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ABSTRACT

Respirable crystalline silica poses a significant health risk,
with the American Lung Association estimating that 2.3
million workers are exposed to silica in the workplace.
This includes mine workers as well as those in many other
industries. Reducing dust formation is sometimes not pos-
sible so other methods to reduce exposure are critical. These
methods include the use of surfactants to reduce airborne
dust particles. However, it is the proper selection and appli-
cation of surfactants that leads to reduced dust exposure.
A discussion of how surfactants work, especially for silica
dust, leads to guidance for surfactant selection followed by
a review of technologies for their application.

INTRODUCTION

Respirable crystalline silica has been studied as a potential
carcinogen in dusts from many sources, including those
produced in mines. Whether mining specifically for silica
or mining other minerals, it is likely that silica is in the
mined product as it is an accessory mineral phase in many
common commodities as indicated in Table 1 (1). While
coal is not on the list, it is certainly well known that coal
also contains quartz, with a 1990 US Bureau of Mine work,
Sources and Characteristics of Quartz Dust in Coal Mines,
initiating some of the research on silica in coal (2).

Researchers have also indicated that quartz cannot be
treated as a single mineral phase as there are many variations
in contaminants and associated minerals (see, for example,
3, 4, 5). In general, however, it appears that the issue with
crystalline silica, most notably a-quartz, is the formation of
reactive oxygen species (ROS) on the surface of dust par-
ticles, forming “silanols” that interact with lung tissue to
cause fibrosis and lung cancer (3, 4, 5). These works and
others along with the increase in the occupational respira-
tory diseases silicosis and coal worker’s pneumoconiosis (6,
7, 8, 9) spawned new research, including recent interna-
tional papers by Azam et al. (10), LaBranche et al. (11),
and Li et al. (12). These and many other papers document
research regarding respirable dust and, especially, silica dust.
As this paper takes a practical look at surfactants for respira-
ble silica dust, this is not the place to document these many
papers, though Arnold and her team have a review paper in
progress. Suffice it to say that respirable silica dust and its
toxicity is the subject of many current National Institute
of Occupational Safety and Health (NIOSH) studies (13).

In addition, it is important to note that the US Mine
Safety and Health Administration has put forth new silica
dust regulations for comment (14). The use of surfactants
to control dust and, especially, silica dust, is a timely topic
to review.
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QUARTZ SURFACE PROPERTIES

Two surface properties that are important when consid-
ering dust suppression are the hydrophobicity/ hydro-
philicity of the particle surfaces and the surface charge.
Hydrophobicity is a measure of the wettability of a surface
and is often measured using contact angle techniques. In
the sessile drop technique, a drop of water or surfactant or
other chemical solution is placed on the surface of a pol-
ished piece of material. If the droplet spreads, it gives a low
value for contact angle and indicates the ease of wetting the
surface, which is a requirement for the application of dust
suppressants. An alternative technique, the captive bubble
technique, places the specimen in the liquid and an air bub-
ble is applied to the surface with the angle of contact being
measured. Contact angle values for quartz can be found in
the literature as shown in Table 2. Compared to values for
known hydrophobic materials, like high rank coal, these
values are low and would represent surfaces that are hydro-
philic or wettable.

Another surface property that is important is the zeta
potential or surface charge. This affects the interaction
between particles in a slurry, with highly charged parti-
cles (either negative or positive) repelling each other and
oppositely charged particles being attracted to each other.
Another phenomenon that can be investigated using the
zeta potential technique is spontaneous flocculation when
the surface charge becomes close to zero. This is rapid when
the surface charge is 0 to +5 mV and can be considered
strong even at +25 mV. This change in surface charge can
occur in the presence of different ions in solution, meaning
that it is critical to assess surface charge, as well as hydro-
phobicity, using water from the site that is being evaluated.
Some examples of zeta potential measurements for quartz
from the literature are given in Figure 1 (20, 21, 22). The
quartz surface charge is generally negative across the entire
pH range shown. This will affect the type of chemical that
can be used as a surfactant as some of these chemicals also
have ions that carry a charge (cationic being positively
charged, anionic being negatively charged, etc.).

HOW SURFACTANTS WORK

Surfactants are “surface active agents.” They reduce the sur-
face tension of water, allowing it to spread over the surface
of a particle more easily, wetting the particle. Finer droplets
of water can be produced to increase the likelihood of par-
ticle-droplet contact in a spray or foam application. The use
of surfactants allows for a residual dust suppression effect
as water has no additional effect once it is evaporated (23).
Studies estimate a 50 percent reduction in water require-
ments with the improved efficiency associated with the use

Table 1. Silica as an accessory phase in common

commodities (1)

Commodity Type of Silica
Antimony Quartz

Bauxite Quartz

Beryllium Quartz

Cadmium Quartz, jasper, opal, chalcedony
Concrete Quartz

Clay Quartz

Copper Quartz

Crushed stone Quartz

Diatomite Quartz
Dimension stone Quartz

Feldspar Quartz

Fluorite Quartz

Garnet Quartz
Germanium Quartz

Gold Quartz

Gypsum Quartz

Industrial sand Quartz

Iron ore Chert, quartz

Iron oxide pigment Chert, quartz, opal
Lithium Quartz

Magnesite Quartz

Mercury Quartz

Mica Quartz

Perlite Opal, quartz
Phosphate rock Quartz, chert
Pumice Obsidian
Pyrophyllite Quartz

Sand and gravel Quartz

Selenium Quartz

Silicon Quartz

Silver Quartz, chert

Talc Quartz

Tellurium Quartz

Thallium Quartz, chert, chalcedony, opal
Titanium Quartz

Tungsten Quartz

Vanadium Quartz, opal

Zinc Quartz, chert, chalcedony, opal
Zircon Quartz

Table 2. Contact angle values of quartz from various sources

(15,16, 17, 18)

Contact Angle Source

27.8-50.3 Deng et al. (15)

35 Szyszka (16)

43 +2 Kowalczyk (17)

26.8 Janczuk and Zdziennicka (18)
26.15 Xie et al. (19)
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Figure 1. The zeta potential of quartz from various sources (20, 21, 22)

of surfactants (24, 25), resulting in considerable cost sav-
ings as well.

SURFACTANT SELECTION

Many different chemical dust suppressants have been used,
including salts, asphalt emulsions, vegetable oils, molas-
ses, synthetic polymers, mulches, and lignin products (26).
Many of these are certainly non-toxic and will do no harm
to the environment or to workers. However, as Piechota
et al. (26) describes, it is important to have a full analy-
sis of any material as some may be toxic waste products
from other industries. Health issues for workers may arise,
and soil could become contaminated. A Safety Data Sheet
should be requested for any material considered as a dust
suppressant additive/surfactant.

The next consideration is the improvement in wettabil-
ity of the dust particles with the addition of the surfactants.
According to a comprehensive review by Zhao et al. (27),
these tests can be classified as static or dynamic tests. Static
tests include contact angle measurements, liquid surface
tension tests (lower surface tension should correlate to bet-
ter wetting), capillary rise tests, liquid penetration tests, and
the simplest or most common sink test or Walker test (28).
Dynamic tests can include wind tunnel or other field tests
(27). All these tests measure the potential to wet the surface
of a dust particle. Xu et al. (29) provides a good description
and review of these and other static tests methods.

In the Walker test as illustrated in Figure 2, an air-dried
sample of the dust is placed on top of the liquid in a small
beaker or graduated cylinder, and the time to completely
wet and settle the dust is measured. Tests can be conducted
easily with different surfactants and at different surfactant
concentrations. Quicker settling times give better wettabil-
ity. Note that the water used in these experiments must be

the water used on site as the contained ions will affect the
ability for the surfactant to reduce the water’s surface ten-
sion. This test is thought to simulate the particle capture
mechanism (28) and might be used to set initial concentra-
tions for field tests of any surfactant.

Foaming agents need to be evaluated for wettability as
well as for their ability to foam in water from the site.

Going forward, wettability might not be the most
important criterion for a good surfactant. As research pro-
gresses into the surface chemistry of dust and the health
effects of ROS and, specifically, silanols on respirable crys-
talline silica, it will be important to evaluate whether these
surfactants might increase the ROS content making the
dust more toxic or reduce the ROS content making the
dust less toxic. One such project is in progress at Penn State
with Arnold as the Principal Investigator (30). Results with
several potential surfactants are given in Table 3 for quartz
collected from coals representing different coal ranks. The
hydroxyl content (10~ mol.1~1) on the surface of particles
pulverized to < 10 microns to represent respirable dust
sizes was measured using a spectrofluorometer for the bare
surface in distilled water at pH 7 and for nine different
reagents at two concentrations each. As indicated, the OH
content generally decreased in the presence of the surfac-
tants, with the addition of some of the surfactants causing
a very large drop in OH content. It can also be noted, as
stated previously, that all the quartz samples did not exhibit
the same behavior in the presence of the various surfactants,
further indicating that testing must be conducted for each
individual sample. Also, note that all surfactants did not
reduce the OH content to the same extent. The presence
of other contaminants with the quartz may have played a
role and the interaction of the chemicals with the surfaces
certainly affected the results.
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Figure 2. Dust Settling Rate Test (Walker Test)

Table 3. Effect of Surfactants on Surface OH Content for Various Quartz Samples Collected from Coal of

Various Ranks at pH 7 (30)
Coal Quartz — OH (10 mol.L™!) at pH 7
Surfactant Anthracite Quartz LVb Quartz MVb Quartz HVADb Quartz
Bare Surface 65 75 97 89
1 Dosage 1 63 14 7 9
Dosage 2 59 12 6 7
2 Dosage 1 24 60 14 12
Dosage 2 15 55 13 11
3 Dosage 1 11 21 8 12
Dosage 2 9 15 7 11
4 Dosage 1 10 20 8 8
Dosage 2 9 14 7 8
5 Dosage 1 8 31 8 10
Dosage 2 6 15 8 9
6 Dosage 1 8 10 9 8
Dosage 2 8 9 7 8
7 Dosage 1 13 14 8 7
Dosage 2 10 13 7 6
8 Dosage 1 12 17 42 47
Dosage 2 12 16 41 44
9 Dosage 1 6 7 7 10
Dosage 2 6 6 7 7

LVb is low volatile bituminous, MVDb is medium volatile bituminous, and HVADb is high volatile A

bituminous coal ranks

It should be noted that Walker tests for the quartz
samples were conducted without the addition of surfac-
tants (30). As shown in Table 4 and expectedly, the lon-
gest settling times were in deionized water (the absence of
ions) giving the full LVb is low volatile bituminous, MVb
is medium volatile bituminous, and HVAD is high volatile
A bituminous coal ranks effect of the surface charge of the
particles. In process water and simulated lung fluid, the set-
tling times decreased for the bare surfaces as the surface

Table 4. Walker Tests for Bare Quartz with Different Water

Quality (30)
Time (s)
Deionized Process Sim. Lung
Sample ‘Water ‘Water Fluid

Anthracite Quartz 126 64 35
LVb Quartz 226 84 55
MVD Quartz 219 92 64
HVADb Quartz 229 96 83
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charges would have been decreased in the presence of the
ions in these fluids. Water quality obviously plays a role
in surfactant effectiveness, showing the importance of any
surfactant testing with site water.

TECHNOLOGIES FOR SURFACTANT
APPLICATION

Water spray systems designed for dust control use two
modes of dust suppression: 1) water sprays wet the mate-
rial to prevent dust particles from becoming airborne dur-
ing the mining or mineral beneficiation process or 2) water
sprays are used to knockdown dust particles after they have
become airborne. (31). These systems use water as the
medium for dust control and may include the use of surfac-
tants added to enhance dust control efhiciency.

Surfactants are added to water at a low dosage and are
then applied to the bulk material surface to prevent air-
borne dust generation or to the area above the bulk material
to knockdown airborne particles by particle agglomeration
to return the dust particles back to the material bed. The
application devices are typically sprays, though the appli-
cation of foam or fog has been successful as well (32). As
mentioned previously, the addition of surfactants to water
can reduce the water requirement by ~50%, while the use
of a foam system with surfactants can reduce water con-
sumption to less than 1/20th of that of water alone (32).
Dry fog systems use considerably less water.

Spray velocity, nozzle orifice size, and spray location are
all considered when setting up a spray system. For dust par-
ticle knockdown, droplet-particle collision efficiency is key,
so reducing droplet size, increasing droplet frequency and
velocity, and decreasing droplet surface tension are all key
parameters for system set up (32, 33). Water sprays are used
in many locations to mitigate the production of respirable
and fugitive dust. For example, Caterpillar has developed a
new spray water truck that uses a unique water spray design
with a water delivery system specially designed to deliver
appropriate water flow onto the haul road based upon truck
speed (34).

Foam applications are directly applied to material
or sources in order to prevent the generation of airborne
dust particles because foam is generally not effective once
dust particles are airborne (35), create even finer droplets
to maximize the probability of droplet-particle collisions/
attachment (32, 33).

Fog applications can be used without surfactants but
use droplet atomization to produce droplets of sizes that
can match the ultrafine respirable dust size of even 5
microns to improve collision efficiency. These units often

use special ultrasonic nozzles (32). A benefit of the fogging
system is the creation of a widely dispersed mist. However,
one drawback is that the fine mist can be dispersed by air or
wind movement (36).

GUIDANCE FOR DEVELOPING A SILICA
DUST SUPPRESSION PLAN INCLUDING
APPLICATION OF SURFACTANTS

Combining guidance for the use of surfactants from sev-
eral resources (37, 38, 39, 40), the following steps should
be considered when developing a respirable silica dust sup-
pression plan or any dust suppression plan for that matter.

1. Determine the location(s) and timing for dust sup-
pression applications through a site survey—dur-
ing mining, processing, and stockpiling, on paved/
unpaved roadways, at transfer points, during trans-
portation, etc.

2. Anticipate potential changes in equipment and the
need to relocate any dust suppression system.

3. Address any material handling system issues; repair
any dust handling enclosures like curtains and
skirting.

4. Evaluate mechanical dust collectors as part of the
overall dust control strategy, reviewing costs.

5. Address continued housekeeping and equipment
maintenance, including work force load.

6. Work with multiple surfactant suppliers to test
your material with your water. Note that dust
samples should always be collected and sealed to
prevent any changes in surface properties prior to
testing.

7. Test multiple additives in the lab before any field
testing

8. Conduct field tests to ensure the surfactant works
under operating conditions. Consider the location
of sprays or fog and, perhaps test different applica-
tion points—directly on the dust source or bulk
material or in the air above the source, for example.

9. Select a supplier, evaluating whether they will also

provide the dust suppressant application equip-

ment in addition to the surfactant and if they will
service the equipment. Evaluate the costs.

Install and commission the dust suppression sys-

tem using reputable companies or site personnel

if available.

11. Inspect and maintain the dust suppression system.

10.

The most important part of this guidance is the need for
housekeeping and maintenance.
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SUMMARY

Of course, eliminating or reducing the production of dust
must be considered as the most effective way to reduce this
hazard according to the hierarchy of controls illustrated in
Figure 3. The use of dust suppression, especially with added
surfactants, will also work to eliminate the hazard. The most
effective surfactants will allow water to quickly wet the dust
particles to cause them to aggregate with the water droplets
and return to the bulk material. In the future, however, we
must also consider the toxicity of the particulate surfaces
as we have better understanding of the presence of ROS
on dust particle surfaces, including in respirable dust/water
droplet aggregates that can still be airborne, entering work-
ers’ lungs. Additives are being investigated to reduce the
ROS hazard (30).

Site housekeeping and maintenance, whether under-
ground or on the surface, are critical parts of any dust
suppression system whether it is for silica, coal, or other
minerals and materials. This cannot be stressed enough.

An overall plan for dust suppression should be devel-

oped by:

* Removing the hazard (through reduced dust produc-
tion, but through dust suppression and the applica-
tion of surfactants)

* Isolating people using engineering controls, chang-
ing the way people work (through automation and
removing people from the dust laden areas), and

* Using effective personal protective equipment.

Comprehensive dust suppression plans will reduce worker
exposure and reduce the incidence of silicosis and other
debilitating lung diseases.

Most
effective

Physically remove

Elimination the hazard

Replace the

Substitution sl

Isolate people from
the hazard

Change the way
people work

Protect the worker with personal
protective equipment (PPE)

Least
effective

Figure 3. Hierarchy of Controls for Reducing Workplace
Hazards (41)
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