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ABSTRACT

Federal regulations require refuge alternatives (RAs) in
underground coal mines to provide a life-sustaining environment
for miners trapped underground when escape is impossible. A
breathable air supply is among those requirements. For built-in-
place (BIP) RAs, a borehole air supply (BAS) is commonly used
to supply fresh air from the surface. It is assumed that the fresh
air has an oxygen concentration of 20.9%. Federal regulations
require that such a BAS must supply fresh air at 12.5 cfim or more
per person to maintain the oxygen concentration between 18.5%
to 23% and carbon dioxide level below the 1% limit specified.
However, it is unclear whether 12.5 cfin is indeed needed to
maintain this carbon dioxide level. The minimal fresh air flow
(FAF) rate needed to maintain the 1% CO- level will depend on
multiple factors, including the number of people and the volume
of the BIP RA. In the past, to predict the interior CO:
concentration in an occupied RA, 96-hour tests were performed
using a physical human breathing simulator. However, given the
infinite possibility of the combinations (number of people, size of
the BIP RA), it would be impractical to fully investigate the range
of parameters that can affect the CO: concentration using
physical tests.

In this paper, researchers at the National Institute for
Occupational Safety and Health (NIOSH) developed a model
that can predict how the %CO- in an occupied confined space
changes with time given the number of occupants and the fresh
air flow (FAF) rate. The model was then compared to and
validated with test data. The benchmarked model can be used to
predict the %CO; for any number of people and FAF rate without
conducting a 96-hour test. The methodology used in this model
can also be used to estimate other gas levels within a confined
space.
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NOMENCLATURE
t time after test starts
X 9%CO; (by mass) at time ¢ within the confined
space

Xo %CO; (by mass) in the atmosphere

p air density within the confined space

m total air mass within the confined space
G CO; generation rate due to breathing

f fresh air flow rate

P air pressure in the confined space

R universal gas constant

T air temperature in the confined space
CO, carbon dioxide

%CO0, CO, gas concentration by volume
%C 0, CO, gas concentration by mass
%0,,, O: gas concentration by mass

%N, N; gas concentration by mass
the molar mass for CO; gas
the molar mass for O, gas
My,: the molar mass for N, gas

MSHA Mine Safety and Health Administration

NIOSH the National Institute for Occupational Safety
and Health

BIP built-in-place

RA refuge alternative

BAS borehole air supply

FAF fresh air flow
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1. INTRODUCTION

Human breathing generates a significant amount of
carbon dioxide. High levels of carbon dioxide can be extremely
hazardous [1]. Carbon dioxide mitigation methods, such as soda
lime carbon dioxide scrubber curtains and purging with high
volume air flows, can prevent carbon dioxide levels from
reaching dangerous levels. This is especially critical for confined
spaces, such as refuge chambers—also known as refuge
alternatives (RAs)—that federal regulations require in
underground coal mines to provide miners with a life-sustaining
environment in case of an inescapable mine disaster [2] [3].
According to federal regulations, the average carbon dioxide
concentration in the occupied structure shall not exceed 1.0%,
and excursions shall not exceed 2.5% while maintaining the
oxygen concentration between 18.5 and 23%. A 1.0% carbon
dioxide (CO,) atmosphere is the threshold of a serious health risk
[2] [3]. The 15-minute short-term exposure limit (STEL) for
carbon dioxide set by the National Institute for Occupational
Safety and Health (NIOSH) and the American Conference of
Governmental Industrial Hygienists (ACGIH) is 3% [4].
Therefore, excursions to 2.5% carbon dioxide must be mitigated
quickly.

While occupied and without a breathable air supply, the RA
interior oxygen level will decrease, and the carbon dioxide level
will increase quickly due to breathing [5]. For built-in-place
(BIP) RAs, one mitigation strategy is to implement a borehole
air supply (BAS) to supply fresh air from the surface. Federal
regulations require the supply of fresh air of 12.5 cfm or more
per person to maintain the oxygen and carbon dioxide levels
within the safety range as specified in the RA regulations [2] [3].
While the oxygen level is mainly determined by the fresh air
flow rate, the CO; concentration within the RA will depend on
multiple factors including the number of occupants, the volume
of the BIP, and the fresh air flow (FAF) rate. The CO;
concentration can exceed the 1% limit even the oxygen level is
within the 18.5% - 23% range. It is crucial to estimate or predict
the CO; concentration before the RA or other confined being
occupied.

In this paper, researchers at NIOSH developed a model that
can predict the %CO, within an occupied confined space. The
model was then compared and validated with test data. The
benchmarked model was used to predict the %CO, given the
number of people and FAF rate without conducting physical test.
The methodology used in this model can also be used to estimate
other types of gas levels within a confined space.

2. MATHEMATIC MODELING

As illustrated in Figure 1, a confined space has an inward
fresh air flow. The confined space is also equipped with a
pressure relief valve which allows air to release to outside of the
space when the internal pressure reaches the set point of the relief
valve. The variables involved in determining the carbon dioxide
concentration are defined as in the Nomenclature section. Two
models were developed to represent the change in %CO> over
time. The simplified model relies on a number of assumptions to
provide an approximation of the %CO; level. The differential
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model uses differential equations to more accurately represent
the change in %CO- over time. In the following sections, these
two models are described.

2.1 Simplified model

At the point when the test starts, =0, x=x, and the total CO,
mass within the confined space is mxo. As shown in Figure 1,
there are two sources that bring CO; into the confined space: the
fresh air flow and the breathing. There is one outward flow that
allows CO; to exit the confined space through the exhaust pipe.
It is reasonable to assume that the amount of the air exiting the
space equals the amount of air entering the space, i.e., the
outward air flow rate and inward air flow rate both have a value
of f. At time ¢, the total CO, mass, mx, within the confined space
is given by

mx=mxy+xyft+Gt—puxft 1)
Where u is a coefficient to average the %CO» (by mass) value

from time r=0to time 7, 0 < u < 1. Consider x, — 0, (1) can be
rewritten as:

Gt
~— 2
x ——— (2)
Xoft
xft
I
m X
Gt

Figure 1. The gas (CO2) movement into and out of a confined space
(dimension of a x b x ¢) with fresh air flow. The CO2 gas moving into
the confined space includes breathing (blue) and fresh air flow (orange).
The COz gas moves out of the confined space through the exhaust pipe
(green).

2.2 Differential model

Define xi,; as the initial %CO; by mass in the confined space.
At the point when the test starts, =0 and x=x;,; (refer to Figure
1). For a small time interval, At = t, — t;, the CO> mass change
within the confined space from ¢, to t, is given by:

A(mx) = A(Gt + xoft — xft) (3)

Equation (3) can be rewritten as:

mAx = GAt + xof At — xf At “
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Let At = dt = 0, then Ax = dx — 0. Equation 4 can be
rewritten as:

mdx = Gdt + x,fdt — xfdt 5)
dx

mE=G+x0f—xf (6)

mx'(t) + fx(t) =G+ x,f (7)

Equation (7) is the boundary value problem with the
boundary condition: x(t = 0) = x;,,;. Equation (7) is the
mathematical and accurate description of the event. Solving the
boundary value problem above will give the analytical solution
of x as a function of ¢.

3. TEST SETUP

In order to conduct testing to examine the CO; levels inside
an occupied confined space, a test lab was created using a 20-ft-
long by 8-ft-wide by 8-ft-high shipping container and a human
breathing simulator (HBS) was created to consume oxygen and
generate CO; to represent human breathing. For the HBS, the
concept was to burn propane at the rate necessary to match the
rate of human oxygen consumption. Because burning propane
generates less CO; than human breathing for a set oxygen
consumption rate, supplemental CO; would have to be added to
match both oxygen consumption and CO, generation.

To create the HBS, a commercially available propane
smoker was modified, and additional test equipment were used
to create a well-controlled combustion device. A sealed
combustion chamber was created by sealing the bottom of the
propane smoker to the floor of the shipping container. Propane
was delivered to the sealed combustion chamber from tanks
stored outside the shipping container via a gas line that passed
through a pressure regulator and a propane mass flow controller.
An air pump was used to deliver air from inside the shipping
container to the sealed combustion chamber via an airline that
was connected to an air mass flow controller. The mass flow rate
of propane was determined based on the desired number of
people to represent. The air mass flow rate was set 20% higher
than the rate needed to provide enough oxygen to support
complete propane combustion. To match the CO, generation,
supplemental CO, was provided from a cylinder outside the test
lab. A CO; mass flow controller was used to provide the
additional CO; needed to match the CO» generated by people.

A previously developed pressure relief valve test stand
(PRVTS) was used as the source of fresh air. The PRVTS uses a
centrifugal fan connected to a variable frequency drive (VFD) to
allow for adjustment of the fresh air provided to the test lab. The
PRVTS uses a VELTRON airflow measurement station to
measure the provided volume flow of air corrected based on
standard atmospheric conditions. The VFD keypad was used to
set the FAF to the desired value for a given test.

Multiple gas monitors were used to measure the %CO, and
%0, inside the test lab. To measure the %CO,, two CTI GG-CO,
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carbon dioxide sensors were positioned within the shipping
container. The two sensors were located approximately 6 inches
and 3 inches from the floor and positioned around 6.5 feet and
13 feet from the end-wall of the laboratory, respectively. To
measure the %0,, two Macurco OX-6 oxygen sensors were
positioned approximately 6 inches and 3 inches from the floor
and positioned around 6.5 feet and 13 feet from the end-wall of
the laboratory, respectively. One additional O, monitor was
positioned near the air pump to document the %O, in the
combustion air.

To record the FAF rate, the CO, concentrations, and the
oxygen concentrations, a Data Translation DT-9874 data
acquisition system was used. All data were recorded at a sample
rate of 2 samples per second with 24-bit resolution.

Multiple steps were taken to ensure research safety during
the tests. The propane delivery line and the interior of the HBS
were checked with a gas leak detector before lighting the propane
burner. A Beacon 800 gas monitoring system with multiple CO»
sensors, an O, sensor, a carbon monoxide sensor, and % lower
explosive limit sensor was used to ensure all gases within the test
lab were at safe levels. If the gas levels exceeded predetermined
levels, the Beacon 800 would activate an audible alarm to alert
researchers. The presence of a flame in the HBS was monitored
using a flame detector and a video camera. If the flame went out,
the flame detector would activate an audible alarm and
automatically turn off the propane flow via a solenoid valve. Gas
monitors at the data acquisition table were used to ensure the O,
CO,, CO, and propane levels were at safe levels.

For each test, all flow rates were set based on an assumed
number of occupants. The propane flow rate was set based on the
rate needed to consume the oxygen of the assumed number of
occupants. The combustion air flow rate was set at 1.2 times the
air flow rate needed to provide sufficient oxygen to achieve
complete combustion. The supplemental CO; flow rate was set
based on the total CO; generation of the assumed number of
occupants less the CO; generated due to burning propane. The
FAF provided by the PRVTS was varied to examine the resulting
CO; concentration for FAF rates based on dividing the RA
regulation requirement of 12.5 cfm per person by integer values
from 2 through 7. For each FAF rate, individual tests were
conducted until the %CO; inside the test lab stabilized.

The CO» concentration was measured using two carbon
dioxide sensors located within the shipping container. The
average %CO; was calculated from the readings of the two
sensors. All the gas concentrations in Section 3 and Section 4
were either measured or calculated by volume. However, the gas
concentration in this section was denoted by mass. For CO», the
volume concentration relates to the mass concentration through

%C02,,/Mco,

%C0,, = %023 . %N2g  %C02, 8)
Mg, ' My, ' Mco,
where
%CO0,,,: the CO; gas concentration by volume
%CO0;,,: the CO; gas concentration by mass
%0,,,: the O gas concentration by mass
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the N, gas concentration by mass

Mco, the molar mass for CO; gas
My, : the molar mass for O, gas
My,: the molar mass for N, gas.
4. RESULTS

A series of tests was conducted for various numbers of
people and FAF rates to observe the CO, concentration within
the confined space (the shipping container). The first run of the
test was to look at the %CO; by volume with 40 people and
various FAF rates. Two FAF rates were chosen, one low rate (100
cfm) and one high rate (500 cfm). Since the air flow meter did
not have the capacity of measuring flow rate below 100 cfm, a
large number of people (in our case, a higher propane burning
rate to simulate more human breathing) was selected in order to
bring down the FAF rate/person.

The first test was to look at the %CO> level at various FAF
rates for 40 people. The %CO, test data was plotted in Figure 2
for FAF rates of 100 cfm (Figure 2a) and 500 cfm (Figure 2b).
For 40 people and 100 cfm, the FAF rate is 2.5 cfm/person. For
40 people and 500 cfm, the FAF rate is 12.5 cfm/person. The
model prediction of %CO; value was also plotted and compared
with test data in Figure 2. The figure clearly shows that for both
the low FAF rate and high FAF rate, the differential model agrees
with test data better than the simplified model. Both the test data
and the differential model prediction show that the %CO;
reaches a steady level in about one hour. For the high FAF rate
(500 cfm), the test data and the differential model show the
%CO; reaches a steady level within 15 minutes.
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40 person, 100 cfm (2.5 cfm/person)

0.9
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Figure 2. The %CO:2 (by volume) based on test data and model
prediction for 40 people and 100 cfm (a) or 500 cfm (b) FAF rate.

Another test was conducted for 48 people, with FAF rates of
120 cfm and 600 cfm. The %CO; test data was plotted in Figure
3 for FAF rates of 120 cfim (Figure 3a) and 600 cfm (Figure 3b).
For 48 people and 120 cfm, the FAF rate is 2.5 cfm/person. For
48 people and 600 cfm, the FAF rate is 12.5 cfm/person. The
predicted %CO- values based on the simplified model and the
differential model were also plotted and compared with test data
in Figure 3. Again, the figure shows that the differential model
predicts the %CO; value better than the simplified model. For
120 cfm (Figure 3a), both the test data and the differential model
show that the %CO» would reach a steady level within one hour.
For 600 cfm (Figure 3b), both the test data, the simplified model,
and the differential model show that the %CO, would reach to a
steady level within 0.5 hour.
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48 person, 120 cfm (2.5 cfm/person)
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Figure 3. The %CO: (by volume) based on test data and model
prediction for 48 people and 120 cfm (a) or 600 cfm (b) FAF rate.

The test data and the differential model show that for FAF
rates higher than 2.5 cfm/person, the %CO; level within the
shipping container will stabilize below 1% (Figure 2 and Figure
3).

An additional test was conducted with smaller cfm/person
value (less than 2.5 cfm/person) by increasing the number of
people. Figure 4 shows the differential model validated by test
data for 58 people with 105 cfm (Figure 4a) and 725 cfm (Figure
4b) FAF rate. For 58 people, the FAF rate is 1.81 cfm/person for
105 cfm and 12.5 cfm/person for 725 cfm.
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Figure 4. The %CO2 (by volume) based on test data and model
prediction for 58 people and 105 cfm (a) or 725 cfm (b) FAF rate.

5. DISCUSSION

While fresh air was delivered to the shipping container, the
interior pressure would increase until the exhaust valve opened
to release the air out. When stabilized, the differential pressure
gauge read about 0.3-0.5 inch-of-water (74.7-124.4 Pa) of the
interior air pressure. The interior air temperature also increased
due to propane burning. It could reach to ~85°F (302.6°K) from
ambient temperature (~75°F or 297°K) when the test started. For
ideal gas (air),

m 9)
P = pRT = —RT (
p abc
where P is the air pressure, R is the universal gas constant, 7 is
the air temperature, and p is the air density.

Equation (9) can be rewritten as:

_ Pabc (10)
M= RT

The pressure fluctuation has a range of 0.074% — 0.123%.
The temperature fluctuated at about 1.89% [(302.6°K-297°K)/
297°K]. So, the total air mass m should have a fluctuation less
than 1.89% due to interior air pressure and temperature
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increasing. It is reasonable to assume the total air mass remained
the same during the test and the pressure/temperature fluctuation
can be ignored.

Another observation based on Figure 2—Figure 4 is that the
steady state %CO, level depended on the cfm/person value rather
than the number of people or the total FAF rate, given other
parameters are unchanged. For example, the %CO, level
stabilized at ~0.8% for 2.5 cfm/person as shown in Figure 2a and
Figure 3a, regardless of the number of people and the total FAF
rate.

Figure 5 shows the %CO; predicted by the differential
model for various number of people and total FAF rate. The
model predicted that the %CO; level will approach to 1% for 60
people and 110 cfm or 54 people and 100 cfm. The simulation
results for the minimum FAF rate for different numbers of people
to maintain %CO> < 1% are listed in Table 1. The model predicts
the minimal FAF rate to maintain 1% CO, to be ~1.87
cfm/person, regardless of the number of people and the total FAF
rate.

1.4
1.2
1
~
(@]
O 0.8
x
06 52 person, 100 cfm
’ ——54 person, 100 cfm
04 —60 person, 150 cfm
’ 60 person, 100cfm
012 —60 person, 120cfm
’ —60 person, 110cfm
0
0 1 2 Hours 3 4 5

Figure 5. The %COz by volume predicted by the differential model for
various numbers of people and FAF rates.

Table 1. The simulation results for the minimum FAF rate for different

numbers of people to maintain %CO2 < 1%.
Federal
regulation of CFR

Model Min FAF for CO» < 1% ] (Ml (R4

0y
FAF at 12.5 (cfm) (chrr?/QpZ:-sg)n)
cfm/person (cfm)

1 12.5 NA il
54 675 101 1.87
55 687.5 103 1.87
56 700 105 1.88
57 7125 107 1.88
58 725 108 1.86
59 7375 110 1.86
60 750 112 1.87

6. CONCLUSION

The mathematical models presented in this study agree with
test data well. They can be used to predict the %CO; level based
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on the parameters of confined space such as the dimension of the
confined space, the number of occupants, and the FAF rate. The
differential model predicts that a FAF of about 1.87 cfm/person
is needed for the %CO: to stabilize below 1%. However, safety
factors must be taken into consideration when implementing
regulations [3]. Because of that, the minimal FAF of 12.5 cfm
specified in federal regulations is indeed needed to maintain this
carbon dioxide and other gases level within the safe range for 96
hours. The model also predicts the %CO, level will reach to
steady state within 1 hour or less. Another observation is that the
%CO; level depends on the cfm/person value rather than the
number of people or the total FAF rate. Additionally, the %CO>
level is more sensitive to the total FAF rate variation than to the
number of people.

The benchmarked model can be used to predict the %CO,
for various numbers of occupants, size of the confined space, and
FAF rate without conducting a 96-hour test for every scenario.
The model and testing confirm 12.5 cfm of supplied air will
sustain miners for 96 hours and comply with the federal
regulations. The model may also be useful to help manufacturers
and mines to make decisions on RA design and implementation
to comply with federal regulations.

DISCLAIMER

The findings and conclusions in this paper are those of the
authors and do not necessarily represent the official position of
the National Institute for Occupational Safety and Health,
Centers for Disease Control and Prevention. Mention of any
company or product does not constitute endorsement by NIOSH.
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INTERNATIONAL MECHANICAL ENGINEERING CONGRESS & EXPOSITION
Dear Distinguished Attendees:

Welcome to the ASME 2021 International Mechanical Engineering Congress and Exposition
(IMECE)! We are excited about this year, and continue to celebrate the breadth, depth, and
technical connections that are the heart of a worthwhile conference experience. As you consider
your schedule for this week, | personally invite you to benefit from each of these aspects of
IMECE.

Breadth: 1350+ Technical papers and presentations over 14 technical tracks. At IMECE you can
meet with experts from across the spectrum of mechanical engineering research and
development. So, spend some time attending a few sessions outside of your technical area and
see what you can take back to improve your own work.

Depth: Scientific expertise, not a trade show. From Nobel Laureates to one of the world’s most
cited researchers, the exceptional research depth at IMECE is nowhere so apparent as in the
Congress-Wide Keynote Speakers and the Track Plenaries. For example:
e Dr. Shuji Nakamura, 2014 Nobel Laureate in Physics (Congress-Wide Keynote)
e Dr. Shery Welsh, Director of AFOSR with $500M in Basic Research (Aerospace Track
Plenary)
e Dr. Nancy Sottos, Member of the NAE (Materials Track Plenary)
o Dr. Mehrdad Zangeneh, Founding Director of Advanced Design Technology, Ltd (Fluids
Track Plenary)
o Dr. Yi Cui, one of the world’s most cited scientists (Materials Track Plenary)
And these are just a few of the amazing speakers that will be available to youl!
Go to (https://event.asme.org/IMECE/Keynote-Speakers) and (https://event.asme.org/IMECE/
Program/Track-Plenary) for the full list.

Technical Connections: 2,000+ attendees. The primary benefit of a conference is in meeting and
interacting with fellow technical experts. As worldwide health conditions have forced us to remain
virtual for a second year, we have implemented several new approaches to enable those
interactions, and | invite you to fully participate. Our technical sessions have increased time
scheduled for introductions and conversation before, during, and after the technical presentations
(pre-recorded with live Q&A). And we have introduced a new series of special technical panels
and roundtables designed to be technically focused informal gatherings. Topics for these 30—60-
minute sessions range from “Nuclear Power in Space Applications: Promise, Practice, and
Challenges” to “New Trends in Lung Therapies” to “Why Thermal Properties Still Matter”, to
‘Advanced Manufacturing Education”, “Beyond GPS: Advancing MEMS/NEMS Sensors for
Inertial Navigation Only” and many more. The full list of Roundtables and Special Panels are on
the congress website. Of course, nothing happens until you push the button. So, please join us!
Whether in a technical session or special technical event, Turn on your camera, make a comment,
ask a question, share an opinion, and build those connections!

Finally, on behalf of the IMECE Congress Steering Committee, | express my sincere thanks to
and recognition of the hundreds of volunteers and the ASME staff that have dedicated time and
effort to strengthening the fields of Mechanical Engineering R&D through organizing and leading
sessions, topics, and tracks at this year’'s IMECE. It is never convenient to serve, and we have
all continued to face frustrations of schedule, deadlines, conference websites, and more. Thank
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you for your service. Your efforts have resulted in a strong congress that will continue to drive
research forward both now and in the next generation. Thank you.

Sincerely,

Marriner H. Merrill, PhD
IMECE 2021 Technical Program Chair
Materials Science and Technology Division, US Naval Research Laboratory
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CONFERENCE ORGANIZERS

Acoustics, Vibration, and Phononics
Chair: Yongfeng Xu, University of Cincinnati
Co-Chairs:

Guoliang Huang, University of Missouri
Mostafa Nouh, University at Buffalo

Advanced Manufacturing

Chair: Chetan Nikhare, Pennsylvania State University, Behrend
Co-Chairs:

Muhammad Jahan, Miami University

Scott Thompson, Kansas State University
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