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ABSTRACT
Respirable crystalline silica poses a significant health risk, 
with the American Lung Association estimating that 2.3 
million workers are exposed to silica in the workplace. 
This includes mine workers as well as those in many other 
industries. Reducing dust formation is sometimes not pos-
sible so other methods to reduce exposure are critical. These 
methods include the use of surfactants to reduce airborne 
dust particles. However, it is the proper selection and appli-
cation of surfactants that leads to reduced dust exposure. 
A discussion of how surfactants work, especially for silica 
dust, leads to guidance for surfactant selection followed by 
a review of technologies for their application.

INTRODUCTION
Respirable crystalline silica has been studied as a potential 
carcinogen in dusts from many sources, including those 
produced in mines. Whether mining specifically for silica 
or mining other minerals, it is likely that silica is in the 
mined product as it is an accessory mineral phase in many 
common commodities as indicated in Table 1 (1). While 
coal is not on the list, it is certainly well known that coal 
also contains quartz, with a 1990 US Bureau of Mine work, 
Sources and Characteristics of Quartz Dust in Coal Mines, 
initiating some of the research on silica in coal (2).

Researchers have also indicated that quartz cannot be 
treated as a single mineral phase as there are many variations 
in contaminants and associated minerals (see, for example, 
3, 4, 5). In general, however, it appears that the issue with 
crystalline silica, most notably α-quartz, is the formation of 
reactive oxygen species (ROS) on the surface of dust par-
ticles, forming “silanols” that interact with lung tissue to 
cause fibrosis and lung cancer (3, 4, 5). These works and 
others along with the increase in the occupational respira-
tory diseases silicosis and coal worker’s pneumoconiosis (6, 
7, 8, 9) spawned new research, including recent interna-
tional papers by Azam et al. (10), LaBranche et al. (11), 
and Li et al. (12). These and many other papers document 
research regarding respirable dust and, especially, silica dust. 
As this paper takes a practical look at surfactants for respira-
ble silica dust, this is not the place to document these many 
papers, though Arnold and her team have a review paper in 
progress. Suffice it to say that respirable silica dust and its 
toxicity is the subject of many current National Institute 
of Occupational Safety and Health (NIOSH) studies (13).

In addition, it is important to note that the US Mine 
Safety and Health Administration has put forth new silica 
dust regulations for comment (14). The use of surfactants 
to control dust and, especially, silica dust, is a timely topic 
to review.
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QUARTZ SURFACE PROPERTIES
Two surface properties that are important when consid-
ering dust suppression are the hydrophobicity/ hydro-
philicity of the particle surfaces and the surface charge. 
Hydrophobicity is a measure of the wettability of a surface 
and is often measured using contact angle techniques. In 
the sessile drop technique, a drop of water or surfactant or 
other chemical solution is placed on the surface of a pol-
ished piece of material. If the droplet spreads, it gives a low 
value for contact angle and indicates the ease of wetting the 
surface, which is a requirement for the application of dust 
suppressants. An alternative technique, the captive bubble 
technique, places the specimen in the liquid and an air bub-
ble is applied to the surface with the angle of contact being 
measured. Contact angle values for quartz can be found in 
the literature as shown in Table 2. Compared to values for 
known hydrophobic materials, like high rank coal, these 
values are low and would represent surfaces that are hydro-
philic or wettable.

Another surface property that is important is the zeta 
potential or surface charge. This affects the interaction 
between particles in a slurry, with highly charged parti-
cles (either negative or positive) repelling each other and 
oppositely charged particles being attracted to each other. 
Another phenomenon that can be investigated using the 
zeta potential technique is spontaneous flocculation when 
the surface charge becomes close to zero. This is rapid when 
the surface charge is 0 to ±5 mV and can be considered 
strong even at ±25 mV. This change in surface charge can 
occur in the presence of different ions in solution, meaning 
that it is critical to assess surface charge, as well as hydro-
phobicity, using water from the site that is being evaluated. 
Some examples of zeta potential measurements for quartz 
from the literature are given in Figure 1 (20, 21, 22). The 
quartz surface charge is generally negative across the entire 
pH range shown. This will affect the type of chemical that 
can be used as a surfactant as some of these chemicals also 
have ions that carry a charge (cationic being positively 
charged, anionic being negatively charged, etc.).

HOW SURFACTANTS WORK
Surfactants are “surface active agents.” They reduce the sur-
face tension of water, allowing it to spread over the surface 
of a particle more easily, wetting the particle. Finer droplets 
of water can be produced to increase the likelihood of par-
ticle-droplet contact in a spray or foam application. The use 
of surfactants allows for a residual dust suppression effect 
as water has no additional effect once it is evaporated (23). 
Studies estimate a 50 percent reduction in water require-
ments with the improved efficiency associated with the use 

Table 1.  Silica as an accessory phase in common 
commodities (1)
Commodity Type of Silica
Antimony Quartz
Bauxite Quartz
Beryllium Quartz
Cadmium Quartz, jasper, opal, chalcedony
Concrete Quartz
Clay Quartz
Copper Quartz
Crushed stone Quartz
Diatomite Quartz
Dimension stone Quartz
Feldspar Quartz
Fluorite Quartz
Garnet Quartz
Germanium Quartz
Gold Quartz
Gypsum Quartz
Industrial sand Quartz
Iron ore Chert, quartz
Iron oxide pigment Chert, quartz, opal
Lithium Quartz
Magnesite Quartz
Mercury Quartz
Mica Quartz
Perlite Opal, quartz
Phosphate rock Quartz, chert
Pumice Obsidian
Pyrophyllite Quartz
Sand and gravel Quartz
Selenium Quartz
Silicon Quartz
Silver Quartz, chert
Talc Quartz
Tellurium Quartz
Thallium Quartz, chert, chalcedony, opal
Titanium Quartz
Tungsten Quartz
Vanadium Quartz, opal
Zinc Quartz, chert, chalcedony, opal
Zircon Quartz

Table 2.  Contact angle values of quartz from various sources 
(15, 16, 17, 18)
Contact Angle Source
27.8–50.3 Deng et al. (15)
35 Szyszka (16)
43 ± 2 Kowalczyk (17)
26.8 Janczuk and Zdziennicka (18)
26.15 Xie et al. (19)
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of surfactants (24, 25), resulting in considerable cost sav-
ings as well.

SURFACTANT SELECTION
Many different chemical dust suppressants have been used, 
including salts, asphalt emulsions, vegetable oils, molas-
ses, synthetic polymers, mulches, and lignin products (26). 
Many of these are certainly non-toxic and will do no harm 
to the environment or to workers. However, as Piechota 
et al. (26) describes, it is important to have a full analy-
sis of any material as some may be toxic waste products 
from other industries. Health issues for workers may arise, 
and soil could become contaminated. A Safety Data Sheet 
should be requested for any material considered as a dust 
suppressant additive/surfactant.

The next consideration is the improvement in wettabil-
ity of the dust particles with the addition of the surfactants. 
According to a comprehensive review by Zhao et al. (27), 
these tests can be classified as static or dynamic tests. Static 
tests include contact angle measurements, liquid surface 
tension tests (lower surface tension should correlate to bet-
ter wetting), capillary rise tests, liquid penetration tests, and 
the simplest or most common sink test or Walker test (28). 
Dynamic tests can include wind tunnel or other field tests 
(27). All these tests measure the potential to wet the surface 
of a dust particle. Xu et al. (29) provides a good description 
and review of these and other static tests methods.

 In the Walker test as illustrated in Figure 2, an air-dried 
sample of the dust is placed on top of the liquid in a small 
beaker or graduated cylinder, and the time to completely 
wet and settle the dust is measured. Tests can be conducted 
easily with different surfactants and at different surfactant 
concentrations. Quicker settling times give better wettabil-
ity. Note that the water used in these experiments must be 

the water used on site as the contained ions will affect the 
ability for the surfactant to reduce the water’s surface ten-
sion. This test is thought to simulate the particle capture 
mechanism (28) and might be used to set initial concentra-
tions for field tests of any surfactant.

Foaming agents need to be evaluated for wettability as 
well as for their ability to foam in water from the site.

Going forward, wettability might not be the most 
important criterion for a good surfactant. As research pro-
gresses into the surface chemistry of dust and the health 
effects of ROS and, specifically, silanols on respirable crys-
talline silica, it will be important to evaluate whether these 
surfactants might increase the ROS content making the 
dust more toxic or reduce the ROS content making the 
dust less toxic. One such project is in progress at Penn State 
with Arnold as the Principal Investigator (30). Results with 
several potential surfactants are given in Table 3 for quartz 
collected from coals representing different coal ranks. The 
hydroxyl content (10–9 mol.L–1) on the surface of particles 
pulverized to < 10 microns to represent respirable dust 
sizes was measured using a spectrofluorometer for the bare 
surface in distilled water at pH 7 and for nine different 
reagents at two concentrations each. As indicated, the OH 
content generally decreased in the presence of the surfac-
tants, with the addition of some of the surfactants causing 
a very large drop in OH content. It can also be noted, as 
stated previously, that all the quartz samples did not exhibit 
the same behavior in the presence of the various surfactants, 
further indicating that testing must be conducted for each 
individual sample. Also, note that all surfactants did not 
reduce the OH content to the same extent. The presence 
of other contaminants with the quartz may have played a 
role and the interaction of the chemicals with the surfaces 
certainly affected the results.

Figure 1. The zeta potential of quartz from various sources (20, 21, 22)
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It should be noted that Walker tests for the quartz 
samples were conducted without the addition of surfac-
tants (30). As shown in Table 4 and expectedly, the lon-
gest settling times were in deionized water (the absence of 
ions) giving the full LVb is low volatile bituminous, MVb 
is medium volatile bituminous, and HVAb is high volatile 
A bituminous coal ranks effect of the surface charge of the 
particles. In process water and simulated lung fluid, the set-
tling times decreased for the bare surfaces as the surface 

Figure 2. Dust Settling Rate Test (Walker Test)

Table 3.  Effect of Surfactants on Surface OH Content for Various Quartz Samples Collected from Coal of 
Various Ranks at pH 7 (30)

Coal Quartz →
Surfactant

OH (10–9 mol.L–1) at pH 7
Anthracite Quartz LVb Quartz MVb Quartz HVAb Quartz

Bare Surface 65 75 97 89
1 Dosage 1 63 14 7 9
   Dosage 2 59 12 6 7
2 Dosage 1 24 60 14 12
   Dosage 2 15 55 13 11
3 Dosage 1 11 21 8 12
   Dosage 2 9 15 7 11
4 Dosage 1 10 20 8 8
   Dosage 2 9 14 7 8
5 Dosage 1 8 31 8 10
   Dosage 2 6 15 8 9
6 Dosage 1 8 10 9 8
   Dosage 2 8 9 7 8
7 Dosage 1 13 14 8 7
   Dosage 2 10 13 7 6
8 Dosage 1 12 17 42 47
   Dosage 2 12 16 41 44
9 Dosage 1 6 7 7 10
   Dosage 2 6 6 7 7

LVb is low volatile bituminous, MVb is medium volatile bituminous, and HVAb is high volatile A  
bituminous coal ranks

Table 4.  Walker Tests for Bare Quartz with Different Water 
Quality (30)

Sample

Time (s)
Deionized 

Water
Process 
Water

Sim. Lung 
Fluid

Anthracite Quartz 126 64 35
LVb Quartz 226 84 55
MVb Quartz 219 92 64
HVAb Quartz 229 96 83
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charges would have been decreased in the presence of the 
ions in these fluids. Water quality obviously plays a role 
in surfactant effectiveness, showing the importance of any 
surfactant testing with site water.

TECHNOLOGIES FOR SURFACTANT 
APPLICATION
Water spray systems designed for dust control use two 
modes of dust suppression: 1) water sprays wet the mate-
rial to prevent dust particles from becoming airborne dur-
ing the mining or mineral beneficiation process or 2) water 
sprays are used to knockdown dust particles after they have 
become airborne. (31). These systems use water as the 
medium for dust control and may include the use of surfac-
tants added to enhance dust control efficiency.

Surfactants are added to water at a low dosage and are 
then applied to the bulk material surface to prevent air-
borne dust generation or to the area above the bulk material 
to knockdown airborne particles by particle agglomeration 
to return the dust particles back to the material bed. The 
application devices are typically sprays, though the appli-
cation of foam or fog has been successful as well (32). As 
mentioned previously, the addition of surfactants to water 
can reduce the water requirement by ~50%, while the use 
of a foam system with surfactants can reduce water con-
sumption to less than 1/20th of that of water alone (32). 
Dry fog systems use considerably less water.

Spray velocity, nozzle orifice size, and spray location are 
all considered when setting up a spray system. For dust par-
ticle knockdown, droplet-particle collision efficiency is key, 
so reducing droplet size, increasing droplet frequency and 
velocity, and decreasing droplet surface tension are all key 
parameters for system set up (32, 33). Water sprays are used 
in many locations to mitigate the production of respirable 
and fugitive dust. For example, Caterpillar has developed a 
new spray water truck that uses a unique water spray design 
with a water delivery system specially designed to deliver 
appropriate water flow onto the haul road based upon truck 
speed (34).

Foam applications are directly applied to material 
or sources in order to prevent the generation of airborne 
dust particles because foam is generally not effective once 
dust particles are airborne (35), create even finer droplets 
to maximize the probability of droplet-particle collisions/
attachment (32, 33).

Fog applications can be used without surfactants but 
use droplet atomization to produce droplets of sizes that 
can match the ultrafine respirable dust size of even 5 
microns to improve collision efficiency. These units often 

use special ultrasonic nozzles (32). A benefit of the fogging 
system is the creation of a widely dispersed mist. However, 
one drawback is that the fine mist can be dispersed by air or 
wind movement (36).

GUIDANCE FOR DEVELOPING A SILICA 
DUST SUPPRESSION PLAN INCLUDING 
APPLICATION OF SURFACTANTS
Combining guidance for the use of surfactants from sev-
eral resources (37, 38, 39, 40), the following steps should 
be considered when developing a respirable silica dust sup-
pression plan or any dust suppression plan for that matter.

1.	 Determine the location(s) and timing for dust sup-
pression applications through a site survey—dur-
ing mining, processing, and stockpiling, on paved/
unpaved roadways, at transfer points, during trans-
portation, etc.

2.	 Anticipate potential changes in equipment and the 
need to relocate any dust suppression system.

3.	 Address any material handling system issues; repair 
any dust handling enclosures like curtains and 
skirting.

4.	 Evaluate mechanical dust collectors as part of the 
overall dust control strategy, reviewing costs.

5.	 Address continued housekeeping and equipment 
maintenance, including work force load.

6.	 Work with multiple surfactant suppliers to test 
your material with your water. Note that dust 
samples should always be collected and sealed to 
prevent any changes in surface properties prior to 
testing.

7.	 Test multiple additives in the lab before any field 
testing

8.	 Conduct field tests to ensure the surfactant works 
under operating conditions. Consider the location 
of sprays or fog and, perhaps test different applica-
tion points—directly on the dust source or bulk 
material or in the air above the source, for example.

9.	 Select a supplier, evaluating whether they will also 
provide the dust suppressant application equip-
ment in addition to the surfactant and if they will 
service the equipment. Evaluate the costs.

10.	Install and commission the dust suppression sys-
tem using reputable companies or site personnel 
if available.

11.	Inspect and maintain the dust suppression system.

The most important part of this guidance is the need for 
housekeeping and maintenance.
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SUMMARY
Of course, eliminating or reducing the production of dust 
must be considered as the most effective way to reduce this 
hazard according to the hierarchy of controls illustrated in 
Figure 3. The use of dust suppression, especially with added 
surfactants, will also work to eliminate the hazard. The most 
effective surfactants will allow water to quickly wet the dust 
particles to cause them to aggregate with the water droplets 
and return to the bulk material. In the future, however, we 
must also consider the toxicity of the particulate surfaces 
as we have better understanding of the presence of ROS 
on dust particle surfaces, including in respirable dust/water 
droplet aggregates that can still be airborne, entering work-
ers’ lungs. Additives are being investigated to reduce the 
ROS hazard (30).

Site housekeeping and maintenance, whether under-
ground or on the surface, are critical parts of any dust 
suppression system whether it is for silica, coal, or other 
minerals and materials. This cannot be stressed enough.

An overall plan for dust suppression should be devel-
oped by:

•	 Removing the hazard (through reduced dust produc-
tion, but through dust suppression and the applica-
tion of surfactants)

•	 Isolating people using engineering controls, chang-
ing the way people work (through automation and 
removing people from the dust laden areas), and

•	 Using effective personal protective equipment.

Comprehensive dust suppression plans will reduce worker 
exposure and reduce the incidence of silicosis and other 
debilitating lung diseases.
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