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ABSTRACT

In underground coal mines, a leading cause of permanent
disability and fatality is striking and pinning accidents involving
continuous mining machines and powered haulage equipment. From
2009-2018, underground coal mines in the United States experienced
99 permanent disability injuries and 48 fatalities attributed to powered
haulage or machinery. Magnetic proximity detection systems (PDSs),
designed to detect workers in close proximity to these machines and to
automatically stop machine motion, were introduced to prevent such
accidents. While these devices are expected to improve worker safety,
environmental influences and electromagnetic interference may cause
inconsistent PDS performance. To address this issue, the National
Institute for Occupational Safety and Health (NIOSH) has researched
alternative proximity detection technologies for underground mining
including RADAR and LIDAR. Researchers conducted a sensitivity
analysis to evaluate different variables that may affect detection
performance. The test results illustrating the variables that may affect
detection performance are discussed in this paper. PDS manufacturers
may use this study to inform future system design and improve mine
worker safety.

INTRODUCTION

From 2009 to 2018, the underground coal mining industry in the
United States experienced accidents classified as “powered haulage”
or “machinery,” resulting in 828 lost-time injuries, 99 permanent
disability injuries, and 48 fatalities. Many of these accidents occur
when a miner is struck by a piece of mobile mining equipment or
pinned between a piece of mobile mining equipment and another
object. To prevent accidents of this type, in 2015, the Mine Safety and
Health Administration (MSHA) promulgated a regulation mandating the
use of proximity detection systems (PDSs) on all continuous mining
machines, which are mobile machines used to mechanically cut coal
from the working face and load it onto haulage equipment. In the same
year, MSHA proposed a regulation to require PDSs on other mobile
equipment in the mines, including shuttle cars, scoops, and other coal
haulage equipment. The purpose of a PDS is to detect the presence of
miners near a piece of equipment and to automatically issue visual or
audible alarms or to stop machine motion in the event a miner is
detected in hazardous proximity to the machine.

Currently, all MSHA-approved PDSs used in underground coal
mines are magnetic field-based PDSs. A magnetic PDS generally
consists of two main components: the magnetic field generator and the
magnetic field receiver. A field generator, which is typically mounted on
a machine, generates a strong magnetic field around the machine. The
generated field decays quickly with distance. A field receiver interprets
the received field strength to determine the distance between the
generator and the receiver. Since the field receiver is typically worn by
a miner, it is also referred to as a miner wearable component.

For a magnetic PDS to operate properly, the generated magnetic
field must remain stable and unaffected by the environment. However,
this is not always the case as the presence of large metallic objects,
which are common in underground mines, can significantly alter the
magnetic field and PDS performance. For example, the magnetic field

can dramatically increase when a PDS operates near a trailing cable,
due to the parasitic coupling phenomena where magnetic fields couple
to a nearby trailing cable and propagate for a long distance along the
cable with a minimal loss [1]. Also, steel wire mesh used in
underground mines can significantly increase the magnetic field
distribution which results in inconsistent PDS performance [2]. In
addition to being susceptible to environmental influences, a magnetic
PDS can also be adversely affected by the radio frequency (RF)
energy radiated from nearby electric devices. For example,
researchers at the National Institute for Occupational Safety and
Health (NIOSH) have demonstrated that the electromagnetic
interference (EMI) from a personal dust monitor (PDM) can cause a
PDS to stop working if the PDM is placed within 6 inches from a PDS
miner wearable component [3]. Unintended irregular magnetic PDS
performance due to EMI and environmental influences prompted
NIOSH research on alternative proximity detection technologies for
underground mining.

There are a number of available wireless technologies that can be
used for proximity detection and sensing. For example, Bluetooth,
along with radio-frequency identification (RFID) and a magnetic system
have been evaluated for sensing pedestrian workers in close proximity
to heavy construction equipment [4]. In addition, prior NIOSH research
reviewed available proximity detection technologies for underground
mining. The capabilities and performance characteristics for various
technologies were studied including RFID, radio detection and ranging
(RADAR), light detection and ranging (LIDAR), ultrasonic detection,
and computer vision [5].

In many cases, sensors detect an object and provide a warning.
However, they are capable of triggering automatic braking similar to
some magnetic PDSs. Combining technologies may produce an even
more robust system capable of distinguishing between objects. This is
useful for mining applications to avoid false alarms as some machines
are constantly in close proximity to the operator, pedestrians, other
machines, and the walls of the mine during operation.

Studies have evaluated proximity detection technology
performance in other industries [6, 7]. However, a study specifically for
the application of these technologies for underground mining
equipment is needed. In this study, RADAR and LIDAR were tested for
their potential to augment existing systems. The aim was to identify
variables that affect the performance of RADAR and LIDAR and
characterize their zone boundaries.

METHODS AND EXPERIMENTAL SETUP

The RADAR system evaluated in this paper operates at a 24-GHz
frequency with a range of 98 ft (30 m) and consists of four sensors and
four cameras, with one of each mounted on each side of the machine.
The system divides the detection zone into five equal sub-zones and
reports detections to the nearest foot. An audible alarm and visual
alarm on the display screen occur following a detection and intensifies
as the object approaches the sensor and breaches subsequent sub-
zones. The detection coordinates and corresponding sub-zone are
displayed through the system’s software.
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The LIDAR system evaluated in this study scans at a 25-Hz or 50-
Hz frequency with a range of 164 ft (50 m) and consists of two
sensors, with one mounted on both the front and rear of the machine.
The system was programmed such that the detection zone was divided
into five equal sub-zones similar to the RADAR system. The LIDAR
reports detections to the nearest millimeter. An audible alarm occurs
following a detection. The system’s software provides a visual
indication and a boundary breach log that records the detection
position.

Technologies to be considered for mining applications must be
robust to diverse scenarios and accurately detect objects in a hazard
zone. As a result, the proximity sensing technologies were evaluated
based on their sensitivity to target properties and detection zone
accuracy.

After gathering information on each technology and these specific
systems, a sensitivity analysis and surveying measurements were
used to evaluate their performance. Linear distance measurements
and two-dimensional position data were collected for the sensitivity
analysis and surveying, respectively.

Robustness Evaluation: Sensitivity Analysis

The sensitivity analysis determined variables that affect the
detection performance of each technology. Consistent performance
despite changing conditions is critical for safety. The evaluation
provides an understanding of the effect on sensor performance for the
variables shown in Table 1 (see APPENDIX) which researchers chose
based on their likelihood of differing between situations.

Researchers considered possible interaction scenarios in which a
machine and a human or other object must not collide. The variables
were separated into two groups: sensor-related variables and target-
related (i.e., object-of-detection) variables. Sensor-related variables
included the zone length, sub-zone, sensor height, and sensor angle.
Sensible zone sizes are crucial to prevent collisions, particularly in
confined environments. A zone that is too small may not provide
adequate response time for the machine to stop while oversized zones
may cause false alarms. As these tests looked at the linear distance
error, only the zone length was varied while the zone width remained
constant. The sub-zone demonstrates if the accuracy varies as the
target approaches the sensor. Researchers varied the sensor height
and sensor angle (about a vertical +Z axis) to account for suitable
mounting locations which may be limited by: differences in machine
height, material loads and machine components blocking sensor
zones, and machine rotation during travel around turns. The target-
related variables included target height, width, material and angle.
Collectively, these variables represent various objects such as
mineworkers and machinery.

After determining the test variables, researchers constructed a rail
system, consisting of a test track and target cart allowing for
repeatable test trials throughout data collection. The test track was 64
ft (19.5 m) long and consisted of construction-grade 2x4 cross ties
machined to accept an extruded 6061 aluminum T-Bar on one side
and a cold rolled steel angle on the other. The target cart was
fabricated using 80/20 slotted aluminum framing members and fittings.
Its dimensions were 1.8 ft x 4 ft (0.55 m x 1.21 m) offering a stable
mounting location for the targets. Nylon wheels corresponding to each
rail provided smooth, linear motion during travel. A Styrofoam sheet
was secured to the target cart to provide vertical support for the
targets. Researchers used this low-density material because it
provided strength and stability with minimal surface area. Velcro was
used to secure the targets to the Styrofoam sheet.

To finalize the rail system, researchers designed a simple method
to provide uniform speed during target cart travel. The propulsion
system was a continuous loop of nylon rope mated to a vertical spool
mounted to the last cross tie at the end of the test track opposite of the
operator. The rope was attached to each end of the target cart with two
rope leads (one for forward, one for reverse) threaded through a 90°
PVC guide pipe fastened to the cross ties at the operator end of the
test track. This setup allowed the researcher to operate the target cart
by pulling one rope through the guide to propel the target cart toward
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or away from the sensor, while remaining outside of the detection
zone.

Following the rail system assembly, the RADAR and LIDAR were
mounted to an 80/20 aluminum frame at the operator end of the test
track. A laser range finder (LRF) was also mounted on the same frame
under the sensor to provide the true target distance. The frame allowed
the operator to maintain a consistent coordinate system for each
sensor. Figure 1 shows a researcher operating the rail system with the
distance measurement devices mounted at the operator end of the test
track.

e Cl— — — e P —
Figure 1. Rail system used during sensitivity analysis data collection.
The test procedure involved a researcher pulling the target cart
towards the sensor and recording linear distance reported by the
sensor (measured distance) and the LRF (true distance) at the time of
a detection. First, the researcher ensured that all variable conditions
were correct according to the specific test trial being conducted. Next,
the target, beginning outside of the detection range, was slowly pulled
towards the sensor until a detection was reported. The cart was then
pulled in the opposite direction and towards the sensor again to verify
the detection. At this time, the researcher recorded distance
measurements from the sensor and LRF. This process was repeated
until the cart reached the sensor end of the track and all sub-zones
had been measured. Researchers repositioned the target cart outside
of the detection range and repeated the process for a minimum of five
total trials for each variable condition.

Accuracy Evaluation: Detection Zone Boundary Characterization
Researchers characterized the zone boundary for each system by
using surveying equipment to collect and compare precise position
data against sensor-reported position data. This required a different
setup because the sensitivity analysis setup was limited to one-
dimensional travel. Similar to the sensitivity analysis, the same
coordinate system was established with the survey origin directly under
the sensor location. Position data were recorded for 4-ft-wide
rectangular detection zones ranging from 10-30 ft in length.

The data collection procedure involved recording position data
around the detection zone perimeter. Figure 2 shows the experimental
setup during the accuracy evaluation. A mobile researcher carried a
pole-mounted survey prism reflector which provided the survey data.
This researcher began outside of the X boundary at the zero Y
coordinate of the zone. The researcher moved towards the expected
zone (red outline in Figure 2) until a detection occurred. To ensure a
stable detection, the researcher backed out of the zone and reentered
to establish a known detection position. At this point, a stationary
researcher observed the detection outputs and recorded the survey
and sensor-reported position data for that particular position. Following
each recording, the mobile researcher exited the detection zone and
repeated the process for the entire zone perimeter.

Figure 2. Researcher surveying expected detection zones.
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RESULTS

Sensitivity Analysis - ANOVA

The aim of this study was to identify variables that may affect
sensor performance. The absolute error and percent error between the
linear distance data from each technology (measured distance) and
the LRF (true distance) were calculated. These error calculations were
used to perform a two-way analysis of variance (ANOVA) with
replication and to generate box and whisker plots.

The ANOVA analyzes the differences between measurement
errors for the evaluated variables and calculates a probability (p-value).
The alpha value (a) or significance level for these ANOVAs was set to
0.05. A p-value less than a indicates a significant variable. Table 2 (see
APPENDIX) displays the ANOVA results and the p-value for each. The
red (solid) and green (hatched) cells in the table indicate variables that
significantly or insignificantly affected performance in terms of error,
respectively.

The p-value indicates the significance of each variable’s effect on
performance. The maximum and minimum absolute error p-values for
the RADAR were 0.2234 (target width) and 3.9x10™ (sensor height),
respectively. These p-values show that the target width did not
significantly affect performance, while the sensor height did. In terms of
percent error, RADAR performance was affected by all variables
except the target width (p-value of 0.2752). The target angle had the
largest effect (p-value of 1.5x10°°) in percent error. Similarly, for the
LIDAR’s absolute error, the maximum and minimum p-values were
0.8892 (zone length) and 8.4x107® (target height), respectively.
Varying the zone length did not affect performance, while the target
height did. In terms of percent error, all variables significantly affected
the LIDAR'’s performance with the maximum and minimum p-values
being 0.0385 (target width) and 3.1x10™ (target height).

While these p-values indicate each variable’s level of significance,
Table 2 also includes adjusted ANOVA results highlighting the variable
ranges that had the greatest effect on performance. Some variables
may be significant due to inconsistent detection or the sensor simply
not detecting the target for a specific condition. The ANOVA was
repeated excluding certain conditions to pinpoint the largest contributor
to the significant p-value. For example, the ANOVA indicated that the
RADAR'’s absolute error for the sensor height was significant (3.9x10°
%), However, excluding the 5-ft condition, which caused inconsistent
detection, resulted in an insignificant ANOVA (0.2263). This indicates
that the condition affected the performance greatly. An example of total
non-detection causing a significant ANOVA is the LIDAR’s absolute
error for the target height variable (8.4x107%). The scan plane of the
LIDAR was higher than the 2-ft target which weighed greatly on the
ANOVA as the sensor was unable to detect the target at all. The
variable was insignificant once the 2-ft condition was removed
(0.1644). Lastly, some variables were significant even though
detections occurred for all conditions throughout all trials. This
indicates that the error between conditions varied enough to be
significant. For example, detections occurred during all trials for all of
the target material conditions for both systems but was still significant
after excluding conditions. Therefore, the unadjusted and adjusted p-
value are the same in Table 2 because variable exclusion hardly raised
the p-value, which suggests the difference between conditions was
large. Although excluding specific conditions identified the variable
ranges that impacted the ANOVA, these variables still affect the
performance overall.

Sensitivity Analysis - Box and Whisker Plots

Figure 3 displays box and whisker plots generated using the
unadjusted absolute error calculations. These plots illustrate the
performance effect of each variable in terms of error variance for both
sensors. Each plot includes the different variable conditions in each
sub-zone. Either a * or + symbol was inserted to denote conditions for
which inconsistent or no detection occurred. For example, plot E has a
+ and * for the 2-ft target height in zones 5 and 1, indicating any
inconsistent and non-detections that occurred.

Elements of these plots offer a first impression of performance
and accuracy. Generally, the height of each box represents the error
range for each condition. Therefore, a short box means the difference

SME Annual Meeting
Feb. 23 - 26, 2020, Phoenix, AZ

in error between measurements for a given condition was relatively
low, while a tall box denotes a larger difference. Another element of
these plots is the box position relative to the X axis. A box’s distance
from the X axis represents the overall accuracy. A box very close to the
X axis indicates a mean error closer to zero. Boxes that fluctuate
greatly in the Y position signify a difference in error between
conditions.

. o o detection
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Figure 3: Box and Whisker plots displaying variable performance
effect.

Inspecting the plots in Figure 3 along with the ANOVA p-values
gives insight to each variable’s overall performance effects. Plots A and
B display the error variance with the LIDAR in plot B seeming to have
performed more consistently, which is the same result from the
associated ANOVA. Conversely, for plots C and D, it appears that the
LIDAR'’s plot D was affected less by the sub-zone, but the p-values
show otherwise. The LIDAR’s p-value corresponding to plot D was
much more significant than the RADAR'’s p-value for plot C because
the LIDAR’s lower error produced a lower variance tolerance. Similarly,
comparing plots E and F may lead to the assumption that the target
width greatly affected the RADAR and not the LIDAR. However, this
was not the case. The difference in error variance may be greater for
the RADAR, but the p-values show its performance was affected less
by this variable compared to the LIDAR. Plot G is a clear example of a
variable when non-detections led to negative performance. Very
accurate detections may occur for a single condition, but the variable
as a whole may be significant. For example, the LIDAR’s 0° target
angle condition (green) in plot H generated short boxes that remain
near the X axis throughout the five sub-zones. This indicates low
distance error and low variance between the errors for that specific
angle. However, the remainder of the plot shows large fluctuation
between the angle conditions. As stated previously, Y axis fluctuations
are caused by an error discrepancy between conditions that
collectively impacted performance, which agrees with the p-value in
Table 2.

Detection Zone Boundary Characterization

The secondary result of this study was the visual representations
of detection zone perimeters for each sensor. Sensor-reported and
survey position data were collected for multiple zone sizes to generate
the graphical perimeters. The perimeters in Figure 4 provide a general
sense of each sensor’s ability to detect a human walking around the
detection zone.

These perimeters allow one to visualize the accuracy of each
sensor for different zone configurations. For any of the illustrations, the
accuracy is related to the similarity between the actual and sensor-
reported perimeters. For example, comparing A and B demonstrates
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that the LIDAR was more accurate around the 10-ft zone boundary.
However, the RADAR in A at the 10-ft boundary may be a more
cautious design approach as it reported positions where the human
was farther than the boundary. Likewise, in C, the actual position was
several feet away from the expected boundary when a detection
occurred. This may be one method to ensure safety but may increase
the number of false alarms when used in a confined environment. The
LIDAR in D represents an accurate perimeter as the zones are very
close. However, the actual X position is inside of the reported zone,
meaning it was breached before a detection occurred. This could be
detrimental in preventing an accident depending on where this occurs
relative to the machine and, therefore, the available stopping distance.

A B c D
FtalDAl_i Detection Zone LIDAR Detection Zone RADAR Detection Zone UIDAR Detection Zone
(4" Width, 10° Length) 4" Width, 10° Length) (&' width, 30' Length) (4" Width, 30' Length)
s 58 " =
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Figure 4. Zone perimeters based on survey and sensor-reported
position data.

DISCUSSION

The test methods used provide a general understanding of the
accuracy and repeatability of each technology in near-ideal conditions.
While there were inconsistencies, both systems seemed to perform as
expected, but additional tests similar to these as well as other methods
would provide a comprehensive understanding of their capabilities.
Each technology, whether it is combined with another technology or
not, should be thoroughly tested in the operating environment.

The RADAR'’s performance was significantly affected by the zone
length, sub-zones, sensor height, sensor angle, target materials, and
target angle. According to the ANOVAs, the RADAR was affected by
fewer variables compared to the LIDAR. This was especially the case
after excluding particular conditions and repeating the ANOVA. When
comparing magnitudes of the p-values, it seems that the sensor-
related variables largely affected performance more so than the target-
related variables.

The LIDAR’s performance was significantly affected by the sub-
zones, sensor height, sensor angle, target height, target width, target
materials, and target angle. The LIDAR seems to be more accurate
when comparing the true distance or position with those reported by
the sensor. The LIDAR was affected greatly by the variables in terms of
absolute error. This is due to the small error between measurements
which decreases the tolerance for error variance for the ANOVA.
Particularly for the sensor height and target height, the LIDAR
performance was affected by non-detections. This was expected as its
scan plane was higher than the top of the targets in those cases.
Incorporating additional, unobstructed LIDAR sensors mounted at
various heights may be an approach to overcome this challenge.
However, this presents its own engineering challenges.

The performance of both technologies was greatly affected by
different variables. As suitable mounting locations are limited,
implementing these technologies may pose a challenge based on their
sensitivity to the sensor-related variables. Also, the performance
response to the target-related variables stresses the possible
difficulties in the underground environment. Overall, the deficiencies of
both technologies lead to design considerations when choosing a
proximity detection technology.
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LIMITATIONS

Limitations of this study were considered and observed prior to
and throughout testing. One limitation was the zone width remaining
constant throughout data collection. Predictably, the zone width would
vary between applications, and the survey results suggest that the
width may be crucial. However, the significance of the zone width was
not evaluated in the sensitivity analysis as the linear distance error was
the focal point. Another limitation is the concern with existing magnetic
PDSs and the influence of EMI on performance. The RADAR and
LIDAR were not tested for their EMI susceptibility or compatibility as it
was not in the scope of the study. End-users should evaluate and
calibrate any proximity detection technology in their particular
operating environment prior to using them for safety applications as
interferences may vary between environments.

Also, observations were made throughout the study. One is the
fact that all RADAR and LIDAR systems are not identical. These
results may not represent all variations of either technology but provide
insight to possible deficiencies. Researchers made a concerted effort
to maintain a consistent target speed during all test trials, but it may
have varied slightly. The propulsion mechanism was controlled solely
by the researcher and the target cart speed was not recorded. Lastly,
researchers faced challenges during the experimental setup to prevent
unintended detections of the ground, test track, and target cart while
ensuring detections were caused by the target itself. Therefore, system
performance seems to have a strong dependency on the operating
environment. Misleading detections were eliminated prior to conducting
tests by tuning the sensor angle about the X axis such that the sensor
could only detect the targets. Although false alarms were essentially
eliminated due to the controlled test setup, they would likely occur
when used in underground mines. Based on judgment and experience
with proximity detection, these technologies may trigger a high rate of
false alarms when used in underground mining due to the constantly
changing environment, normal operation positions of workers and
other machines, and considering their sensitivity to the evaluated
variables.

CONCLUSIONS

In this study, RADAR and LIDAR were evaluated for underground
proximity detection in terms of their detection robustness and accuracy.
Different variables that affect detection were evaluated by a sensitivity
analysis using an ANOVA. The results indicate that the performance of
the RADAR system was significantly affected by zone length, sub-
zones, sensor height, sensor angle, target materials, and target angle.
The LIDAR system’s performance was significantly affected by the
sub-zone, sensor height, sensor angle, target height, target width,
target materials, and target angle. Aggregating the ANOVA results, box
and whisker plots, and survey perimeters suggests the RADAR is less
sensitive to the evaluated variables, but the LIDAR’s smaller error
range between the actual and reported positions for individual
conditions implies higher accuracy.

This study offers an idea of which variables may affect sensor
performance, a method to test the significance of the effect, and may
assist in system design and detection zone configuration to improve
safety. Understanding the performance effects due to these variables
may support the integration of these technologies into existing or new
systems to improve mineworker safety.
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APPENDIX

Table 1. Evaluated variables and condition ranges for sensitivity analysis.
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Target
Material

Target
Material

Target
Angle

Variable Evaluated conditions
Sensor Related
Zone length 20 ft 30 ft 40 ft 45 ft
Sub-zone 1 2 3 4 5 |
Height 2 ft 3ft 4 ft 5 ft
Angle 0° 10° 20° 30° 45° |
Target Related
Height 2 ft 3 ft 4 ft 5 ft
Width 1ft 2 ft 3ft 4 ft 5 ft
Material Plywood Stamslﬁzztsteel Palgttggl ssfggf SS| Concrete board Cotton Denim
Angle 0° 5° 10° 15° 30° 45° 60° | 75°
Table 2. ANOVA results summary indicating significant variables.
Absolute e.r ror ANOVA Absolute error ANOVA (adjusted) Percent er.ror ANOVA Percent error ANOVA (adjusted)
(unadjusted) (unadjusted)
Excluded Excluded Excluded Excluded
Sensor Sensor . . Sensor Sensor . .
condition condition condition condition
Zone Zone a5 Zone Zone
Length Length > Length Length
Sub-zone Sub-zone | Zone 2 Sub-zone m
Sensor Sensor Sensor Sensor
; ; 5 . k 5
Height Height Height Height
Sensor Sensor Sensor
Angle Angle Angle Angle
Tar.get 7 2 >
Height
Target 5
Width

Target
Material

Red (solid) cell- significant; Green (hatched) cell- insignificant; *- Scan plane above target

Target
Material

Target
Angle
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