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ABSTRACT

To reduce the number of injuries resulting from fires on
mobile, diesel-powered mine equipment, it is crucial to
promptly suppress a fire once it is detected. The focus of
this research was to determine the effectiveness of fire sup-
pression agents. Large-scale tests were conducted using five
different fire suppression systems based on: dry chemical,
wet chemical, dual agent (dry and wet chemical), carbon
dioxide, and water mist. Suppression nozzles were placed
around the diesel engine where diesel fuel, engine motor
oil, and hydraulic circulating oil spray fires were ignited.
The results of this study can help mining companies and
manufacturers by providing scientifically based data on the
capabilities of the different fire suppression systems.

INTRODUCTION

Mineworkers often face a threat from mine equipment fires
that can occur both at surface mines and in underground
mine environments that can cause injuries or fatalities. The
effectiveness of the fire suppression system installed on
mine equipment can be limited by design quality, instal-
lation practices, and the type of fire suppressant employed.
There are not any scientifically based measures available to
help mine operators effectively prevent and suppress equip-
ment fires. Most of the reportable mine fires are equip-
ment fires caused by ignitions of combustible fluids such
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as hydraulic fluid released from a hose rupture onto hot
engine surfaces. To reduce the number of equipment fires,
it is necessary to develop effective measures to limit or pre-
vent hot surface ignitions on mine equipment. To reduce
the number of fire-related injuries and fatalities, it is impor-
tant to improve the suppression techniques for the equip-
ment fires to protect the equipment operators. Although
some mine equipment include a fire suppression system,
the efficacy of the system is compromised by poor design,
ineffective installation, and fire damage to the system if not
activated in time [1].

Various fire suppressing agents can be used for a fire
suppression system such as dry chemical, wet chemical, car-
bon dioxide, water mist, and foam. Each fire suppressing
agent has a different degree of effectiveness, depending on
the type of fuel involved in the fire and fire conditions such
as location, amount of fuel available, and ventilation sur-
rounding the fire. The major fire-extinguishing mechanisms
include cooling, separation or removal of fuel, dilution of
oxygen, and breaking combustion chain reaction. Every fire
suppressing agent acts on one or more mechanisms. Dry
chemical fire suppressing agents generally consist of a chem-
ical powder mixture that is electrically non-conductive.
Dry chemical extinguishing systems are primarily suited
for surface fires but are not effective on deep-seated fires.
Wet chemical fire suppressing agents consist of a mixture of
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organic and inorganic salts in solution and were originally
designed for cooking-oil fires. These agents can develop a
temporary foam layer on the surface of a flammable liquid
that permits the liquid to cool below the ignition tempera-
ture and prevents air from coming in contact with the lig-
uid. Carbon-dioxide fire suppressing systems have been in
use for many years and are used for the extinguishment of
flammable liquids, gas fires, and fires involving electrically
energized equipment. They extinguish fire by taking away
oxygen but have a limited cooling effect. In this study, five
fire-suppressant agents were tested to suppress three differ-
ent types of fluid spray fires on diesel mobile equipment.
The primary goal was to evaluate fire suppression effective-
ness and they were not tested to evaluate environmental or

health impacts.

EXPERIMENTAL APPROACH

Evaluating the effectiveness of fire suppression systems
using a spray fire caused by different flammable liquids such
as diesel fuel, motor oil, and hydraulic oil on a diesel engine
requires a test facility to conduct the tests. A steel shipping
container was modified to be used as a fire suppression test
facility at the National Institute for Occupational Safety
and Health (NIOSH) research center located in Pittsburgh,
Pennsylvania. The dimensions of the shipping container,
shown in Figure 1, are 40 ft (12.2 m) in length, 8 ft (2.4 m)
in width, and 9.5 ft (2.9 m) in height. Steel plates were
placed over the top of the wood floor inside the shipping
container to prevent the floor from catching fire during a
test. To control the ventilation, a 1-hp 42-inch (1.07-m)
diameter variable speed fan was installed at one end of the
shipping container, while the other end of the container
was left open. The fan can be adjusted up to 500 ft/min
(2.54 m/sec).

To measure the gases produced during the diesel engine
fire tests, an infrared gas analyzer located in the control

room is used to measure the carbon monoxide (CO), rang-
ing from 0 to 5,000 ppm, carbon dioxide (CO,) rang-
ing from 0 to 1 percent, and oxygen (O,), ranging from
0 to 25 percent. The output voltage from the infrared gas
analyzer is converted using a software package to store the
data on a laptop and display it graphically in real-time.
Thermocouples are used to measure the gas temperatures at
the exit section of the container. A diesel engine block with
dimensions of 53-inch (1.35-m) length, 23-inch (0.58-m)
width, and 36-inch (0.91-m) height was mounted onto a
steel frame with casters on it to have the ability to roll it
into the correct location for the test.

Five different fire suppression systems were evaluated
with the following suppressants/agents: namely, dry chemi-
cal, wet chemical, dual agent (dry and wet chemicals), water
mist, and carbon dioxide. The dry chemical agent chemical
makeup is monoammonium phosphate and ammonium
sulfate used for Class A, B, and C fires. It displaces the oxy-
gen content of the air around the fire and absorbs heat.
The wet chemical agent is a unique blend of organic and
inorganic salts coupled with surface active ingredients to
provide cooling and oxygen displacement. The dual agent
is a combination of the two systems, dry and wet chemicals,
used independently at the same time. The water mist sup-
pressant uses high-pressure water to create mist, to provide
cooling and oxygen displacement. The carbon dioxide sup-
pressant is used for Class B and C fires by displacing oxygen
from the fire.

Liquid spray fires using diesel fuel, engine oil, and
hydraulic fluid were used in the suppression tests. The
delivery system for the diesel fuel, motor, and hydraulic oils
is set up by using a compressed air cylinder with a regu-
lator on it to control the pressure and is connected to a
1-gal (3.8-]) stainless-steel cylinder filled with any fuel type
delivered by Y-inch stainless-steel tubing to the fuel nozzle.
The output of the stainless-steel cylinder is fitted with a

Figure 1. Steel shipping container (a) outside and (b) inside, modified to be used as a fire suppression test facility
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1/4-inch stainless-steel tubing. To generate a stable spray
fire, the oil pressure and temperature need to reach certain
threshold values. An electric heating strip is placed around
the cylinder to increase the oil temperature and lower the
viscosity when using the motor and hydraulic oils.

Two suppression nozzles are used for each suppression
test except for the dual agent system due to the dual agent
system requiring two nozzles for each side of the engine
block. For each single-agent system, we have one nozzle
on each side of the engine block facing the engine side at
a 45-degrees upward configuration at 16-inch (0.41-m)
from the floor. For the dual agent the nozzle with the wet
chemical nozzle is placed facing the fire source while the
dry chemical is facing the engine block. Then for consis-
tency the dry chemical nozzle and the wet chemical nozzle
are reversed.

The Fire Suppression Facility is equipped with two video
cameras to record each test. The first camera is mounted in
the center of the roof above the fan 7ft (2.13 m) from the
floor to give a frontal view of the diesel engine during the
test. The second video camera is placed on the left side of
the Fire Suppression Facility on the side wall near the roof
on the exit section, facing the Fire Suppression Facility to
record the back end of the diesel engine. The video feed is
recorded on a video recorder in the control room. The two
video files are stored in an accessible network drive.

The schematic of all the components involved in the
experiment are shown in Figure 2.

EXPERIMENT

The mocked-up diesel engine is placed 12 ft (3.66 m) from
the fan and in the center of the Fire Suppression Facility,
while the other end of the Fire Suppression Facility is open
to the atmosphere, referred to as exit section. Prior to start-
ing the test, the fan is set to an airflow of roughly 145 fpm
(0.74 m/s) at the exit section. The airflow is measured in
front of the diesel engine using a vane anemometer trans-
verse method. Once the fan is set at the proper airflow, no
adjustment is made to the fan. The data acquisition is turned
on for 30 seconds prior to starting the test to record all the
baseline data parameters. Once the baseline parameters are
recorded, the fuel spray system is turned on, and as the fuel
is spraying out of the nozzle, the fuel is ignited by using a
propane burner. The spray fire nozzle used is a PJ20 [2] to
atomize the fuel which is located 3 inches (0.08 m) centered
in front of the diesel engine and 14 inches (0.36 m) off the
floor as shown in Figure 3. Because this experiment was
designed to test the effectiveness of the suppressing agent,
the research did not investigate nozzle type or location as
part of optimization for fire suppression. This procedure
is repeated for the motor and the hydraulic oils except the
heating strip is wrapped around the cylinder to lower the
viscosity.

The spray fire is allowed to burn until the CO and CO,
gas concentrations stabilize, in about 60 seconds or less,
before initiating the fire suppression system. In this exam-
ple, a wet chemical fire suppressant agent is being used. The
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Figure 2. Schematic of components involved in the experiment
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wet chemical suppressant agent is manually initiated from
outside the Fire Suppression Facility to see if it will suppress
the fire. After the fire suppression agent is emptied out from
the cylinder, in about 45 seconds, if the fire is suppressed
the fuel will continue to spray for another 20 seconds to
see if the fire will reignite. If the fire does not ignite, then
the fuel spray system is turned off. This will be a positive
test due to the fire being suppressed. If the fire suppression
system does not extinguish the fire, the diesel fuel disper-
sal system will be turned off, and this will be considered a
negative test. The Fire Suppression Facility’s water sprinkler
suppression system is turned on until the fire is out.

The Fire Suppression Facility is equipped with a 6-point
gas monitoring array at the exit section to measure the gas
components produced from the fuel fire. The array is made
of V2-in diameter PVC pipe positioned at the center of the
Fire Suppression Facility. A total of six 1/8-in holes are
drilled into the vertical section of the PVC pipe to sample
the gases. The sample holes are spaced vertically from the
floor at 53 inches (134.6 cm), 72 inches (182.9 cm), and
94 inches (238.8 cm). A V-inch tube is connected to the
two PVC pipes that lead back to the control room to a set
of infrared gas analyzers where the mixed gas is analyzed.
The gas analyzer measures CO, CO,, and O, gas concen-
trations. The gas data is collected every 2 seconds and is

recorded by a computer-based data acquisition system. The
raw data is further analyzed to calculate gas concentrations.

A 6-point thermocouple array is also located at the exit
section of the Fire Suppression Facility to measure the gas
temperature at the six monitoring points three on the left
and three on the right side. The thermocouples are attached
to two Y2-inch diameter PVC pipes, vertically oriented from
the floor to the roof, at 53 inches (134.6 cm), 72 inches
(182.9 cm), and 94 inches (238.8 cm) above floor level.
The gas data temperature is recorded in the control room
onto the data acquisition system. All the gas concentrations
and temperature data are processed and stored in an Excel
file for further analysis.

The method for calculating the Heat Release Rate
(HRR) is based on the CO, and CO generation rates from
the spray combustion. With this method, the HRR is cal-
culated from measured data of gas concentrations of CO
and CO, and measured gas velocity [3].

The HRR calculation using the CO and CO, genera-
tion rates measured at the exit section of the shipping con-
tainer is expressed as:

He .
Yo

Qa <k(:02

where Q, is the actual HRR, kW; H is the total heat of
combustion of the fuel, kJ/g, and can be determined from
the approximate analysis of the fuel; Hoq is the heat of
combustion of CO, 10.1 kJ/g; kg, is the stoichiometric
mass of CO, produced per unit mass of the fuel; kg is the
stoichiometric mass of CO produced per unit mass of the
fuel; m¢q is the production rate of CO, from the fire, g/s;
and mcq is the production rate of CO from the fire, g/s;
kcos and kg are the fuel-dependent constants and can be
calculated based on the experimental results from Egan [4]
for diesel fuel:

For combustion of a fuel within a mine entry, the CO
and CO, generation rates can be determined from their
bulk-average concentrations downstream of the fire by the
expressions:

He— kcoHco> .
Mco,
Cco

co, — VAcoz Coz

m., = VA_,CO

where V is the exit average air velocity, m/s; A is the entry
cross-section area, m?%; rc(y, is the density of CO,; rog is
the density of CO; DCO, is CO, produced in the fire,
ppm; and DCO is CO produced in the fire, ppm. Using
the CO, density of 1.97 kg/m? and CO density of 1.25 kg/

m?, the expressions become:
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e, = 1.97 X 10 °VACO,

mg, = 1.25 X 10 °VACO

RESULTS AND DISCUSSION

Figure 4 depicts the estimated HRR of a typical positive
suppression test. The onset of the spray fire is marked with
a small red circle. A few seconds after that, the HRR starts
growing which is based on the result of CO and CO, gas
concentrations measured at the gas analyzer. The delay is
the result of the travel time of the CO and CO, gasses.
It takes approximately 60 seconds for the fire to stabilize
which can be seen from the HRR curve leveling off. At
this time, the fire suppression system is engaged and sup-
pression is initiated which is indicated by a rapid drop of
the fire HRR as the result of diminishing the fire output,
CO, and CO2 gasses. This is the result of a positive fire
suppression test. In addition to interpreting the collected
data and calculating the HRR, the fire suppression test is
visually verified on the recorded video.

Figure 5 shows the evolution of the fire HRR for a
typical negative suppression test. After the suppression
system initiated, a temporary drop in the HRR curve can
be seen which can be attributed to a partial suppression of
fire. However, since the fire is not fully extinguished after
the suppressant is depleted, the fire starts growing as indi-
cated by the increase in the HRR around 120 seconds into
the test.

Typical gas temperature patterns during positive and
negative suppression tests are shown in Figures 6 and 7,
respectively. The gas temperature at the installed tempera-
ture points are also identified in the figure corresponding to
their distance from the floor in inches and the correspond-
ing airflow rate in Feet Per Minute (FMP). Similar to the
evolution of the fire HRR, in a typical positive suppression
test the gas temperature increases until the fire suppression
is initiated. Once the suppression is initiated, the gas tem-
perature drops to the pre-fire condition. A typical negative
suppression test shows an increase in the gas temperature.
Once the suppression is initiated, the gas temperature
decreases temporarily until the suppressant is depleted.
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Figure 4. Fire size, HRR, evolution during a typical positive suppression test
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Figure 7. Typical gas temperature pattern during a negative suppression test

After that, the gas temperature starts increasing which indi-
cates the fire is not extinguished.

All the suppression tests were tabulated. Table 1 sum-
marizes the results of the overall suppression effectiveness.
The effectiveness is determined as the ratio of the number
of positive tests to the total number of tests for each sup-
pression system. Note that the dual agent row accounts for
two sets of experiments where the nozzles used to release
the dry and wet agents were interchanged. The results sug-
gest that the suppression systems using CO, or wet chemi-
cal agents achieve the least effectiveness, 17%, and zero,
respectively. However, the systems using dry chemical alone
or dry chemical together with wet chemical provided the
highest success rate 100% and 92%, respectively. The water
mist-based system has about an average success rate of 67%.

Table 2, Table 3, and Table 4 summarize the fire sup-
pression results for each fuel type separately to understand
the effect of fuel type on the effectiveness of fire suppres-
sion. In order to determine if there is a statistically signifi-
cant relationship between the fire suppression agents and
whether or not the fire was suppressed, the Fisher’s Exact
Test was applied to each table [5]. The application of the
Fisher’s Test to the suppression results for the diesel fuel and
hydraulic fluid shown in Table 2 and Table 4 lead to p-val-
ues of 0.11 and 0.09, respectively. This indicates that there

is no statistically significant relationship between the sup-
pression agents in extinguishing the diesel fuel or hydraulic
fluid spray fires, although the sample size is small and with
a larger sample size statistically significant results may be
achieved. However, the application of the Fisher’s Exact

Table 1. Overall suppression effectiveness results.

Suppressant  Count of not  Countof  Effectiveness,
Agent Suppressed  Suppressed %

CcoO, 5 1 17

Dry chemical 0 6 100
Dual agent 1 11 92
Water mist 2 4 67

Wet chemical 6 0 0

Table 2. Overall suppression effectiveness results for diesel

fuel

Count

Suppressant of not Countof  Effectiveness,
Agent Suppressed  Suppressed %

CO, 1 1 50

Dry chemical 0 2 100
Dual agent 0 4 100
Water mist 0 2 100

Wet chemical 2 0 0
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Table 3. Overall suppression effectiveness results for motor

oil
Count

Suppressant of not Count of  Effectiveness,
Agent Suppressed  Suppressed %

CO, 2 0 0

Dry chemical 0 2 100
Dual agent 0 4 100
‘Water mist 2 0 0

Wet chemical 2 0 0

Table 4. Overall suppression effectiveness results for

hydraulic fluid

Count

Suppressant of not Countof  Effectiveness,
Agent Suppressed  Suppressed %

CO, 2 0 0

Dry chemical 0 2 100
Dual agent 1 3 75
Water mist 0 2 100

Wet chemical 2 0 0

Test to the suppression results for the motor oil shown in
Table 3 leads to a p-value of 0.009 which indicates that
there is a statically significant relationship between the sup-
pression agents in suppressing the motor oil spray fire. The
suppression agents dry chemical and dual agent were bet-
ter at suppressing motor oil fires than were CO, and water
mist.

CONCLUSIONS

The focus of this research was to determine the effectiveness
of five different fire suppressant agents to extinguish a fire
on mining mobile equipment caused by a spray fires of die-
sel fuel, engine motor oil, and hydraulic circulating oil. The
following conclusions can be drawn from the results of the
fire suppression tests presented in this paper. The test results
suggest that the dry chemical-based system, including the
dual-agent system provide the best suppression effective-
ness for the conditions tested. The test results revealed that
there was no significant relationship between different sup-
pression agents in extinguishing the spray fires caused by
diesel fuel or hydraulic fluid except in the case of motor oil
spray fire where the relationship was statistically significant.

These results are only applicable to the studied test con-
ditions which is based on the fire not being 75% or more
enclosed. However, it is expected that the fire suppressing
agents will perform better under total system flooding con-
ditions where the fire is 75% or more enclosed.

LIMITATIONS

The results of evaluating the five different suppression sys-
tems used in this experimental research reflect scientific
data on fire suppression agent effectiveness under specific
conditions. No testing was conducted to evaluate any
health or environmental impacts of any of the agents used.
Furthermore, the research employed one nozzle design at
fixed locations for all tests and hence did not explore system
installation or optimization. The conclusions drawn from
this study speak to the performance of the limited number
of agents tested and should not be construed as an endorse-
ment nor a recommendation for use in similar scenarios.

DISCLAIMER

The findings and conclusions in this report are those of
the author(s) and do not necessarily represent the official
position of the National Institute for Occupational Safety
and Health, Centers for Disease Control and Prevention.
Mention of any company or product does not constitute an

endorsement by NIOSH.
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