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The essentiality of polyunsaturated lipids makes membranes
susceptible to peroxidative modifications. One of the most
contemporary examples includes selective peroxidation of cardio-
lipin in mitochondria of cells undergoing apoptosis. Cardiolipin
peroxidation products are required for the mitochondrial mem-
brane permeabilization, release of pro-apoptotic factors and com-
pletion of the cell death program. Therefore, search for effective
inhibitors of cardiolipin peroxidation is critical to discovery and
development of anti-apoptotic antioxidants. Mitochondria contain
significant amounts of a-tocopherol, a well known scavenger of
reactive free radicals. In the present study, we used an oxidative
lipidomics approach to evaluate the effect of a-tocopherol and its
homologues with different lengths of the side-chain such as
2,5,7,8,-tetramethyl-2(4-methylpentyl)-6-chromanol and 2,2,5,7,8-
pentamethyl-6-chromanol, on oxidation of tetralinoleoyl cardiolipin
induced by cytochrome c in the presence of hydrogen peroxide.
Our data indicate that vitamin E homologues inhibit not only
accumulation of tetralinoleoyl cardiolipin hydroperoxides but also
hydroxy-derivatives of tetralinoleoyl cardiolipin formed in the
enzymatic peroxidase half-reaction catalyzed by cytochrome c.
This suggests that protective effects of vitamin E homologues
against tetralinoleoyl cardiolipin peroxidation catalyzed by cyto-
chrome c/hydrogen peroxide are realized largely due to their
effects on the peroxidase activity of cytochrome ¢ towards
tetralinoleoyl cardiolipin rather than via their scavenging activity.
Key Words: cytochrome c, cardiolipin peroxidation,
peroxidase activity, antioxidants, a-tocopherol,
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P olyunsaturated lipids are essential for life: they represent the
structural core of membranes both as uninterrupted bilayer
and as microenvironment of transmembrane proteins, they act as
precursors of physiological regulators and as a fuel and energy
resource.’ Complex functions of membranes necessitate the
asymmetry of lipid distribution of polyunsaturated lipids both
across the bilayer and within the two monolayers. This requires
specialized intracellular machinery and its collapse is associated
with cell death pathways.® Recent MS-based analysis demon-
strated remarkable diversity of polyunsaturated lipids and
identified thousands of their molecular species in each cell.®

The essentiality of polyunsaturated lipids makes membranes
vulnerable to oxidative damage due to their susceptibility to
peroxidation. For decades, the prevailing dogma was that the
major factor driving the peroxidation process is the number of
double bonds in their molecules.® Given that most of membranes
contain sufficient amounts of polyunsaturated lipids—far exceeding
those utilized during the peroxidation process—the abundance of
most classes of phospholipids with four-, five- and six double
bonds has been viewed as the major factor defining the meaning
and kinetics of free radical-driven peroxidation process propa-
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gated randomly in membranes.® Not surprisingly, the process of
lipid peroxidation has been long associated almost exclusively
with cell and tissue injury.©®® Recent advancements and develop-
ments in lipidomics and oxidative lipidomics uncovered new
roles of peroxidized polyunsaturated lipids in cell physiology
and signaling and established that the peroxidation products
accumulate selectively in particular classes of phospholipids with
asymmetric topography.®

One of the most contemporary examples includes selective
peroxidation of a mitochondria-specific phospholipid, cardiolipin
(CL) that is normally confined almost exclusively to the inner
mitochondrial membrane and is lacking from the outer mito-
chondrial membrane.('” This asymmetric topography of CL is
characteristic of normal mitochondria and is mainly due to its
synthesis on the matrix side of the inner membrane.'V The
diversity of CL is tissue-specific and ranges from only few kinds
of molecular species in the liver and heart, over a dozen of
molecular species in the lung and small intestine, and hundreds
of different species of CL in the brain.(>!» While the importance
of CL for mitochondrial functions and its association with many
mitochondrial membrane proteins has been firmly established,+®
the significance and mechanisms controlling tissue-specific
molecular diversification are far from being clear; it is possible
that a large number of CL molecular species in the brain is utilized
for the production of intra- and extracellular regulators and
mediators—eicosanoids as well as docosahexanoids.'”

Universally, early in apoptosis CL transmigrates from the
inner to the outer mitochondrial membrane."® This migration is
facilitated by at least four different mitochondrial proteins: i)
scramblase-3 activatable via protein kinase C-delta phosphoryla-
tion at Thr21,1” ii) mitochondrial phosphocreatine kinase that forms
an octamer spanning the distance between the two membranes at
the contact sites of mitochondria,®® iii) dinucleotide phospho-
kinase D acting in a similar manner in its hexameric form, and
iv) pro-apoptotic protein tBid.?" While molecular details and
contribution of each of these mechanisms awaits further studies,
the fact of the equilibration of CL between the inner and outer
membranes, i.e., collapse of CL asymmetry has been demonstrated
in apoptosis.?? The appearance of CL on the membrane surfaces
of the intermembrane space facilitates its interactions with an
abundant intermembrane space hemoprotein, cytochrome ¢ (cyt ¢).

Normally cyt ¢ functions as a shuttle between mitochondrial
complexes III and I'V.® Binding with CL and formation of cyt ¢/CL
complex confers peroxidase activity on the hemoprotein by causing
its partial unfolding, loosening Metso bond with the heme-iron
and creating a new structure whereby small molecules—such as
H20>—get access to the heme catalytic site.?” Most importantly,
the cyt ¢/CL complex can catalyze peroxidation of polyunsatu-
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rated bound CL. This peroxidation reaction proceeds as a typical
enzymatic reaction and generates CL hydroperoxides (CL-OOH)
which can be reduced by cyt ¢ to CL hydroxides (CL-OH). In the
context of this review, the most important feature of this per-
oxidation reaction is that it is non-random and in mitochondria
includes selective peroxidation of CL. Thus the rule of abundant
substrates—polyunsaturated phospholipids—is not obeyed in this
process and highly polyunsaturated phosphatidylcholine (PC),
phosphatidylethanolamine (PE) (with 4-6 double bonds) do not
undergo peroxidation while less polyunsaturated tetra-linoleoyl
cardiolipin (TLCL) gets exclusively peroxidized. The selective
CL peroxidation has been documented not only in vitro but also
during apoptosis induced in the lung and small intestinal tissue,
after total body irradiation of mice.®> Notably, CL peroxidation
products are required for the mitochondrial membrane permeabili-
zation, release of pro-apoptotic factors and completion of the cell
death program. Therefore, search for effective inhibitors of CL
peroxidation is critical to discovery and development of new anti-
apoptotic “antioxidants”. This brings the review to the point where
mechanisms of antioxidant action of the major lipid-soluble anti-
oxidants of membranes and lipoproteins® should be viewed not
only as sacrificial chain-breaking radical scavengers but also from
the angle of their ability to regulate enzymatic CL peroxidation
catalyzed by cyt ¢/CL complexes.

Vitamin E (o-tocopherol, a-Toc) is the major lipid-soluble
antioxidant of biological membranes and lipoproteins. In line with
its antioxidant function, clusters of a-Toc have been associated
with membrane microdomains enriched in oxidizable highly
unsaturated phospholipids.®” Numerous in vitro experiments have
demonstrated its effectiveness and utility in protection against
random phospholipid peroxidation.?*39 It has been also shown
that vitamin E homologues with the different length of the side-
chain display different effectiveness in inhibiting lipid peroxida-
tion in model biomembranes and liver organelles.®" The smallest
homologue (a-C1-chromanol, PMC) was most effective in spite
of the fact that the reaction rate constants of PMC and a-Toc in
scavenging peroxyl radicals are very similar (3.8 x 10° M~ and
3.2 x 10° M~! respectively).C? It has been suggested that the lateral
mobility of PMC and other short-chain tocopherol homologues
in the membrane is mostly responsible for their high radical
scavenging activity in membranes.C'» Another important redox
feature of vitamin E is its ability to be recycled from its phenoxyl
(tocopheroxyl) radical, thus enhancing its overall radical scavenging
efficiency. The major small-molecule redox partners for recycling
of a-Toc are ubiquinol and ascorbate.®43% In addition, electron-
transport chains of mitochondria and endoplasmic reticulum can
act as donors of electrons for the tocopheroxyl radicals, hence
contribute to vitamin E recycling.¢”3®

In the present study, we used an oxidative lipidomics approach
to evaluate the effect of a-Toc and its homologues with the
different length of the side-chain such as a-C6-chromanol (C6)
and PMC, on oxidation of TLCL induced by cyt ¢ in the presence
of H20:2. Our results show that all three compounds were able to
protect TLCL against cyt ¢/H202 induced oxidation as evidenced
by inhibition of accumulation of both hydroxy- and hydroperoxy-
molecular species of TLCL. We suggest that protective effect of
vitamin E homologues is realized not only due to their scavenging
activity but also through their effects on the peroxidase activity cyt
¢/CL complex.

Materials and Methods

Chemicals. 1,1,2,2-Tetralinoleoyl cardiolipin (TLCL); TMCL,
1,1,2,2-tetramyristoyl  cardiolipin (TMCL); 1,2-dioleoyl-sn-
glycero-3-phosphocholine (DOPC); were obtained from Avanti
Polar Lipids Inc. (Albaster, AL). 4-(2-Hydroxyethyl)piperazine-1-
ethanesulfonic acid (HEPES), diethylenetriaminepentaacetic acid
(DTPA), cytochrome ¢, a-Tocopherol: DL-2,5,7,8,-tetramethyl-2-
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Fig. 1. Oxidation of tetra-linoleyl CL (TLCL) induced by cyt c in the
presence of H20:. (a) 3D-MS map of TLCL oxidized by cyt ¢/H20.
Monohydroxy-(TLCL-OH, m/z 731.5), monohydroperoxy-(TLCL-OOH, m/z
739.5), monohydroxy-monohydroperoxy-(TLCL-OH-OOH, m/z 747.5), and
dihydroperoxy-molecular species (TLCL-200H, m/z 755.5) were detected
on MS spectrum of oxidized TLCL. (b) Accumulation of TLCL oxygenated
products generated by cyt ¢ in the presence of H.0.. Oxygenated
TLCL products were enriched with molecular species containing mono-
hydroxy- and monohydroperoxy groups. Data are means + SEM, n = 12,
*: p<0.05 vs cyt ¢/H20:.

(4,8, 12-trimethyltridecyl)-6-chromanol and HPLC solvents were
purchased from Sigma-Aldrich (St. Louis, MO). a-C1-chromanol:
2,2,5,7,8,-pentamethyl-6-chromanol (PMC) was a generous gift
from Eisai Co. (Tokyo, Japan) and C6: 2,5,7,8,-Tetramethyl-2(4-
methylpentyl)-6-chromanol (C6) was a gift from Prof.
Evstigneeva, Institute of Fine Chemical Technology, Moscow,
Russia).

Oxidation of tetra-linoleyl cardiolipin (TLCL) by cyt ¢/
H202. Chloroform solutions of TLCL and dioleoy! phosphatidyl-
choline (DOPC) were mixed and the solvent was evaporated under
N2. After evaporation, 20 mM HEPES, pH 7.4, containing
100 pM DTPA was added and the suspension was vortexed and
sonicated using a water-bath sonicator (Fisher Scientific F63).
The concentration of TLCL and DOPC were 50 uM and 200 uM,
respectively. Liposomes were incubated with cyt ¢ (5 uM) in the
presence of H202 (100 uM) in 20 mM HEPES, pH 7.4, containing
100 uM DTPA for 10 min at 37°C. Reaction was stopped by
addition of catalase (2 U/ml). After that, 0.75% of KCL was
added, lipids were extracted using Folch procedure®” and dried
under N2. Then lipids were resuspended in chloroform:methanol
(2:1) and used for MS analysis. a-Toc (50 M) or C6 (50 uM) or
PMC (50 uM) were introduced to liposomes prior addition of cyt
¢ and H20x.

Electrospray ionization mass spectrometry. To quanti-
tatively assess molecular species of oxidized TLCL, LC/ESI-MS
was performed using a Dionex Ultimate™ 3000 HPLC coupled
on-line to ESI and a linear ion trap mass spectrometer with the
Xcalibur operating system (Thermo Fisher Scientific, San Jose,
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Fig. 2. Structural formulas of the vitamin E homologues. (a) 2,2,5,7,8-
Pentamethyl-6-chromanol (PMC), (b) 2,5,7,8,-Tetramethyl-2(4-methyl-
pentyl)-6-chromanol (C6), (c) a-Tocopherol (a-Toc).

CA) as previously described.“®*) The lipids were separated on a
normal phase column (Luna 3 um Silica 100A, 150 x 2 mm,
(Phenomenex, Torrance CA)) with flow rate 0.2 ml/min using
gradient solvents containing NH4«OH (A-chloroform : methanol :
30% NH4OH—80:19.5:0.5 (v/v/v) and B-chloroform : methanol :
water : 30% NHsOH—60:34:5.5:0.5 (v/v/v)).“? Analysis of phos-
pholipid oxidized molecular species (hydroperoxy- and hydroxy-)
was performed as previously described.?® The ESI probe was
operated at a voltage differential of 3.5-5.0 kV in the negative ion
mode. Capillary temperature was maintained at 150°C. Using full
range zoom (200-2000 m/z) in negative ion mode, the spectra
were acquired in centroid mode. Doubly-charged ions were used
for quantitative assessment of CL and its oxidation products.

Statistics. The results are presented as mean + SEM values
from at least three experiments, and statistical analyses were
performed by one-way ANOVA. The statistical significance of
differences was set at p<0.05.

Results and Discussion

Oxidation of TLCL by cyt ¢/H202. First we quantitatively
assessed the oxidation of TLCL in the reaction driven by cyt ¢ in
the presence of H202. To this end, liposomes (250 pM) containing
20% of TLCL and 80% of DOPC were incubated with cyt ¢
(50 uM) and H20:2 (100 uM) for 10 min at 37°C. At the end of
incubation, lipids were extracted and resolved by LC/ESI-MS.
Typical 3D-MS map of TLCL oxidized by cyt ¢/H20: is present on
Fig. 1a. LC/ESI-MS of oxidized TLCL revealed molecular ions of
TLCL with m/z 731.5,739.5, 747.5, 755.5 corresponding to TLCL
species containing one, two, three, and four oxygens, respectively.
The characterization of these oxygenated TLCL species was
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Fig. 3. Vitamin E homologues protect TLCL against oxidation induced
by cyt c in the presence of H:0.. (a) Protective effect of vitamin E
homologues on oxidation of TLCL. Data are means+SEM, n=12,
*p<0.05 vs cyt ¢/H202. (b) Accumulation of monohydroperoxy molecular
species of TLCL (TLCL-OOH) induced by cyt ¢/H20: in the absence and
in the presence of vitamin E homologues. Insert: Typical base peak of
molecular ion with m/z 739.5 corresponding to monohydroperoxy
molecular species of TLCL (1) cyt ¢/H202; (2) cyt ¢/H202 + PMC. Data are
means = SEM, n =6, *p<0.05 vs cyt ¢/H202. (c) Accumulation of mono-
hydroxy molecular species of TLCL (TLCL-OH) induced by cyt ¢/H20: in
the absence and in the presence of vitamin E homologues. Insert:
Typical base peak of molecular ion with m/z 731.5 corresponding to
monohydroxy molecular species of TLCL: (1) cyt ¢/H202; (2) cyt ¢/H202 +
PMC. Data are means + SEM, n = 6, *: p<0.05 vs cyt ¢/H20..

performed using MS" analysis as previously described.“> We
identified the TLCL oxidation products as monohydroxy-
(m/z 731.5), monohydroperoxy- (m/z 739.5), monohydroxy-
monohydroperoxy- (m/z 747.5), and dihydroperoxy-molecular
species (m/z 755.5). Excess of H20: can feed the peroxidase
cycle of cyt ¢/CL complexes to produce CL-OOH. Depletion of
H20: switches the peroxidase reaction of cyt ¢/CL complexes
to utilization of CL-OOH as a source of oxidizing equivalents.
This yields a mixture of CL-OOH and CL-OH as the reaction
products.® Recently we demonstrated that the reaction of cyt ¢
with hydroperoxides may proceed via both homo- and heterolytic
pathways.“

Next we performed quantitative assessment of CL oxidation
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products. Under the incubation conditions employed, total accu-
mulation of oxidized TLCL molecular species was 206 + 33 pmol/
nmol of TLCL. Oxygenated TLCL products were enriched with
molecular species containing monohydroxy- and monohydro-
peroxy groups. Their content was 48.1 £5.6% and 32.9 £3.7%
of total oxygenated TLCL species, respectively (Fig. 1b). The
accumulation of oxygenated species of TLCL with three and
four oxygens was less pronounced and constituted 11.5 £2.7%
and 7.4 £ 1.3% of total oxidized TLCL, respectively.

Vitamin E homologues protect TLCL against oxidation
induced by cyt ¢/H:202. Mitochondria contain significant
amounts of a-Toc that has been reported to be an effective
scavenger of reactive free radicals.“> We reasoned that a-Toc
and its homologues may be effective in suppressing cyt c-induced
TLCL peroxidation. Therefore, we studied the effects of a-Toc
and its homologues with different lengths of the side-chain such as
C6 and PMC (Fig. 2) on oxidation of TLCL induced by cyt c in the
presence of H202. We found that all three compounds were able to
significantly protect TLCL against oxidation induced by cyt ¢/H202
(Fig. 3). Notably, the protective effects of vitamin E homologues
were dependent on the length of the side-chain of the compounds.
PMC was most active, while o-Toc was least effective in
inhibiting TLCL oxidation. In the presence of PMC, C6 and a-Toc
the amounts of non-oxidized TLCL (m/z 723.5) were 972.8 + 7.4,
900.8 £ 8.1 and 880.3 + 17.3 pmol/nmol of TLCL as compared
to 793.3 + 9.6 pmol/nmol after incubation with cyt ¢/H202 in the
absence of vitamin E or its homologues. Next, we quantitatively
assessed the cyt c¢ catalyzed formation of two predominant
oxidized molecular species of TLCL, TLCL-OOH (m/z 731.5)
and TLCL-OH (m/z 739.5). In the absence of vitamin E homo-
logues, the rate of TLCL-OOH and TLCL-OH accumulation
was 7.2 £ 0.2 and 10.3 £ 0.5 pmol/nmol of TLCL per min, respec-
tively. When a-Toc, C6 or PMC were integrated in the liposomes
the accumulation of both TLCL-OOH and TLCL-OH was
significantly inhibited (Fig. 3b—c). PMC was most effective in the
suppression of TLCL peroxidation. The rate of TLCL-OOH and
TL-OH formation was decreased to 1.7 £ 0.2 and 2.3 £ 0.3 pmol/
nmol of TLCL per min, respectively. Consequently, in the
presence of a-Toc and C6, 3.8 + 0.4 and 3.0 £ 0.7 pmol of TLCL-
OOH/nmol of TLCL/min and 6.5+0.1 and 5.6 £0.9 pmol of
TLCL-OH/nmol of TLCL/min were generated in cyt ¢ driven
reaction. Vitamin E homologues, particularly PMC, can effec-
tively compete with TLCL as substrates of cyt ¢/CL peroxidase
reaction to prevent TLCL oxidation. It is also possible that
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