

several limitations, such as the non-validated chronotyping approach with arbitrary cut-off values and a priori exclusion of night shift-workers who sleep during the day on days off (and who likely represent extreme late chronotypes).

Future studies are needed to further elucidate the interplay between working times and the circadian system. Working times should be evaluated on an external (social) time-scale as well as an internal (biological) one.

Céline Vetter,^{1,2} Eva S Schernhammer^{1,2}

¹Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA

²Harvard Medical School, Harvard University, Boston, Massachusetts, USA

Correspondence to Dr Céline Vetter, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, 181 Longwood Ave, Boston, MA 02115 USA; celine.vetter@channing.harvard.edu

Contributors CV wrote the first draft of the letter and ESS and CV both further edited it.

Competing interests None.

Provenance and peer review Not commissioned; internally peer reviewed.

CrossMark

To cite Vetter C, Schernhammer ES. *Occup Environ Med* 2015;72:235.

Received 15 September 2014

Accepted 8 October 2014

Published Online First 15 December 2014

► <http://dx.doi.org/10.1136/oemed-2014-102604>

Occup Environ Med 2015;72:235.

doi:10.1136/oemed-2014-102572

REFERENCES

- 1 Bhatti P, Mirick DK, Davis S. The impact of chronotype on melatonin levels among shift workers. *Occup Environ Med* 2014;71:195–200.
- 2 Roenneberg T. What is chronotype? *Sleep Biol Rhythms* 2012;10:75–6.
- 3 Kitamura S, Hida A, Aritake S, et al. Validity of the Japanese version of the Munich ChronoType Questionnaire. *Chronobiol Int* 2014;31:845–50.
- 4 Juda M, Vetter C, Roenneberg T. Chronotype modulates sleep duration, social jetlag and sleep quality in shift-workers. *J Biol Rhythms* 2013;28: 141–51.
- 5 Papantoniou K, Pozo OJ, Espinosa A, et al. Circadian variation of melatonin, light exposure and diurnal preference in day and night shift workers of both sexes. *Cancer Epi Biomarkers Prev* 2014;23: 1176–86.

Early, but not late chronotypes, are up during their biological night when working the night shift

Bhatti *et al*¹ recently examined the impact of chronotype on melatonin levels in shift-workers and concluded that '(...) morning type shift-workers were better able to maintain normal patterns of melatonin secretion (...), suggesting that morning types may be protected against the negative effects of shift-work related melatonin disruption'. However, their data show that, compared to daytime workers sleeping at night, early chronotypes have lower melatonin levels than late chronotypes during daytime sleep after a nightshift. They also show a larger difference in melatonin secretion during their first regular night-time sleep after night shifts (table 3, dichotomous categorisation: $\Delta=-34.6\%$ and late types: $\Delta=-4.2\%$), suggesting that early chronotypes are more affected by working night shifts than late chronotypes.

This makes sense when considering the biological definition of chronotype,² where early chronotypes, with an earlier subjective, internal night, exhibit an earlier peak in melatonin secretion than late chronotypes.³ Night shift-work consequently coincides with the subjective night of early types, but only partially (or not) for later chronotypes, so that earlier ones should be affected most from working at night. Indeed, we have shown that early chronotypes experience poorer and shorter sleep after night shifts, as compared to later ones.⁴ Recent evidence further supports this assertion: Papantoniou *et al*⁵ reported lower 24 h melatonin levels in early versus late night-shift workers.

Overall, the paper by Bhatti and colleagues remains difficult to interpret due to