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Abstract

Exposure science is fundamental to the field of occupational safety and health. The

measurement of worker exposures to hazardous agents informs effective workplace

risk mitigation strategies. The modern era of occupational exposure measurement

began with the invention of the personal sampling device, which is still widely used

today in the practice of occupational hygiene. Newer direct‐reading sensor devices

are incorporating recent advances in transducers, nanomaterials, electronics minia-

turization, portability, batteries with high‐power density, wireless communication,

energy‐efficient microprocessing, and display technology to usher in a new era in

exposure science. Commercial applications of new sensor technologies have led to a

variety of health and lifestyle management devices for everyday life. These appli-

cations are also being investigated as tools to measure occupational and environ-

mental exposures. As the next‐generation placeable, wearable, and implantable

sensor technologies move from the research laboratory to the workplace, their role

in the future of work will be of increasing importance to employers, workers, and

occupational safety and health researchers and practitioners. This commentary

discusses some of the benefits and challenges of placeable, wearable, and

implantable sensor technologies in the future of work.
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1 | INTRODUCTION

Exposure science is fundamental to the field of occupational safety and

health. The measurement of worker exposures to hazardous agents in-

forms effective workplace risk mitigation strategies.1 Beginning in the

mid‐1930s, occupational exposure science was based on a two‐step

strategy—collecting air samples from the work environment followed by

laboratory analysis using standardized methods.1–3 In 1960, the personal

sampler was invented, and it demonstrated that area sampling can un-

derestimate worker exposures.4,5 Since then, personal sampling has be-

come accepted practice in occupational hygiene.1

While advancing the accuracy of occupational exposure science,

personal sampling is still dependent on subsequent laboratory ana-

lysis for actionable results.6 Slow turnaround between sample

collection and laboratory analysis can stymie implementation of

timely workplace risk mitigation strategies. Recognition of the need

to detect hazardous exposures in time to rapidly mitigate harmful

effects has led to the research and development of “direct‐reading”

devices that can sense the presence of a toxic agent, collect a sample,

analyze the sample on an intermittent or continuous basis, and even

display the analytical results in “real‐time,” or at the end of a shift, to

the individual who can then mitigate the exposure.6,7

Among early direct‐reading devices were the pocket radiation

dosimeter patented in 19358 and the noise dosimeter first patented

in the 1950s and miniaturized in the 1970s.9 These early direct‐

reading sensors have since been joined by a number of field‐portable,

real‐time sensor devices like gas and vapor monitors10; real‐time

aerosol monitors11; X‐ray fluorescence detectors for metals12; and
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immunochemical assay kits for methamphetamines, microorganisms,

and other kinds of immunologically active contaminants.6

Newer direct‐reading sensor devices are incorporating recent

advances in electrochemical, optical or mechanical transducers, na-

nomaterials, electronics miniaturization, portability, batteries with

high‐power density, wireless communication, energy‐efficient mi-

croprocessing, and display technology.13–16 Commercial applications

of new sensor technologies have led to a variety of health and life-

style management devices for everyday life. These digital health

technology tools like fitness trackers, smartwatches, and smart-

phones function as real‐time monitors of various physiological and

disease‐related signals.17,18 These technologies have led to advances

in connected health19,20; telemedicine21,22; sports analytics13,23;

ambient intelligence24; and workplace “physiolytics.”25,26

As advanced sensor technologies are commercialized for con-

sumer use, they are also being investigated as new occupational and

environmental exposure science tools.27–30 As next‐generation ex-

posure assessment tools, a new generation of sensor technologies

can be outward or inward looking.31 Detecting harmful chemical,

physical, or biologic agents in the work environment to which a

worker may be exposed are examples of sensors that look outward

from the worker, that is, environmental sensors.31 Detecting a

worker's location, movement or proximity to a hazard, physical lo-

cation sensors, or sensing a worker's physiological state, are examples

of sensors that look inward to the worker to assess the effects ex-

posure to hazardous agents may cause, that is, biosensors.31

Recognizing a role in the present and in the future of work for

these types of sensor technologies to assess worker exposures, the

National Institute for Occupational Safety and Health (NIOSH) es-

tablished a Center of Excellence for Direct Reading Sensor Technologies

in 2014. The Center conducts and coordinates basic and applied

research, develops evidence‐based recommendations, and engages

the occupational safety and health community in the new field of

emerging direct‐reading sensor technologies for the workplace.32

Newer sensor technologies have the potential to greatly accel-

erate advances in occupational exposure science. Innovative strate-

gies using commercialized consumer sensor technologies are being

investigated and introduced into the workplace. As next‐generation

placeable, wearable and implantable sensor technologies move from

the research laboratory to the commercial market, and are then in-

troduced into the workplace, their role in the future of work will be of

increasing importance to employers, workers, and occupational

safety and health researchers and practitioners. This commentary

discusses the benefits and challenges of some placeable, wearable

and implantable sensor technologies in the future of work.

2 | SENSOR TAXONOMY

Existing and newer sensor technologies can be categorized into three

broad categories—placeable, wearable, and implantable devices. Placeable

sensor devices can be placed in and around the workplace to collect

information from the ambient work environment (placeables). The vast

majority of wearable sensors in current use can be attached to a worker's

clothing, head, arms or wrists, upper/lower body, or feet,15 worn as

computer‐display eyeglasses,33 or contact lenses,34 or placed in the ear

canal35 (attached or portable wearables). Two other types of attached

wearables are beginning to move along the research to workplace ap-

plication pathway. These are sensors that are woven into textiles that can

be worn by a worker as clothing36 (electronic textile wearables) and sensors

incorporated in thin “skin‐like” films or tattoos that can be applied directly

to the epidermis37–39 (electronic epidermal wearables). The third variety of

new sensors are implantable sensors that can be inserted into the skin via

microneedles,14,40 microchips,41 or can be ingestible42,43 (implantables).

3 | PLACEABLE SENSORS

Placeable sensors are the most commercially developed for use in the

workplace and have a long history. For several years, sensors have

been placed around a workplace to detect worker occupancy,

movement within the workplace, and a variety of atmospheric fac-

tors.15 New opportunities and applications for placeable sensors in-

volve networks of multiple sensor nodes distributed around a

workplace that can measure the same or several different hazards. As

a new occupational exposure assessment strategy, wireless area

sensor networks can overcome the low sample size limitations of

personal sampling by monitoring multiple analytes in real‐time,44 be

more cost‐effective than personal sampling methods,45 and can

characterize the distribution of hazards with a high degree of spa-

tiotemporal resolution.44,46 The challenge facing wireless placeable

sensor networks continuously collecting information from many

micro‐sensor nodes is how to efficiently process the information

coming from each node into timely, actionable information.47,48 The

newest application of wireless area sensor networks is the wireless

body sensor network using wearable instead of placeable sensors.49

4 | WEARABLE SENSORS

4.1 | Attached wearable sensors

Sensors are a part of a larger world of industrial wearable technologies

that hold promise as new tools to enhance safety and health at work.50

Of the types of wearable sensors, sensors that can be attached or linked

to the worker are the most prevalent in work settings today. Designed

with “wear‐and‐forget” functionality,36,51 attached wearables can be

worn on or over clothing such as vests52; attached to safety helmets53,54;

incorporated into footwear55; worn as smart eyeglasses33 or contact

lenses34; or placed in the external auditory canal.35 Optimizing the loca-

tion of attached wearables depends on the sensor's monitoring purpose,

need for interaction between the sensor controls and the worker, display

reachability, weight, and worker acceptance.51

Wearable sensor technologies are not without risk. Among the

physical hazards presented by wearable technologies are the fol-

lowing: (1) dermal irritation if exposure to the chemicals contained in
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device occurs; (2) chemical burns if a battery leaks a reactive material;

(3) thermal burns if a wearable battery suddenly discharges its stored

energy; or (4) auditory damage if an implanted audio device mal-

functions or “plays” a signal from another source.56 A fire hazard may

occur if the electrical equipment embedded in wearable technologies

becomes a source of ignition in a hazardous location, for example, a

Class I explosive environment.57 In addition to risks inherent to

sensors, several barriers to adoption of sensor technologies have

been identified among safety professionals—sensor durability, good

manufacturing practices, the cost‐benefit ratio for implementation,

concerns about worker acceptance, and employer and worker con-

formance with a sensor's intended use.58

4.2 | Construction

Applications of attached wearable sensing technologies have the

potential to reduce injuries and illnesses arising from the most pre-

valent hazards found in the construction industry.59 For example,

proximity detection and location tracking can prevent caught‐by,

struck‐by, electrocution, and confined space incidents.59 Environ-

mental sensing of ambient conditions and workers’ physiological re-

sponses can prevent exposure to fire, explosions, vibration, heat,

cold, toxic gases, and other chemical and physical stressors.60

Existing research into the role of wearable sensing technologies in

construction have focused on how sensors can aid in detecting and

monitoring the risk factors that lead to work‐related musculoskeletal

disorders (WMSDs), falls from elevations, and physical fatigue.60 Attached

wearable sensors with capabilities to monitor a worker's physical loads

and kinematic parameters can reduce the risk of awkward postures and

excessive physical loads leading to WMSDs from manual materials

handling tasks.61,62 Proximity sensors63 and fall detection sensors to alert

emergency response that a fall has occurred64 have been used to aug-

ment standard fall protection measures like safety harnesses. Models

using minimally intrusive sensors for detecting and monitoring whole‐

body fatigue in physically demanding occupations have shown promise in

initial research studies.65,66 In addition to specific sensor applications, the

construction worksite is also being envisioned as an “sensored”workplace

where tools, equipment, and personnel are linked together in a multi‐

sensor network to augment overall construction site safety

management.63,67

4.3 | Confined spaces

Attached wearable sensor technologies can optimize work in dan-

gerous environments like confined spaces where asphyxiation from

inert or toxic gases, fire or explosion can occur while a worker is

within an Occupational Safety and Health Administration (OSHA)

permit‐required confined space.68 To protect confined space work-

ers, a suite of wearable sensors is needed.

A confined space monitoring system was developed and utilized for

monitoring workers in OSHA‐defined confined spaces during an aircraft

maintenance case study69 The goal of the case study was to improve

both work efficiency and worker safety by addressing challenges asso-

ciated with existing remote worker monitoring systems. These challenges

are as follows: (1) determining if a worker is incapacitated; (2) locating a

worker inside an aircraft's confined space; (3) sampling atmospheric

composition; and (4) monitoring worker activity by means of a stream-

lined data acquisition system.69 The confined space monitoring system

was composed of commercial wearable sensors, algorithms operating in a

central expert system, and a customized interface design focused on the

augmentation of operator decision making.69 In this case study, a single

controller monitored various sensors that reported workers’ respiration

and heart rates, workers’ location, and environmental gas conditions. The

objective was to identify and respond to emergency situations more

quickly than in traditional approaches where an attendant outside of the

confined space communicates verbally with the confined space worker.

While implementation of this confined space monitoring system led to

increases in productivity and worker perception of safety, the case study

authors acknowledge that the proposed system would not be able to

prevent incidents such as entrapment or blunt force trauma.69

While these types of sensor implementation case studies show

promise, the challenges associated with monitoring and transmission

of physiological, location, and atmospheric gas measurement data

remain to be overcome.70 Once proved operational, these wearable

sensor technologies can greatly enhance the safety profile of many

dangerous environments into which workers must enter.

4.4 | Mining

Existing commercial wearable sensors are being adapted for use

in the above ground and underground mining environment. En-

hancing situational awareness in the mining environment where

miners and machines work in proximity to each other can be ai-

ded by wearable proximity sensors mounted on a safety helmet

and connected by wireless networks.71 Utilization of a combi-

nation of a safety vest and a smart helmet equipped with location

and proximity sensors, air contaminant sensors for mine dusts,

methane and carbon monoxide, smart eyewear, and a smart

watch can serves an integrated wearable exposure assessment

and management system to enhance mine safety.72 A wearable

dust assessment sensor developed by NIOSH in consultation with

labor and industry provides direct reading, real‐time information

about the level of respirable coal dust exposure near the coal

miner. The continuous personal dust monitor (CPDM) can em-

power miners to take corrective action like increasing ventilation

or repositioning to locations with less dust when the CPDM

displays hazardous levels.73

4.5 | Advanced manufacturing

Human workers are now sharing the same workspace with ro-

botic devices. These robots can be considered an extension of the
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worker and can also function as extremely sophisticated sensing

systems. These new emerging robotic systems are known as

collaborative robots or “cobots.” One type of cobot, the colla-

borative mobile manipulator, operates alongside human workers

in some advanced manufacturing settings.74 The safe operation

of a mobile manipulator depends on “communication” between

the human worker and the cobot. Wearable sensors attached to

the human worker that track body location and movement and

visual fields can be a means to ensure the safety of human‐cobot

interaction.75

4.6 | Electronic textile wearables

Wearable textile sensors represent a convergence of material

science and electronics which makes possible the embedding

of electronic circuitry within textiles to create a new class of

textiles called smart textiles, intelligent textiles, or electronic or

e‐textiles.76,77 Smart function can be integrated into fabric to

produce an e‐textile in three ways. The invention of the con-

ductive polymer in 1977 made possible integration of functio-

nalized yarns (metallic wires or metalized textile yarns) into textile

architecture.78 Second, traditional weaving and knitting fabrica-

tion processes can be used and result in an e‐textile fabric that is

lighter weight, denser integration of electronic and optional

functionalities, and more deformation resistant.76 Third, smart

capabilities can be added post‐fabrication through embroidery,

printing, gluing, or lamination.79

The types of embedded sensors integrated into e‐textiles can

include those sensing changes in the ambient environment, like

clothing integrated with gas sensors80 or those measuring human

internal chemical parameters.81 Electrochemical sensors integrated

into e‐textiles made from conductive polymers that exhibit both the

mechanical properties of polymers and the electrical conductivity of

semiconductors have potential application not only in medicine and

sports, but also in occupational safety and health.36 Electrochemical

sensors in e‐textiles can be used to sample human perspiration non‐

invasively and on a continuous basis.36

Research‐to‐date indicates that textile chemical sensors can be

used to sample for pH (measure of acid/base balance), various elec-

trolyte ions such as sodium (Na+), potassium (K+), chloride (Cl−) and

ammonium (NH4
+), glucose and lactate, as biomarkers of health.36

Active or reactive textiles may not only have sensing capabilities, but

they may also be engineered to provide therapeutic interventions for

the wearer. Examples of such interventions include mechanical

pressure, heating, cooling, or electrical stimuli.82

While e‐textiles are a promising type of wearable sensor tech-

nology, there are many technical challenges to their commercial or

workplace application. These challenges include analytical require-

ments, power supply, data acquisition and processing, communica-

tion, and maintaining the functionality of epidermal materials during

use in relevant environments.83 Despite these challenges, e‐textiles

may soon play a role in the future of work.84

4.7 | Electronic epidermal wearables

Interest in devices that can sample physiological processes directly

through contact with the epidermis date from the birth of en-

cephalography in 1929.85 In the last decade, a new class of sensor

technology—epidermal electronic systems—are being investigated to

measure electrophysiological activity produced by the heart, brain,

and skeletal muscles.39 Ultra‐thin, “skin‐like” membranes, with

tattoo‐like conformability and stretchability without actual trans-

dermal ink injection, provide the structural foundation for sensor

electrodes, power supply, and communication components that can

non‐invasively collect physiological information from within the body

through the epidermis.86 A whole class of tattoo‐based wearable

electrochemical devices are broadening the concept of epidermal

chemical sensing.37 Epidermal wearable sensors are now being in-

vestigated to measure pH, various electrolytes, and other metabolites

on or under the skin physically, chemically, or electrochemically as

point‐of‐care applications.87

Going deeper into the skin via microneedles, transdermal skin

sensors were first used commercially for drug and vaccine delivery.40

The most widely used transdermal sensor technology in use today is

the continuous transdermal glucose monitor.88 Leveraging more than

three decades of advances in enzyme electrodes found in simple and

ultra‐low‐cost finger‐prick glucose test strips, commercialization of

the continuous glucose monitoring is the model for all epidermal and

transdermal wearable sensors, that is, to measure the continuous

status of an important internal biomarker.89 Advances in transdermal

microneedles expand the scope of electronic epidermal wearables.

Gaining access below the epidermis, transdermal devices can sample

the interstitial fluid space.38,90 Although primarily a subject of current

clinical research interest, electronic epidermal and transdermal

wearables may have a role in detecting biomarkers of occupational

exposure and disease in the future of work.

Electronic epidermal wearables are advanced enough to facilitate

physiologic monitoring of heart rate, respiration, core body tem-

perature, body water loss, and estimation of thermal load to identify

developing heat stress. Workers exposed to hot environments who

are engaged in strenuous physical activities such as agriculture,

construction, mining, and firefighting work can be at higher risk of

heat stress. These and other types of workers may benefit from the

advantages electronic epidermal wearables have to offer.

5 | IMPLANTABLE SENSORS

Wearable sensors—attached, electronic textiles or epidermal—are

promising new exposure science tools, but the distance between a

target physiological process being monitored and the sensor device

can weaken signal transmission. Sensors implanted closer to the

monitoring target within the human body can provide more accurate

measurements.91 Implantable devices like cardiac pacemakers and

defibrillators have been in medical use since the 1960s and can both

sense and act on physiological signals occurring within the body.43

6 | HOWARD ET AL.



Newer implantable wireless sensor technologies include transdermal

microneedles for glucose monitoring14; orthopedic prosthetics to

measure strain and force data91,92; and microchips to monitor tissue

oxygen levels.93 When technical challenges can be addressed related

to sensor power supply and wireless communication capabilities,

together with regulatory requirements of the US Food and Drug

Administration for medical devices implanted in the human body,94

the ability of implantables to detect and quantify a wide range of

physiological events within the body in real‐time may have further

application in clinical diagnosis and in the future of work.

The ingestible sensor has the greatest likelihood of moving from

research into clinical and workplace applications. For example, as a

clinical tool, an ingestible sensor can gather images of the gut lumen,

sample enzymes, metabolites, hormones, and the microbiome.42 As

an occupational tool, an ingestible sensor can monitor core tem-

perature for workers at risk of heat stress. Agricultural workers,95

exercise enthusiasts,96 athletes,97 astronauts,98,99 deep underground

miners,100 and others at risk of hazardous thermal stress could

benefit from continuous core body temperature monitoring by means

of a wireless ingestible sensor.101 As with other advanced sensor

technologies, ingestible sensors have limitations. Ingestible thermo-

meters for measurements of core temperature would have to be

ingested several hours before use and can function only until the

device passes out of the lower gastrointestinal tract.102 Ingesting

sensors to determine intestinal temperature could be considered by

workers as an invasive medical procedure, raising ethical and legal

issues.

6 | NEWER SENSORS AND THE WORKER

As an exposure science tool, newer sensors exhibit an increased level

of intrusiveness for workers that increases along a continuum from

placeable sensors, through attached wearables like e‐textiles, epi-

dermal, and transdermal wearables, to implantable sensors. Worker

acceptance is a critical factor in adoption of advanced sensors in the

future of work. Placeables, wearables, and implantables may enhance

organization performance, workplace safety, and the health and well‐

being of workers, but they may also be viewed as a form of coercive

employer surveillance.103

Wearable sensors present a set of common concerns to workers.

The quality, comfort, and ease of use of sensor technologies are

important acceptance factors for workers engaged in physically de-

manding work.104 The perceived performance of a sensor to increase

safety in the workplace is a strong predictor of worker acceptance.105

Sensors that can detect workers’ proximity to workplace hazards like

energized electrical hazards, toxic gases, and fire/smoke are viewed

as critical safety functions having mutual value to both workers and

management.106

Workplace acceptance is also linked to concerns about the use of

data collected by wearable sensors by the employer, but sometimes

for unexpected reasons. In a recent survey, construction workers

rated environmental sensor functions as having greater impact on

worker safety and health than wearable sensors sampling physiolo-

gical outputs but were more open to sharing physiological data than

environmental data.106 This was so because physiological sensors do

not track a worker's location as environmental sensors do.106

In another large study of construction workers, workers were

found to accept utilizing the data collected from a wearable sensor if

that data could identify a worker's personal health risks or promote a

fellow worker's occupational safety.107 Even though some con-

struction worker surveys have shown that workers are not open to

sharing data derived from sensors,108 a more recent survey shows

that a majority of workers surveyed—especially those who have more

experience with wearable sensors—are willing to share output data

with their employer.106

Wearable sensor technologies like other devices in the larger

world of Internet‐of‐Things (IoT) devices pose security and

privacy challenges that will require new cybersecurity solutions.

Sensors can now sense data with more accuracy, process it by

themselves, and send it to the neighboring node within a network

or send it to a central hub. However, robust and reliable cyber-

security mechanisms are not yet been fully developed for these

sensors due to their limited energy and computation power.109

Encrypted security solutions need to be explored to lessen the

security risks associated with unsecured data transmission for the

entire class of new sensor technologies.110

Acceptance of environmental and physiological sensors by

workers depends on how well employers and occupational safety and

health professionals partner with workers to introduce fully trans-

parent sensor‐technology‐based programs.111 To ensure successful

adoption of sensor technologies in the workplace of the future, best

practice recommendations include: (1) making participation in sensor

monitoring voluntary and not coercive; (2) ensuring all sensor data

that are used is transparent to the worker; (3) utilizing only sensors

that have been validated by interventional effectiveness studies be-

fore being applied in the workplace; and (4) ensuring that data col-

lection is limited to working hours.112 Importantly, all data outputs

should conform to the latest secured data transmission governance

and stored under robust cybersecurity protections.113

7 | REGULATORY FRAMEWORK

Detection and measurement of an occupational chemical or physical

agent is an essential component of mandatory safety and health

standards promulgated by OSHA and the Mine Safety and Health

Administration (MSHA). To reduce the risks to worker safety and

health, the OSHA and MSHA regulatory framework relies on a safe

limit of exposure to workers as measured by area and personal

breathing zone sampling devices. For example, the OSHA Noise

Exposure Standard sets a legally permissible exposure limit for noise

as an 8‐h time‐weighted average sound level (TWA) of 85 decibels

measured on the A scale of a standard sound level meter at slow

response.114 As noise sensing devices become more sophisticated,

portable, and capable of real‐time measurement, they can be
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mandated in a regulatory framework. For example, the CPDM has

been incorporated in MSHA's 2014 final rule aimed at controlling

respirable coal dust exposure in mines.115 The inclusion of the CPDM

by MSHA in its coal dust standard is a sign of the maturity of real‐

time sensors from a regulatory framework perspective. Advanced

sensors may play an increasing role in 21st century exposure science

and in the occupational safety and health regulatory framework.

8 | CONCLUSION

New placeable, wearable, and implantable sensor technologies

represent advances in the field of occupational exposure science.

As these sensor technologies move from the research laboratory

into the workplace, we need to be aware of both the benefits and

challenges they present for workers, employers, and safety and

health practitioners. Sensors may make exposure assessment

more convenient and comprehensive, but the intrusiveness that

accompanies ubiquitous worker monitoring needs to be balanced

by a respect for privacy, trust that personal health data remains

secure, and a collaborative agreement between sensored workers

and their employers that any advanced sensor technology in-

troduced into the workplace directly benefits worker safety and

health.
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