

By Seth A. Seabury, Sophie Terp, and Leslie I. Boden

DOI: 10.1377/hlthaff.2016.1185
 HEALTH AFFAIRS 36,
 NO. 2 (2017): 266–273
 ©2017 Project HOPE—
 The People-to-People Health
 Foundation, Inc.

Racial And Ethnic Differences In The Frequency Of Workplace Injuries And Prevalence Of Work-Related Disability

Seth A. Seabury (seabury@usc.edu) is a visiting associate professor of ophthalmology and director of the Keck-Schaeffer Initiative for Population Health Policy at the Keck School of Medicine and the Leonard D. Schaeffer Center for Health Policy and Economics, both at the University of Southern California, in Los Angeles. He is also a faculty research fellow at the National Bureau of Economic Research.

Sophie Terp is an assistant professor of clinical emergency medicine at the Keck School of Medicine, University of Southern California.

Leslie I. Boden is a professor of environmental health at the School of Public Health, Boston University, in Massachusetts.

ABSTRACT Occupational injuries and illnesses lead to significant health care costs and productivity losses for millions of workers each year. This study used national survey data to test for differences between members of minority groups and non-Hispanic white workers in the risk of workplace injuries and the prevalence of work-related disabilities. Non-Hispanic black workers and foreign-born Hispanic workers worked in jobs with the highest injury risk, on average, even after adjustment for education and sex. These elevated levels of workplace injury risk led to a significant increase in the prevalence of work-related disabilities for non-Hispanic black and foreign-born Hispanic workers. These findings suggest that disparities in economic opportunities expose members of minority groups to increased risk of workplace injury and disability.

Occupational injuries and illnesses are an important public health concern, imposing significant costs on injured workers, employers, and society at large. Recent evidence suggests that the costs of occupational injuries and illnesses in the United States are as high as \$250 billion per year.^{1,2} Studies focusing on the economic consequences of disabilities resulting from injuries in the workplace have found that some disabled workers can lose up to 30 percent of their earnings even years after an injury.^{3–5}

However, there has been less study of whether and how work-related injuries differentially impact minority populations. Evidence is mixed about the association between race/ethnicity and workplace injury rates. Most evidence suggests that members of minority populations face higher workplace injury risk, compared to whites,^{6–17} although other studies have found no association.^{18–23} One reason this evidence is inconsistent might be that racial disparities in workplace injury risk are strongly influenced by differences in the availability of different types of jobs according to race and ethnicity.

For example, evidence suggests that immigrant Hispanic construction workers face elevated risk of fatal and nonfatal injuries, compared to native-born Hispanic or non-Hispanic workers.^{24–27} Previous work also indicates that the injury rate among non-Hispanic black workers is higher than it would be if they worked the same hours as non-Hispanic white workers.^{28–30} Analyses of specific occupational diseases, including lung cancer^{31–33} and silicosis,^{34,35} have also shown racial disparities in the incidence of disease. However, more work is needed to understand disparities in workplace injury risk and these disparities' longer-term consequences for minority populations.

We examined how workplace injury risk and the prevalence of work-related disability (that is, a disability attributed to a workplace injury) varied across different racial and ethnic groups. Our first objective was to describe how the risk of workplace injury varies according to racial differences in job type (that is, whether workers across racial and ethnic groups hold more or less risky jobs). Our second objective was to observe how differences in workers' workplace injury risk affect the prevalence of work-related

disability. Combining these two analyses allowed us to assess how disparities in exposure to workplace injury risk affected disparities in work-related disabilities.

Study Data And Methods

We used two large data sets from nationally representative surveys published by the Census Bureau to capture information on racial/ethnic disparities in workplace injury risk: the 2006–13 American Community Survey and the 1996, 2001, 2004, and 2008 panels of the Survey of Income and Program Participation. The American Community Survey data were used to construct what we call “expected” workplace injury rates, defined as the average injury rates that people face based on the types of jobs held by workers with comparable demographic characteristics (specifically, race/ethnicity, age, education, and sex).

The large size of the American Community Survey allowed us to compute reasonably precise measures of expected workplace injury rates. However, the data did not track information on health outcomes in a way that allowed us to test whether injury risk was associated with lasting impacts on health. The Survey of Income and Program Participation, although a smaller survey, contains similar data on demographics with more detailed information on disability. Previous studies have used the survey to study the labor-market outcomes of disabled workers.^{36–44} Importantly, for each respondent who reports a disability, the survey asks whether the disability was caused by an injury that occurred at work.

All calculations were done using Stata/MP, version 14.0, and computed using survey weights that reflected the relevant survey’s complex design. For more complete information on the data and methods used in the study, see the online Appendix.⁴⁵

MEASURING WORKPLACE INJURY RISK One of the strongest predictors of workplace injury risk is a worker’s occupation: A construction worker clearly has higher injury risk than someone in a white-collar managerial position. To measure occupational risk, we matched American Community Survey respondents who had been employed for at least one week in the previous year to data from the Bureau of Labor Statistics on annual rates of workplace injuries that involved days away from work. The Bureau of Labor Statistics publishes aggregate injury statistics in the annual Survey of Occupational Injuries and Illnesses, which include data on injury rates by detailed occupation. We focused on lost-workday injuries because they are more likely to result in long-term disabilities. We merged the Bureau

of Labor Statistics injury data and the American Community Survey sample at the occupation level, using four-digit codes from the Standard Occupational Classification system. The survey and injury data were merged for the period 2006–13, the years for which we had data from both sources.

We used these data to estimate the number of lost-workday injuries per 1,000 workers at the race-age-education-sex level. Note that we refer to this as the expected workplace injury rate because it was calculated by taking the weighted average of the injury rates across all jobs—with the weights being the shares of people in each group in each job. If one race-age-education-sex combination had a relatively high share of individuals working in high-risk jobs such as construction, that group would have had a higher expected workplace injury rate (all else being equal). Note also that the Bureau of Labor Statistics reports injury rates based on full-time equivalent (FTE) workers, assuming that there are 2,000 hours per work year. To adjust for possible differences in hours worked per year across racial groups, we adjusted the injury rate for each worker according to the percentage of an FTE’s hours that she or he worked (for more detail on how this adjustment was done, see the Appendix).⁴⁵

To test differences across racial groups, we compared the expected workplace injury rates of non-Hispanic white workers to the rates of non-Hispanic blacks, Hispanics, Asians, and a general category of “other” race/ethnicity (which captured groups that were too small in our samples to be broken out separately). Because average economic opportunities and job types differ substantially between native- and foreign-born Hispanics, we considered these groups as separate categories (thus, we had six categories for race/ethnicity).

We calculated the expected workplace injury rates for each group, overall and by sex, to reflect known differences in the types of jobs held by women and men.⁴⁶ To allow for differences in workplace injury risk over the course of a worker’s life, we computed expected workplace injury rates for workers in the following age categories: ages 18–29, 30–39, 40–49, and 50–64. Similarly, we grouped workers by education into the following categories: less than high school, high school with no college, some college, and four-year college degree or higher. This yielded average expected workplace injury rates for 192 race/ethnicity-age-education-sex combinations.

To control for average demographic differences across racial/ethnic groups, we computed regression-adjusted expected workplace injury rates by race/ethnicity, holding age, sex, and

education constant at their mean values within each group (for details on the regression specification, see the Appendix).⁴⁵ We interpreted this analysis as examining how differences in economic opportunities by race/ethnicity affected exposure to workplace injury risk.

MEASURING PREVALENCE OF WORK-RELATED

DISABILITIES The Survey of Income and Program Participation collects information on respondents monthly for up to four years. Data are collected in four-month waves, and different waves include “topical modules” that ask supplemental questions on selected topics.

We used data from the four most recent panels—1996, 2001, 2004, and 2008—to collect information on age, sex, education, and race/ethnicity that was comparable to the American Community Survey data for the working-age population (ages 18–64). To be eligible for our analysis, we did not require individuals to be currently working, as the disabled are less likely to be employed. However, we did require them to have worked at some point in their lives (otherwise they would not have had the opportunity to experience a workplace injury).

Additionally, a topical module asked in the second wave of each panel includes questions that provide information on disability status. The sequence of questions asks whether the respondent has a health limitation that affects whether or how much he or she can work; if so, whether the condition was caused by an injury; and if it was, whether the injury occurred at work.⁴⁷ Note that the wording of this question is such that it may not identify disabilities as being work related if they were caused by work-related illnesses (as opposed to injuries). The Bureau of Labor Statistics injury data do include lost-workday cases resulting from work-related illnesses, but this is a small portion of all lost-workday cases (just 6.4 percent in 2014).⁴⁸

We used these data to estimate the prevalence of disabilities that were caused by workplace injuries. We compared unadjusted disability prevalence across racial/ethnic groups. Because we expected workers’ prevalence of disability to increase over time, we compared the prevalence for younger (ages 18–29) and older (ages 50–64) workers.

To assess whether racial/ethnic differences in prevalence of disabilities were related to other individual characteristics (particularly education, which is related to job type) we used logistic regression to test for racial/ethnic differences in the odds of having a disability caused by a workplace injury. We conducted separate regressions with and without other covariates, including controls for sex, education, age, survey year, and the expected workplace injury rate (where

the expected rate was merged from the American Community Survey data at the race-age-education-sex level).

Finally, to identify how differences in expected workplace injury rates are associated with the prevalence of work-related disabilities, we used the logistic regression model to compare two sets of predicted probabilities (both holding all other covariates at their mean values). First, we computed the predicted probability of a work-related disability for each race/ethnicity, holding constant the expected workplace injury rate at the mean value for non-Hispanic white workers. Second, we computed the predicted probability with the expected workplace injury rate equal to the mean value for each race/ethnicity category. In both cases, we focused on workers ages 50–64 because work-related disability prevalence is relatively low in younger populations. The difference between these two sets of probabilities indicates how disparities in expected workplace injury rates based on job types are associated with disparities in the prevalence of work-related disability.

LIMITATIONS Our study had several limitations, including our measure of workplace injuries. Although the Bureau of Labor Statistics data are widely used, past studies have shown that the bureau undercounts injuries.^{49–51} Additionally, our analytic approach implicitly assumed that within-job injury rates were the same across races/ethnicities. But if members of minority groups are more likely than whites to receive riskier job tasks even within the same listed occupation, as has been suggested by past studies,^{31,52,53} our findings will underestimate racial/ethnic disparities in workplace injury risk.

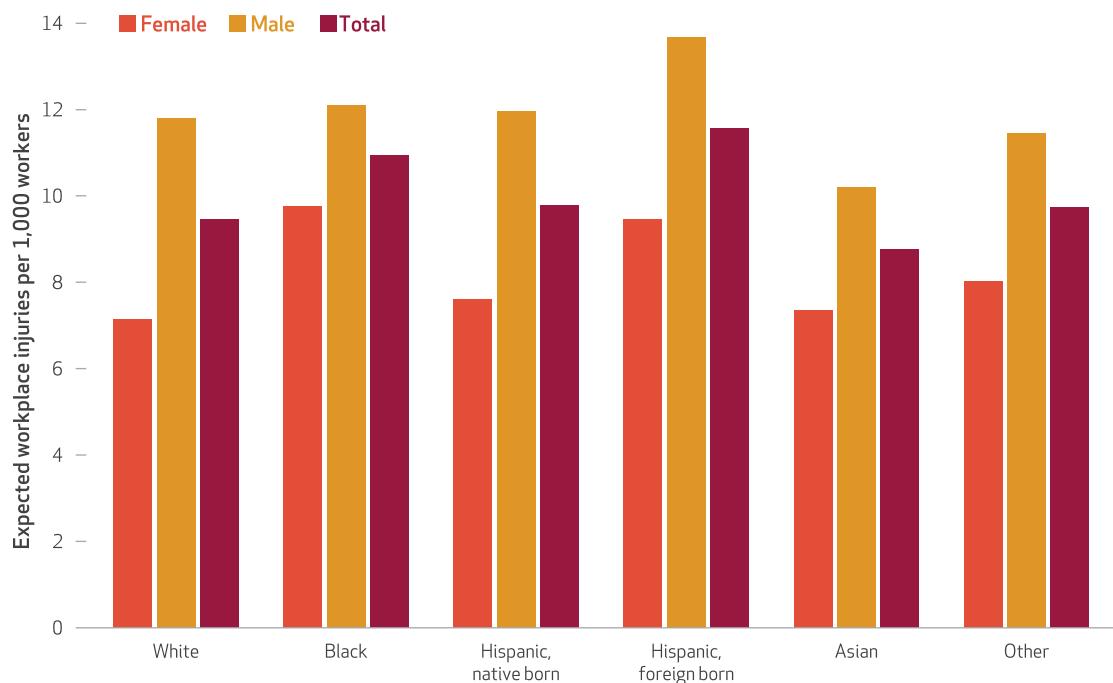
Our work-related disability measure also had limitations. Self-reported disability measures are known to suffer from biases such as justification bias.^{43,54} It is also possible that focusing on disabilities caused by a specific event such as a workplace injury could introduce other biases, such as recall bias. However, it is unknown whether these biases would differ across race/ethnicity lines in such a way as to confound our results.

Finally, our focus on workplace injuries may have caused us to underestimate the extent to which occupational factors contribute to poor health for members of minority groups. In general, injury risk has fallen considerably over the past several decades, as technology has led to both safety improvements and a shift away from dangerous jobs. Despite this, adverse working conditions can have consequences for health that appear later in life and are not always recognized as work related.⁵⁵ To the extent that these conditions are correlated with injury risk, this could exacerbate the disparities found here.

Study Results

We had data for 11,632,466 respondents to the American Community Survey and 198,308 respondents to the Survey of Income and Program Participation. Overall, the demographic characteristics of the two samples were similar (for a summary of these characteristics, see Appendix Table 1).⁴⁵ The American Community Survey sample had a slightly lower percentage of non-Hispanic whites (66.6 percent), compared to the Survey of Income and Program Participation (71.4 percent), and a lower share of Hispanics and Asians. These differences might have reflected the American Community Survey's more recent samples. The American Community Survey also had a higher share of males (52.5 percent versus 49.9 percent), possibly because we restricted the American Community Survey sample to current workers, whereas the Survey of Income and Program Participation included all people who had ever worked.

We found significant differences in expected workplace injury rates by race/ethnicity in the American Community Survey data. As we had anticipated, the expected workplace injury rate was higher for men than for women (Exhibit 1), which reflects the fact that men tend to work in


riskier jobs.⁴⁶ The pattern across races/ethnicities was similar for men and women, though the differences across groups were somewhat more pronounced for women. Male foreign-born Hispanics had expected workplace injury rates that were higher than those of white males (13.7 versus 11.8 per thousand). However, for the total population (both women and men), the expected workplace injury rates for whites were similar to those of native-born Hispanics, Asians, and other. These findings were consistent when we used regression adjustment to control for confounding racial differences in sex, age, or education (see Appendix Table 2).⁴⁵

Using data from the Survey of Income and Program Participation, we compared the prevalence of work-related disability across different races/ethnicities. Black workers had the highest prevalence of work-related disability, at 2.0 percent (data not shown). In comparison, the prevalence was 1.7 percent for foreign-born Hispanics, native-born Hispanics, and Asians; 1.6 percent for whites; and 1.1 percent for other races and ethnicities.

While work-related disability prevalence was similar across race/ethnicity categories, this masked heterogeneity across those categories

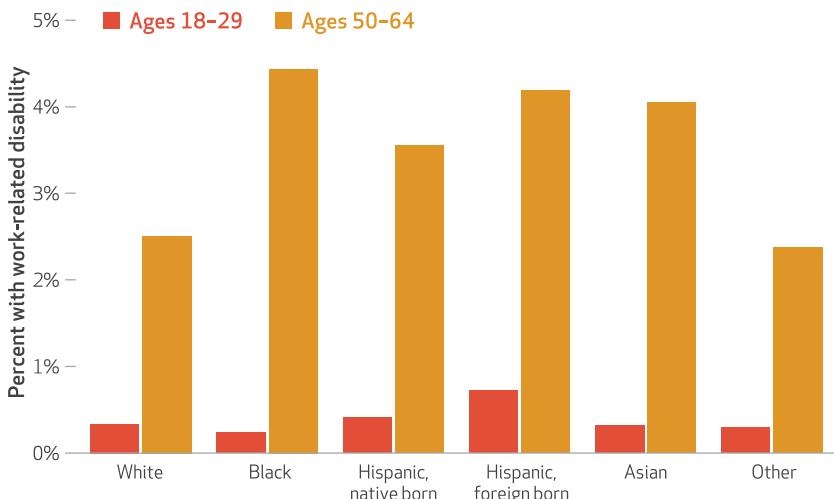
EXHIBIT 1

Mean expected workplace injuries per year per 1,000 workers ages 18–64, overall and by race/ethnicity and sex

SOURCE Authors' analysis of data from the 2006–13 American Community Survey (ACS) linked to Bureau of Labor Statistics (BLS) injury and illness data. **NOTES** "Workplace injuries" are injuries in the workplace that cost the employee at least one lost workday. BLS injury data were merged to ACS respondents' data based on the occupation of each respondent's longest-held job in the previous year. Injury rates for people working less than full time (defined as 2,000 hours per year) were adjusted downward proportional to the number of hours they worked. Means were calculated using sampling weights that reflected the survey design of the ACS.

at different age groups. For workers ages 18–29, the work-related disability prevalence was low, presumably because workers had not been exposed to job-related risks for very long (Exhibit 2). However, even in this age group there were differences across racial and ethnic groups, with foreign-born Hispanics having a notably higher prevalence than whites (0.7 percent versus 0.3 percent). For workers ages 50–64, the rate of work-related disabilities for all of minority groups (except the “other” category) was higher than that for whites. For example, in this age range, the rate for blacks was 4.4 percent, compared to 2.5 percent for whites.

We used logistic regression to examine how expected workplace injury rates as well as other observable characteristics—including age, sex, and education—explained racial/ethnic differences in the prevalence of work-related disabilities. In the unadjusted model, which did not control for other covariates, whites had lower odds of a work-related disability than blacks, native-born or foreign-born Hispanics, or Asians for all ages and for ages 50–64 (Exhibit 3). For ages 18–29, the odds were not statistically different from 1 for any race/ethnicity category except foreign-born Hispanics. Adjusting for the other covariates eliminated the difference in prevalence between whites and blacks or Hispanics at older ages, though the difference persisted between whites and Asians. The expected work-


place injury rate was positively associated with the prevalence of work-related disability overall, in the sense that the odds ratio was greater than 1, but the effect was significantly largest in the older age group and not statistically different from 1 for ages 18–29.

We also used the logistic regression model to generate predicted probabilities of work-related disability for ages 50–64 in the hypothetical scenario in which all race/ethnicity categories had the same expected workplace injury rate, and we compared those probabilities to the probabilities in a scenario that used the observed expected workplace injury rates. Note that the expected workplace injury rate for whites was 8.8 per 1,000 workers, compared to 12.3 for blacks, 11.3 for native-born Hispanics, 13.5 for foreign-born Hispanics, 9.6 for Asians, and 9.5 for others (see the Appendix).⁴⁵

When we held the expected workplace injury rate constant at the rate of non-Hispanic white workers, we found that the predicted probability of a work-related disability was within 0.4 percentage point for all race/ethnicity categories except Asians, who had a comparatively high rate (Exhibit 4). When we instead used the observed average expected workplace injury rate for each race/ethnicity category, disability prevalence rose for blacks (39 percent), native-born Hispanics (27 percent) and foreign-born Hispanics (57 percent). This suggests that differences in expected workplace injury rates due to job type are an important factor that leads to higher rates of work-related disability for blacks and Hispanics, but not for Asians.

EXHIBIT 2

Prevalence of work-related disabilities, by race/ethnicity and age

SOURCE Authors' analysis of data from the Survey of Income and Program Participation (SIPP). **NOTES** "Work-related disability" is disability that can be attributed to work-related injuries. Respondents to SIPP are flagged as having such a disability if they report a health condition that limits the type or amount of work they can do, report that the condition was caused by an injury, and report that the injury occurred at work. The data came from respondents ages 18–64 to the 1996, 2001, 2004, and 2008 SIPP panels. Values are calculated using sampling weights to reflect the survey design of SIPP.

Discussion

In this study, we compared the workplace injury risks of different racial/ethnic groups in the United States. We found that non-Hispanic white workers consistently had among the lowest risk of workplace injury, particularly at older ages. As a result, non-Hispanic black and Hispanic workers were more likely to experience a work-related disability, compared to white workers. Foreign-born Hispanic workers had the highest expected workplace injury rates but comparatively low disability rates. This might have been because of sample attrition due to injured and disabled workers' returning to their home country if they were unable to work, or it might have been due to some other factor such as ethnic differences in the perception of disability. Asians had comparatively low workplace injury risk but higher-than-expected prevalence of disability due to workplace injuries.

This study is similar to a recent study of occupational injury disparities at the national level,

EXHIBIT 3**Odds of disability among racial and ethnic minorities compared with non-Hispanic whites**

	Total		Ages 18-29		Ages 50-64	
	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
Black, non-Hispanic	1.268***	0.820***	0.716	0.560*	1.806****	1.062
Hispanic, native-born	1.068	1.015	1.229	1.106	1.434**	0.987
Hispanic, foreign-born	1.022	0.582***	2.169***	1.172	1.698****	0.814
Asian	1.286***	1.452***	0.947	1.159	1.643****	1.638****
Other	0.690***	0.774*	0.894	1.300	0.948	0.885
Expected workplace injury rate		1.171***		1.050		1.114****

SOURCE Authors' analysis of data from the Survey of Income and Program Participation (SIPP). **NOTES** The exhibit shows estimated odds ratios from a logistic regression model for reporting a work-related disability (that is, a disability attributed to a work-related injury), comparing racial and ethnic minorities to non-Hispanic whites. For example, the odds of having a work-related disability were 1.268 times higher for a non-Hispanic black than for a non-Hispanic white. "Adjusted" means that the regression model controlled for the expected workplace injury rate (that is, the average number of workplace injuries per 1,000 workers) and other covariates. Other covariates included sex, age, education and survey year. The Appendix presents odds ratios for other covariates (see Note 45 in text). The data came from respondents ages 18-64 to the 1996, 2001, 2004, and 2008 SIPP panels. Variance estimates were computed using heteroskedasticity-consistent "robust" variance estimates. * $p < 0.10$ ** $p < 0.05$ *** $p < 0.01$ **** $p < 0.001$

which used occupational injury rates compared with occupational racial/ethnic composition to draw conclusions about disparities.¹⁶ Like our study, that one found a much greater proportion of non-Hispanic black and Hispanic workers and a smaller proportion of Asian workers employed in high-risk occupations. Our findings expand on this study and other previous work by demonstrating that the elevated risk persisted despite adjustment for other demographic characteristics, including education. We also show how the higher risk of injury translates into long-term health effects from more work-related dis-

abilities for blacks and foreign-born Hispanics, compared to whites.

A key implication of our findings is that systematic differences in economic opportunities are strongly associated with members of minority groups' being subjected to greater workplace injury risk. Unfortunately, these disparities reflect a long history of racial/ethnic minority groups' facing the worst job conditions. More than forty years ago, J. William Lloyd³¹ found that among steel workers, coke oven workers had the highest lung cancer mortality. Moreover, such workers who were black had systematically

EXHIBIT 4**Racial/ethnic differences in the predicted probability of a work-related disability, based on expected workplace injury risk, for workers ages 50-64**

	Predicted probability of a work-related disability		Difference	
	Fixed injury rate equal to that of white workers	Injury rate equal to observed mean for each race/ethnicity category	Percentage points	Percent
White, non-Hispanic	0.022	0.022	0.000	0
Black, non-Hispanic	0.024	0.033	0.009	39
Hispanic, native-born	0.022	0.028	0.006	27
Hispanic, foreign-born	0.018	0.029	0.010	57
Asian	0.036	0.038	0.003	8
Other	0.020	0.021	0.001	7

SOURCE Authors' analysis of data from the Survey of Income and Program Participation (SIPP). **NOTES** The exhibit shows the predicted probability from a logistic regression model of reporting a work-related disability (that is, a disability attributed to a workplace injury) according to two scenarios for the expected workplace injury rate (that is, the average number of workplace injuries per 1,000 workers). Predicted probabilities are equal to the predicted value based on logistic regression of disability caused by workplace injury as a function of race, age, education, sex, survey year and expected workplace injury rate, with all variables except race and expected injury rate held constant at their mean values for workers ages 50-64. Differences between the injury rates may not equal the percentage points of difference shown because of rounding. The data came from respondents to the 1996, 2001, 2004, and 2008 SIPP panels.

higher risk than whites. Lloyd determined that this group was relegated to working on the topside of the coke ovens, which were worse jobs and resulted in more exposure to carcinogenic emissions. The US workplace has gotten safer for all workers, but our findings indicate that these kinds of disparities in workplace injury risk have not been eliminated.

Although our study clearly established the existence of disparities in workplace injury risk, it was not designed to identify the underlying mechanisms that cause these disparities. Assigning workers to job tasks on a discriminatory basis within jobs, such as relegating the black coke workers to the riskiest position within the same occupational category, is a potential explanation. Another possibility is discrimination in hiring or promotion, which keeps equally qualified minority workers from attaining better and safer jobs. To the extent that our results do reflect discrimination, it could be institutional, conscious, or implicit in nature. Nevertheless, we cannot rule out other explanations that may not be related to discrimination.

It is perhaps not surprising that people with limited labor-market opportunities have not only low wages but also poor working conditions, including greater risk of occupational injuries and illnesses. However, occupational safety and health professionals have historically focused on identifying policies and practices that induce employers to improve conditions for current workers, either voluntarily or because of pressure from government regulators, and not on hiring practices. Although improving work

conditions could be of great value, it would not directly address discrimination-based disparities in workplace injury risk. Based on our findings, policy makers and regulators may need to review whether employers are systematically assigning people of different races and ethnicities different jobs or job tasks according to the risk.

Our results also imply that future efforts to eliminate workplace injuries should consider the population of workers most affected. If workplace safety and health interventions increase labor costs, economic theory suggests that this could lead to lower wages, reduced employment opportunities, or both. Our results suggest that such outcomes would disproportionately affect minority workers. Care needs to be taken to ensure that efforts to make workplaces safer do not at the same time reduce economic opportunities for vulnerable populations. Finally, it is important to recognize that minority workers are a growing part of the labor force, and that the issues raised here will only become more salient and politically charged as the US population continues to become more diverse.

Conclusion

We found systematic disparities across racial/ethnic groups in the risk of workplace injuries. These findings suggest that disparities in economic opportunities in the United States result in members of minority groups' working in more hazardous jobs and, as a result, often experiencing worse health, compared to whites. ■

These results were previously presented to the Workers' Compensation Research Group, Hopkinton, Massachusetts, March 9, 2016. Seth Seabury, Sophie Terp, and Leslie Boden were supported for work on this study by the National

Institute for Occupational Safety and Health (Grant No. NIOSH 1R21OH010442-01A1). Seabury also acknowledges support from an unrestricted departmental grant to the Department of Ophthalmology at the

University of Southern California from Research to Prevent Blindness, in New York City. The sponsors were not involved in the study design, analysis, or reporting of the results.

NOTES

- 1 Leigh JP. Economic burden of occupational injury and illness in the United States. *Milbank Q.* 2011; 89(4):728-72.
- 2 Leigh JP, Markowitz S, Fahs M, Landrigan P. Costs of occupational injuries and illnesses. Ann Arbor (MI): University of Michigan Press; 2000.
- 3 Boden LI, Galizzi M. Income losses of women and men injured at work. *J Hum Resour.* 2003;38(3):722-57.
- 4 Boden LI, Galizzi M. Economic consequences of workplace injuries and illnesses: lost earnings and benefit adequacy. *Am J Ind Med.* 1999;36(5):487-503.
- 5 Seabury SA, Neuhauser F, Nuckols T, American Medical Association impairment ratings and earnings losses due to disability. *J Occup Environ Med.* 2013;55(3):286-91.
- 6 Zierold KM, Anderson HA. Racial and ethnic disparities in work-related injuries among teenagers. *J Adolesc Health.* 2006;39(3):422-6.
- 7 Simpson CL, Severson RK. Risk of injury in African American hospital workers. *J Occup Environ Med.* 2000;42(10):1035-40.
- 8 Robinson JC. Exposure to occupational hazards among Hispanics, blacks and non-Hispanic whites in California. *Am J Public Health.* 1989;79(5):629-30.
- 9 Richardson DB, Loomis D, Bena J, Bailer AJ. Fatal occupational injury rates in southern and non-southern states, by race and Hispanic ethnicity. *Am J Public Health.* 2004; 94(10):1756-61.
- 10 Shannon CA, Rosponda KM, Richman JA, Minich LM. Race, racial discrimination, and the risk of work-related illness, injury, or assault: findings from a national study. *J Occup Environ Med.* 2009;51(4): 441-8.
- 11 Tak S, Alterman T, Baron S, Calvert GM. Racial and ethnic disparities in work-related injuries and socio-economic resources among nursing assistants employed in US nursing homes. *Am J Ind Med.* 2010;53(10):

951–9.

12 Premji S, Krause N. Disparities by ethnicity, language, and immigrant status in occupational health experiences among Las Vegas hotel room cleaners. *Am J Ind Med.* 2010; 53(10):960–75.

13 Dong X, Ringen K, Men Y, Fujimoto A. Medical costs and sources of payment for work-related injuries among Hispanic construction workers. *J Occup Environ Med.* 2007; 49(12):1367–75.

14 Pransky G, Moshenberg D, Benjamin K, Portillo S, Thackrey JL, Hill-Fotouhi C. Occupational risks and injuries in non-agricultural immigrant Latino workers. *Am J Ind Med.* 2002;42(2):117–23.

15 Bollini P, Siem H. No real progress towards equity: health of migrants and ethnic minorities on the eve of the year 2000. *Soc Sci Med.* 1995; 41(6):819–28.

16 Baron SL, Steege AL, Marsh SM, Menéndez CC, Myers JR. Nonfatal work-related injuries and illnesses—United States, 2010. *MMWR Suppl.* 2013;62(3):35–40.

17 Marsh SM, Menéndez CC, Baron SL, Steege AL, Myers JR. Fatal work-related injuries—United States, 2005–2009. *MMWR Suppl.* 2013;62(3): 41–5.

18 Smith TD, DeJoy DM. Occupational injury in America: an analysis of risk factors using data from the General Social Survey (GSS). *J Safety Res.* 2012;43(1):67–74.

19 Strong LL, Zimmerman FJ. Occupational injury and absence from work among African American, Hispanic, and non-Hispanic white workers in the national longitudinal survey of youth. *Am J Public Health.* 2005; 95(7):1226–32.

20 Ahonen EQ, Benavides FG, Benach J. Immigrant populations, work and health—a systematic literature review. *Scand J Work Environ Health.* 2007;33(2):96–104.

21 Friedman LS, Forst L. Ethnic disparities in traumatic occupational injury. *J Occup Environ Med.* 2008;50(3):350–8.

22 Berdahl TA, McQuillan J. Occupational racial composition and non-fatal work injuries. *Soc Probl.* 2008;55(4):549–72.

23 Oh JH, Shin EH. Inequalities in nonfatal work injury: the significance of race, human capital, and occupations. *Soc Sci Med.* 2003; 57(11):2173–82.

24 Centers for Disease Control and Prevention. Work-related injury deaths among Hispanics—United States, 1992–2006. *MMWR Morb Mortal Wkly Rep.* 2008;57(22): 597–600.

25 Ore T, Stout NA. Risk differences in fatal occupational injuries among construction laborers in the United States, 1980–1992. *J Occup Environ Med.* 1997;39(9):832–43.

26 Dong X, Platner JW. Occupational fatalities of Hispanic construction workers from 1992 to 2000. *Am J Ind Med.* 2004;45(1):45–54.

27 Xiang H, Shi J, Wheeler K, Wilkins JR. 3rd. Disability and employment among U.S. working-age immigrants. *Am J Ind Med.* 2010; 53(4):425–34.

28 Loomis D, Richardson D. Race and the risk of fatal injury at work. *Am J Public Health.* 1998;88(1):40–4.

29 Murray LR. Sick and tired of being sick and tired: scientific evidence, methods, and research implications for racial and ethnic disparities in occupational health. *Am J Public Health.* 2003;93(2):221–6.

30 Robinson JC. Racial inequality and the probability of occupation-related injury or illness. *Milbank Mem Fund Q Health Soc.* 1984;62(4):567–90.

31 Lloyd JW. Long-term mortality study of steelworkers. V. Respiratory cancer in coke plant workers. *J Occup Med.* 1971;13(2):53–68.

32 Rosenman KD, Stanbury M. Risk of lung cancer among former chromium smelter workers. *Am J Ind Med.* 1996;29(5):491–500.

33 Roscoe RJ, Deddens JA, Salvan A, Schnorr TM. Mortality among Navajo uranium miners. *Am J Public Health.* 1995;85(4):535–40.

34 Stanbury M, Rosenman KD. Occupational health disparities: a state public health-based approach. *Am J Ind Med.* 2014;57(5):596–604.

35 Cherniack M. Hawk's nest incident: America's worst industrial disaster. New Haven (CT): Yale University Press; 1986.

36 Maag EM, Wittenburg D. Real trends or measurement problems? Disability and employment trends from the Survey of Income and Program Participation [Internet]. Washington (DC): Urban Institute; 2003 May [cited 2106 Dec 23]. Available from: <http://www.urban.org/sites/default/files/alfresco/publication-pdfs/410635-Real-Trends-or-Measurement-Problems-Disability-and-Employment-Trends-from-the-Survey-of-Income-and-Program-Participation.PDF>

37 Lahiri K, Vaughan DR, Wixon B. Modeling SSA's sequential disability determination process using matched SIPP data. *Soc Secur Bull.* 1995;58(4):3–42.

38 Burkhauser RV, Wittenburg DC. How current disability transfer policies discourage work: analysis from the 1990 SIPP. *J Vocat Rehabil.* 1996; 7(1–2):9–27.

39 Adler M. The future of SIPP for analyzing disability and health. *J Econ Soc Meas.* 1992;18(1–4):91–124.

40 Braut M, Hootman J, Helmick C, Theis K, Armour B. Prevalence and most common causes of disability among adults—United States, 2005. *MMWR Morb Mortal Wkly Rep.* 2009;58(16):421–6.

41 Fujiura GT, Yamaki K, Czechowicz S. Disability among ethnic and racial minorities in the United States: a summary of economic status and family structure. *J Disabil Policy Stud.* 1998;9(2):111–30.

42 Lahiri K, Song J, Wixon B. A model of Social Security Disability Insurance using matched SIPP/administrative data. *J Econom.* 2008;145(1–2): 4–20.

43 Hotchkiss JL. A closer look at the employment impact of the Americans with Disabilities Act. *J Hum Resour.* 2004;39(4):887–911.

44 Kreider B, Pepper JV. Disability and employment. *J Am Stat Assoc.* 2007;102(478):432–41.

45 To access the Appendix, click on the Appendix link in the box to the right of the article online.

46 Filer RK. Male-female wage differences: the importance of compensating differentials. *ILR Review.* 1985;38(3):426–37.

47 Census Bureau. Survey of Income and Program Participation users' guide (supplement to the technical documentation) [Internet]. 3rd ed. Washington (DC): Census Bureau; 2001 [cited 2016 Dec 23]. Available from: https://www.census.gov/content/dam/Census/programs-surveys/sipp/methodology/SIPP_USERS_Guide_Third_Edition_2001.pdf

48 Bureau of Labor Statistics. Employer-reported workplace injuries and illnesses—2014. Washington (DC): BLS; 2015.

49 Leigh JP, Marcin JP, Miller TR. An estimate of the U.S. Government's undercount of nonfatal occupational injuries. *J Occup Environ Med.* 2004;46(1):10–8.

50 Ruser JW. Examining evidence on whether BLS undercounts workplace injuries and illnesses. *Monthly Labor Review* [serial on the Internet]. 2008 Aug [cited 2016 Dec 23]. Available from: <https://www.bls.gov/opub/mlr/2008/08/art2full.pdf>

51 Boden LI, Ozonoff A. Capture-recapture estimates of nonfatal workplace injuries and illnesses. *Ann Epidemiol.* 2008;18(6):500–6.

52 Foote CL, Whatley WC, Wright G. Arbitraging a discriminatory labor market: black workers at the Ford Motor Company, 1918–1947. *J Labor Econ.* 2003;21(3):493–532.

53 Rice C, Rosenman K, Reilly MJ, Hertzberg VS. Reconstruction of silica exposure at a foundry for evaluation of exposure-response. *Ann Occup Hyg.* 2002;46(Suppl 1): 10–3.

54 Chirikos TN, Nestel G. Economic determinants and consequences of self-reported work disability. *J Health Econ.* 1984;3(2):117–36.

55 Reville RT, Schoeni RF. The fraction of disability caused at work. *Soc Secur Bull.* 2003–2004;65(4):31–7.