations of a set of
particle-bound PAHs. Ambient concentrations alone cannot
distinguish sources. However, there are PAH ratios asso-
ciated with certain sources. The diagnostic ratio of indeno
(1,2,3-c,d)pyrene/(indeno(1,2,3-c,d)pyrene + benzo(g,h,i)
perylene) = 0.62 is associated with wood burning [8]. This
ratio was calculated for March 5, 2005 data across all four

prediction methods (Fig. 3). This day was chosen as one of
the highest fire activity day for 2005, and thus, most likely
to show an impact from fires. The ratio for kriging and
cokriging remained under 0.62 across all prediction loca-
tions of the day. There is little variation of this ratio across
the state for kriging and cokriging. This ratio increases and
becomes closer in magnitude to 0.62 for the BME methods.
There is more variation of this ratio for the LR BME
method. We hypothesize that the LR BME method has
better differentiation between PAH sources. LMF BME has
the largest variation of the PAH diagnostic ratio, with the
largest number of predictions near the 0.62 value. Both
kriging and cokriging have <3.5% of prediction ratios for
the day around 0.62 (i.e. 0.62 + 0.05), LR BME has 5.6% of
prediction ratios around 0.62 and LMF BME has 12% of
prediction ratios around 0.62.

Gathering information about wildfire smoke has become
increasingly important as the number of large wildfires have
increased in recent years [32]. The chronic health effects of
wildfire smoke for firefighters and the general population is
currently lacking or sparse in the literature [33-35]. The
LMF BME method was better able to distinguish higher
significant differences in PAH concentrations near known
fire locations compared with other prediction methods. Of
the four prediction methods, the LMF BME method the
only method that showed statistically significant, positive
differences around areas with fires across all nine PAHs and
Total PAH. Although each fire may have a different acreage
burned even though the same buffer size was used for all the
fires, the significance implies an association. Depending on
the acreage burned from a fire, the type of vegetation burned
and the duration of the fire, the smoke produced may be
long lasting and may have long range transport. Smoke may
have lingering effects past the control date of a fire. When
the control date of fires is extended by one day, the kriging
and cokriging methods have more PAHs with a statistically

Table 4 95% Confidence intervals comparing the mean difference (ng/m3) in predicted PAH near (within 100 km) versus far (>100 km) from fires
for each of the nine PAHs and Total PAH across the four prediction methods.

Linear Regression BME

log-Mass Fraction BME

(=2.61E-03, —1.07E-05)*
(—3.74E-03, —8.28E-04)*
(3.78E-03, 1.10E-02)**
(2.32E-03, 5.01E-03)**
(=3.17E-03, 1.71E-03)

PAH Kriging Cokriging
Benz(a)anthracene (—4.94E-03, —2.17E-03)*

Chrysene (—6.67E-03, —3.53E-03)*
Benzo(b)fluoranthene (3.98E-03, 1.11E-02)**
Benzo(k)fluoranthene (3.14E-03, 6.47E-03)**

Benzo(e)pyrene (—2.92E-03, 2.23E-03)

Benzo(a)pyrene (—3.83E-03, 1.84E-03)

Indeno(1,2,3-c,d)pyrene
Benzo(g,h,i)perylene
Dibenzo(a,h)anthracene
Total PAH

(1.87E-02, 3.05E-02)**
(3.04E-02, 4.27E-02)**
(—=2.07E-02, —1.36E-02)*
(2.28E-02, 6.75E-02)**

(—6.24E-03, —8.42E-04)*
(1.73E-02, 2.87E-02)**
(2.54E-02, 3.66E-02)**
(—1.71E-02, —1.07E-02)*
(2.13E-02, 6.57E-02)**

(—1.26E-03, 1.07E-03)
(—9.40E-04, 1.67E-03)
(1.09E-02, 2.23E-02)**
(5.27E-03, 7.94E-03)**
(5.22E-03, 9.80E-03)**
(2.23E-03, 1.37E-02)**
(2.04E-02, 3.24E-02)**
(2.72E-02, 4.06E-02)**
(—4.80E-03, 2.16E-03)
(6.29E-02, 1.03E-01)**

(1.57E-03, 4.38E-03)**
(2.07E-03, 5.39E-03)**
(2.36E-02, 3.02E-02)*#
(7.80E-03, 1.08E-02)*#
(1.83E-02, 2.49E-02)**
(5.14E-03, 1.02E-02)**
(4.79E-02, 6.11E-02)**
(3.13E-02 4.06E-02)**
(1.90E-03, 8.77E-03)**
(1.72E-01, 2.30E-01)**

*Mean difference is statistically significant (p-value < 0.05), *mean difference > 0
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(a)

Fig. 3 Ratio of indeno(1,2,3-c,d)pyrene/(indeno(1,2,3-c,d)pyrene +
benzo(g,h,i)perylene) on 5th March 2005 in North Carolina across the
four prediction methods: (a) kriging, (b) cokriging, (c) linear

significant increase in concentrations near versus far from
fires (Tables S4-S7). Diagnostic ratios should not be used in
isolation. However, when used along known fire locations,
it can strengthen the association between PAH concentra-
tion and its known sources.

Overall contributions

The LMF BME method allows for straightforward predic-
tions of PAHs to be used for exposure assessments. There are
a plethora of studies exploring the association between
ambient PM2.5 and various health endpoints [36-38].
However, there are far less studies that explore ambient PAH
exposures and associated health effects. Occupational inha-
lation exposures and associated health outcomes including
lung cancer have been more thoroughly investigated in
comparison to ambient exposures [7]. Few studies have
investigated chronic ambient concentrations of PAHs. Many
of the epidemiologic studies that have been explored inves-
tigate respiratory illnesses such as lung cancer and pulmon-
ary function [7, 15, 39]. However, these studies are small.
The lack of long-term ambient concentrations to PAHs may
be related to inadequate exposure data. Analyzing PM filters
for specific PAHs can be very costly, making it difficult of
obtain larger amounts of observed data needed for exposure
assessment [9]. The LMF BME method allows for an effi-
cient and cost-effective way to utilize minimal PAHs

(b)

0.35

regression BME, (d) log-Mass Fraction BME. Square markers indicate
the ratio of observed data, circle markers indicate the ratio of PAH
estimates, Xs mark known fires for that day with a 100 km buffer

observed data. The LMF BME method can be easily utilized
to fill in this clear gap in the literature. Tied with corre-
sponding health data, ambient predictions calculated through
the LMF BME method could be used to assign exposure.
Health metrics can then be calculated from the exposures.
This opens the door to investigate possible health endpoints
as well as assigning risk.

This work created the first maps of ambient PAH con-
centration across the US state of North Carolina using
observed data through the LMF BME geostatistical method.
This method developed a relationship between paired PAH
and PM2.5 data in a manner that is a parsimonious and cost-
effective that can be utilized in a data sparse environment.
The LMF BME method outperforms more traditionally
used geostatistical methods and has the ability to elucidate a
significant association between PAH predictions and known
fire locations. The LMF BME method has the potential to
be used to assign exposure in epidemiologic analyses to fill
in the significant knowledge gap currently existing in the
literature between ambient PAH exposures and potential
health outcomes.
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