
INTRODUCTION

Background

As defined by Clancy (1997), classification
analysis seeks to identify mathematical and/or
statistical relationships between independent
variables (discrete or continuous) that can effec-
tively distinguish or characterize various levels
within a nominal dependent variable (categorical
variable). Once identified, these relationships can
be used for descriptive assessment or predictive
modeling. Researchers in the areas of human
factors, ergonomics, safety, and psychology have
for some time used multivariate classification
analysis to expand the body of knowledge in
their respective fields. Traditionally, discriminant
analysis and logistic regression have been the
most commonly used statistical methods for
carrying out classification in these fields.

In industrial ergonomics, for example, these
methods have been used to predict or identify

carpal tunnel syndrome status (Babski-Reeves
& Crumpton-Young, 2002; Matias, Salvendy, &
Kuczez, 1998), jobs that pose high risk for
work-related low-back disorders (Marras et al.,
1993), lumbar discomfort while sitting (Vergara
& Page, 2002), and the risk of slipping and
falling while walking on a sloping surface
(Hanson, Redfern, & Mazumdar, 1999). The
field of transportation safety research has used
these methods to identify factors that contribute
to airline pilot error incidents (McFadden,1997),
red-light-running behavior in urban settings
(Porter & England, 2000), driver drowsiness in
virtual driving tasks (Verwey & Zaidel, 2000),
and injury severity in motor vehicle accidents
(Al-Ghamdi, 2002). In psychology and human
factors research, these same methods have been
used to predict success or failure in activities
such as lifting and carrying criterion tasks (Ray-
son, Holliman, & Belyavin, 2000), air force
basic training (Lubin, Fielder, & Van Whitlock,
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1999), and nuclear reactor operation (Mackieh
& Cilingir, 1998).

Although their use is widespread in the hu-
man performance field, discriminant analysis
and logistic regression do have their limitations.
Principal among these is their dependence on a
fixed, underlying model or functional form.
Discriminant analysis uses linear summation of
independent variables to differentiate one cate-
gory from another (Huberty & Lowman, 1997).
Logistic regression also makes use of linear
summations of independent variables, incorpo-
rated into a logistic function (Myers, 1990).
Koza (1992) made the observation that both
techniques use regression merely to discover
numerical coefficients for predetermined models.
In human factors research, however, these para-
metric models may not be the most appropriate
ones for classification tasks involving some
human performance activities, especially those
for which outcomes cannot be differentiated or
predicted based on a simple linear summation
of independent variables or for which functional
form cannot be established a priori. Such circum-
stances would necessitate the use of alternative
classification modeling approaches.

Machine Learning Alternatives for
Classification Model Development

Beyond the plethora of traditional statistical
classification techniques available, of which
discriminant analysis and logistic regression
are but two, machine learning research offers the
human factors professional a viable alternative
for classification model development. Decision
tree induction and genetic programming are
two of these machine learning approaches.
Unlike the traditional statistical methods previ-
ously discussed, these methods do not rely on
predetermined models using linear summa-
tions of independent variables.

In decision tree induction (Quinlan, 1986),
the decision tree is constructed from a data set
composed of a series of cases. Each case is com-
posed of a set of values (discrete or continu-
ous) associated with a fixed set of descriptive
independent variables and a corresponding
outcome-dependent variable (i.e., category or
class) associated with those values. Based on
the specific values of these descriptive vari-
ables, the tree partitions the cases into subsets

that are homogeneous in terms of the outcome
variable. Each of these subsets represents a sin-
gle path or branch along the decision tree. Each
path represents a specific pattern of descriptive
variable values common to a number of cases
that possess the same outcome. Once construct-
ed, the tree can classify future cases in which
the outcome is not known, based on the values
of its descriptive variables. Decision tree in-
duction has been used in the past to identify
common patterns associated with specific auto-
motive accident outcomes (Clarke, Forsyth, &
Wright, 1998b; Sohn & Shin, 2001).

Genetic programming (Koza,1992,1994; Ko-
za, Bennett, Andre, & Keane, 1999) is a search
method based on the Darwinian principles of
natural selection and survival of the fittest. This
approach uses fitness-based selection and solu-
tion recombination to produce a population of in-
creasingly effective computer programs designed
to solve a particular problem. This technique is
one form of heuristic search algorithms found
in a field of computer science research known
as evolutionary computation (Sebald & Fogel,
1994). By relying on an evolving population of
programs driven by natural selection, genetic
programming uses multiple points that can
climb in different directions in parallel as well as
“jump” to different locations within the solu-
tion space. For classification modeling, genetic
programming can be used to solve problems in
symbolic regression. As defined by Koza (1992),
symbolic regression entails discovering a math-
ematical expression that provides the best fit
between independent and corresponding depen-
dent variables within a finite data sample.

Kishore, Patnaik, Mani, and Agrawal (2000)
identified two distinct advantages that genetic
programming would have over traditional sta-
tistical methods for classification. First, genetic
programming does not require advanced knowl-
edge or assumptions concerning the statistical
distribution of the data. Second, genetic pro-
gramming does not use any specific predeter-
mined model but can detect an underlying
relationship between independent and depen-
dent variables and express that relationship
through a mathematical model constructed to
fit the data.

Evolutionary computation techniques, such as
genetic programming, have been used to discover
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solutions to various ergonomics design problems
involving control panels (Pham & Onder, 1992),
lifting tasks (Carnahan & Redfern, 1998a), job
rotation schedules (Carnahan, Redfern, & Nor-
man, 2000), and assembly line balances (Carna-
han, Norman, & Redfern, 2001). In terms of
classification, transportation safety researchers
have made use of these techniques to discover
rules that could classify and predict the outcome
of automotive accidents (Clarke, Forsythe, &
Wright, 1998a). In addition, Carnahan and Red-
fern (1998b) have used genetic programming
to develop models that accurately classify lifting
tasks as posing high or low risk of occupational
back injury.

Project Purpose

The purpose of the current project was to con-
duct a methodological pilot study that compared
traditional statistical classification methods
(discriminant analysis and logistic regression)
with methods based on machine learning (deci-
sion tree induction and genetic programming)
in an area relevant to human factors/human
performance research. The basis for comparison
will be data associated with commercial-driver
training and subsequent examination. The hypo-
thesis being tested was that the machine learning
classification models could yield performances
superior to those of discriminant analysis or
logistic regression when called upon to accu-
rately predict human performance outcome.

METHOD

Participants

Data were collected from 37 trainees (36 men,
1 woman) who enrolled in a novice truck driv-
er training course offered by the Carnegie
Mellon Driver Training and Safety Institute.
The trainees’ ages ranged from 18 to 58 years
(average = 38.0; standard deviation = 10.1).
All trainees had previously received a high
school or general equivalency diploma. Ethnic
composition was not diverse (all participants
were Caucasian). All trainees had passed drug
toxicology and medical screenings as required
by the U.S. Department of Transportation,
Federal Highway Administration. All trainees
received full tuition assistance from state fund-
ing sources.

Data Collection Procedure and
Classification Task

Performance data from each of the 37 par-
ticipants were based on their completion on an
8-week, 320-hr course designed to teach novice
drivers basic truck driving skills with emphasis
in the areas of safety and accident prevention.
The curriculum was composed of six major
components: classroom instruction (Byrnes &
Fox, 1999), range driving, road driving, simula-
tion training, controlling a truck through a skid
or slide, and physical health/wellness training.
By completing the curriculum, each participant
accumulated 10 scores that reflected his or her
performance in the truck driver training course.
A description of these scores is shown in Ta-
ble 1.

Referring to Table 1, Curriculum Areas 1
through 5 (basic operations, driving techniques,
vehicle systems, operation skills, and profes-
sional driver) covered textbook knowledge
commonly found in commercial driver training
courses. Scores for these five areas were based
on multiple-choice tests of textbook chapter
materials (Byrnes & Fox, 1999). Curriculum
Area 6, driver development, covered informa-
tion concerning a personal health program
designed to teach ways of improving and main-
taining health and physical fitness. Scores for
this area were based on a multiple-choice exam
covering topics related to physical wellness
and lifetime management. Curriculum Areas 7
through 9 (skill development, range skills, pre-
trip inspections, and road skills) covered those
driving skills that are relevant to the commer-
cial drivers’ license (CDL) examination. Scores
in these curriculum areas were based on exam-
inations that used the same range tests, road-
driving tests, and guidelines as those used by
actual CDL examiners. Each score was divided
by its corresponding maximum value (the max-
imum score possible in the curriculum area),
thereby normalizing the scores for all 10 vari-
ables. These 10 normalized scores were selected
to represent the set of dependent variables for
the classification task.

Once training was completed, each trainee
took the State of Pennsylvania’s CDL examina-
tion at one of six nearby testing locations. This
examination consisted of a trained evaluator
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using a standard form to assess and score the
trainee in three skill areas: pretrip inspection,
range maneuvers, and road skills. Of the 37
trainees, 25 passed the CDL on the first attempt
and the remaining 12 passed on their second
or third attempt. This binary categorical vari-
able (those who passed the CDL on their first
attempt and those who did not) was selected
as the dependent variable for the classification
task. Thus the classification task was to accu-
rately predict whether or not a trainee would
pass his or her first CDL examination based on
the 10 scores the individual received after com-
pleting the truck driver training course. A num-
ber of research studies have searched for factors
that are predictive of driving behavior. Some of
these factors have been used to predict accident
propensity (Reason, Manstead, Stradling, Baxter,
& Campbell, 1990; Simon & Corbett, 1996),

risky behaviors (Deery & Fildes,1999; Meadows,
Stradling, & Lawson, 1998), or perceptual and
cognitive abilities (Avolio, Kroeck, & Panek,
1985; French, West, Elander, & Wilding, 1993;
Myers, Ball, Kalina, Roth, & Goode, 2000).
However, to date, there has been no empirically
validated test that may be utilized to predict
CDL examination performance outcome.

Once collected, the performance data were
partitioned into two subsets. Five cases in which
the trainee passed and 5 cases in which the
trainee failed his or her initial CDL examina-
tion were randomly selected from the original
data set. This collection of 10 cases constituted
the test or validation data set. The remaining 27
cases constituted the training data set. Each ap-
proach (discriminant analysis, logistic regression,
decision tree induction, and genetic program-
ming) used the training data set to develop its

TABLE 1: Description of Curriculum Areas, Content, and Evaluation Score Used in Driving Training Course

Curriculum Area Curriculum Content Basis for Evaluation Score

1. Basic operation Orientation, control systems, vehicle inspection, 20-item multiple-choice test
basic controls, backing, coupling and uncoupling,
proficiency development 

2. Driving techniques Visual search and communication, speed and 20-item multiple-choice test 
space management, night operations, extreme
driving, hazard perception, emergency maneuvers,
skid control recovery, proficiency development  

3. Vehicle systems Vehicle systems functions, diagnosing and re- 20-item multiple-choice test 
porting malfunctions, preventative maintenance,
shifting gears, fire prevention and safety, 
accident procedures  

4. Operations skills Cargo documentation, handling cargo, hours of 20-item multiple-choice test
service requirements, trip planning, hazardous 
materials, computers in trucking  

5. Professional driver Job placement and succeeding as a truck driver, 100-item multiple-choice test
public and employer relations, personal health covering all previous curricu-
and safety, U.S. Department of Transportation lum areas, including 5
regulations

6. Driver development Physical wellness, lifetime management 50-item multiple-choice test  

7. Skill development Truck backing, parallel parking, alley docking, 23-item skill assessment in 
and right/left hand turns  simulator and field tests

8. Range skills and Inspection/testing of all truck systems and 33-item skill assessment in 
pretrip inspection safety/emergency equipment field test similar to CDL 

examination 

9. Road skills Truck maneuvers covered in CDL examination 76-item skill assessment in 
road test    

10. Attendance Class attendance covering all topic Areas Percentage of class hours 
attended  
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corresponding classification model. Each model
was then validated using the 10 cases of the test
set. Clancy (1997) has recommended this pro-
cedure of data partitioning, model development,
and validation for assessing the true predictive
accuracy of classification models used in ergo-
nomics research. What follows is a description
of the four approaches used to create the clas-
sification models.

Discriminant Analysis

Discriminant analysis (Huberty & Lowman,
1997) accomplishes multivariate classification
through the use of linear functions, as expressed
in the equation

Si = W1i X1i + W2i X2i +...+ W10i X10i + ci, (1)

in which Si = resultant classification score for
the ith category, X1 through X10 = the 10 scores
acquired by completing the truck driver training
curriculum, W1i through W10i = weighting values
corresponding to the independent variables X1
through X10 for the ith category, and ci = con-
stant for the ith category.

The classification functions, the number of
which corresponds to the number of categories,
can be used to directly compute classification
scores for new observations. Specifically, newly
observed cases are classified to that group whose
classification function yields the highest classi-
fication score, Si. The discriminant analysis
established two classification functions of the
form shown in Equation 1. These functions al-
lowed the model to provide a binary response
that predicted the passing or failing of the CDL
examination based on the training curriculum
scores.

Logistic Regression

The logistic regression model for predicting
outcome of the CDL examination is expressed
in the equation

1
Y = —————————————, (2)

1 + e –(β0 + β1X1 + β2X2 +...+ β10X10)

in which Y= the probability that the input vector
belongs to the “pass” category, β0 = regression
model constant, and β1 through β10 = coeffi-

cients corresponding to the independent vari-
ables X1 through X10.

Using Equation 2, the dependent variable Y
output of .5 or greater would result in the model
classifying the case as “passing the CDL exami-
nation on the first attempt.” An output of below
.5 results in the model classifying the case as
“failing the CDL examination on the first at-
tempt.” This same rule was applied when vali-
dating the model using the 10 cases of the test
data set. Two logistic regression models were
created: one that included a constant and one
that did not. The reasoning behind this decision
was that if the logistic models differed in form,
they might also differ in terms of subsequent
predictive performance on the test data set.

Decision Tree Induction: The C4.5 Algorithm

The decision tree for predicting trainee suc-
cess or failure on the CDL examination was
constructed using the C4.5 algorithm (Quinlan,
1993). The algorithm was a recursive greedy
heuristic that selected independent variables for
membership within the tree. Whether or not an
independent variable was included within the
tree was based on the value of its information
gain. As a statistical property, information gain
measured how well the variable (curriculum
area score) separated training cases into sub-
sets in which the outcome or dependent variable
value (passing or failing the CDL examination)
was homogeneous. Given that curriculum area
scores were all continuous variables, a threshold
value had to be established within each score
variable so that it could partition the training
cases into subsets. These threshold values for
each variable were established by rank ordering
the values within each variable from lowest to
highest and repeatedly calculating the informa-
tion gain using the arithmetical midpoint be-
tween all successive values within the rank order.
The midpoint value with the highest information
gain was selected as the threshold value for its
score variable. That variable with the highest
information gain (information being the most
useful for classification) was then selected for
inclusion in the decision tree.

The algorithm continued to build the tree in
this manner until it accounted for all training
cases. Ties between variables that were equal in
terms of information gain were broken using a
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random number generator embedded in the al-
gorithm. The algorithm was run 10 times, using
a different random number seed each time. By
altering the random number seed, the algo-
rithm could produce decision trees that differed
in structure and classification performance.

Genetic Programming

The genetic programming algorithm searched
for accurate classification models by using five
distinct stages: initialization, fitness evaluation,
selection, reproduction, and replacement.

Initialization. In this stage, the algorithm
generated a population of 500 computer pro-
grams. A parse tree represented each computer

program in the population. Each parse tree
was constructed from a random selection of
both function nodes and terminal nodes. The
function nodes consisted of arithmetical opera-
tors (addition, +; subtraction, –; multiplication,
×; division, ÷; return maximum value, MAX;
and return minimum value, MIN) and Boolean
operators (greater than, >; less than, <; logical
and, AND; logical or, OR; if-then-else, ITE).
The terminal nodes consisted of the trainee
scores from the truck driver training course
(Curriculum Areas 1–10) and random numbers
ranging from 1 to 100. Figure 1 shows an exam-
ple of a randomly generated parse tree and its
translation into pseudo computer code.

Figure 1. Example of a single parse tree accompanied by its translation into pseudo computer code.
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As shown in Figure 1, the parse tree repre-
sents a computer program that predicts whether
or not a trainee will pass the CDL examination
on the first attempt. The program bases its de-
cision on the values assigned to the following
terminal nodes: road skill score, professional
driving score, basic truck operations score, op-
erational skills score, driving techniques score,
and vehicle systems score. In order to predict
performance, each parse tree must be translated
into a corresponding computer program (shown
in the lower half of Figure 1). The root node of
each parse tree created at initialization was al-
ways a Boolean operator (>, <, AND, OR, ITE).
This allowed each program to act as a binary
classifier that predicted a trainee would either
pass the CDL examination on the first attempt
(i.e., the program returns a Boolean output of
TRUE) or fail it on the first attempt (i.e., the
program returns a Boolean output of FALSE).

The program’s decision would be based on
the variables, constants, arithmetical operators,
and Boolean operators that composed the rest
of the tree. Each parse tree is a random com-
bination of no more than 30 input variables,
numerical constants, and arithmetical opera-
tors. Constraints used in strongly typed genetic
programming (Montana, 1995) were incorpo-
rated in the algorithm to maintain the feasibility
of all parse trees in the population during all
algorithmic stages. These constraints allowed
the genetic programming algorithm to discover
computer programs that seamlessly integrated
arithmetical operators, Boolean operators, inde-
pendent variables, and numerical constants into
an overall classification model.

Fitness evaluation. In this stage, each of the
500 computer programs in the population was
assigned a fitness value. This fitness value was
simply the percentage of 27 cases in the training
data set that the program was able to correctly
classify. After a fitness value had been assigned
to a program, the program was then called up-
on to classify the 10 cases in the test data set.
The specifications of those programs in the pop-
ulation that possessed 80% accuracy across
both data sets were saved to a file. This proce-
dure enabled the genetic programming algo-
rithm to retain those classification models that
performed well in terms of training and vali-
dation.

Selection. In this stage of the algorithm, can-
didates from the population of computer pro-
grams were selected for survival. Using stochastic
selection with replacement (Goldberg, 1989), a
new population of surviving programs was creat-
ed from the current population. Those programs
with the highest fitness values (i.e., most accu-
rate classification of the training data set) had
the greatest probability of being repeatedly cho-
sen for survival. Thus the survivor population
was biased in the sense that there were more
copies of higher-fit programs than of lower-fit
programs. These surviving programs participat-
ed in the two remaining stages of the genetic
programming algorithm.

Reproduction. In this stage, surviving com-
puter programs produce offspring, using the
mechanisms of crossover and mutation. These
offspring (new programs) would go on to repre-
sent the next generation of programs in the pop-
ulation. In the crossover mechanism, 60% of
the surviving programs (300 parse trees) were
randomly matched to form 150 pairs. Within
each pair of programs, randomly chosen branch-
es (i.e., subtrees) from each program’s parse tree
were exchanged. The result was the creation of
two new programs, known as offspring, which
possessed characteristics of both parents. In the
mutation mechanism, 1% of the surviving pro-
grams (5 parse trees) had a randomly chosen
branch erased and then replaced with a random-
ly generated branch. This procedure created a
single offspring program that was similar to, but
different from, its parent. For both the cross-
over and mutation mechanisms, the offspring
programs replaced their parents in the surviving
population.

Replacement. In this stage of the algorithm,
the surviving computer programs, some of which
have been altered because of crossover and mu-
tation, become the new programs of the next
generation.

The completion of a single iteration of the
fitness evaluation, selection, reproduction, and
replacement stages constituted a single genera-
tion within the genetic programming algorithm.
Within a single run, the algorithm completed
1000 of these generations. Given the heuristic
nature of this algorithm, 10 runs were complet-
ed, with each run starting with a different ran-
dom number seed.
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Criteria for Classification Model
Comparison

Comparisons among the discriminant analysis
model, the two logistic regression models, the
most fit program found using genetic program-
ming, and the most accurate decision tree dis-
covered using the C4.5 algorithm were based on
their classification of the 10 cases constituting
the test data set. The classification performance
results on the test data set were described in
terms of the number of true positives (TP), false
positives (FP), true negatives (TN), and false
negatives (FN), as shown in Table 2. The perfor-
mance of each model was evaluated using the
following epidemiological equations (Hennekens
& Buring, 1987), in which accuracy is the per-
centage of all cases accurately classified by the
model; sensitivity is the ability of the model to
identify those trainees who passed the CDL test
on the first attempt; specificity is the ability of
the model to identify those trainees who failed
the CDL test on the first attempt; and validity
is an overall measure of the model’s sensitivity
and specificity performance.

Accuracy=[(TP+TN)/(TP+TN+FP+FN)]×100(3)
Sensitivity = [TP/(TP + FN)] × 100 (4)
Specificity = [TN/(TN + FP)] × 100 (5)
Validity=(Sensitivity + Specificity –1) ×100 (6)

In addition to these epidemiological criteria,
the classification accuracy of each of the models
on the training set data was also noted and re-
corded.

RESULTS

Discriminant Analysis Model Description

The descriptive characteristics of the classi-
fication model developed using discriminant

analysis are summarized in Table 3. As shown
in Table 3, three individual regressors – operation
skills, professional driver, and road skills – were
statistically significant at the α = .05 level in
terms of discriminating between those trainees
who passed the CDL examination on the first
attempt and those who did not.

Logistic Regression Analysis Model
Description

The descriptive characteristics of the classifi-
cation models developed using logistic regression
are summarized in Tables 4 and 5. Table 4 sum-
marizes the descriptive characteristics of the
logistic regression model that included a con-
stant (Model 1). The overall model was statisti-
cally significant, χ2(10) = 22.19, p = .014. None
of the models’ individual regressors, however,
were statistically significant at the = .05 level.
As shown in Table 4, increases in the likelihood
of membership in the “pass CDL examination”
class were most influenced by increases in profes-
sional driver, road skills, and skill development
score values. Table 5 summarizes a similar logis-
tic regression model, one that did not include a
constant (Model 2). As with logistic regression
Model 1, the overall model was also statistical-
ly significant, χ2(10) = 23.67, p = .009; however,
the effects of individual regressors were not.
As shown in Table 5, increases in the road and
operation skills had the greatest impact in terms
of increasing the likelihood of membership in
the “pass CDL examination” class.

Decision Tree Model Description

Across the 10 runs, the most accurate deci-
sion tree found by the C4.5 algorithm made use
of only 6 of the 10 curriculum area scores in
predicting passing or failing the CDL examina-
tion. An illustration of this decision tree and its
corresponding translation into pseudo code is

TABLE 2: Results of Binary Classification Performance

Model Actual CDL Exam Outcome

Outcome Trainee Passed Trainee Failed

True (passed) True positive (TP) False positive (FP)
False (failed) False negative (FN) True negative (TN)
Total cases TP + FN FP + TN

Predicted 
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TABLE 3: Descriptive Characteristics of the Discriminant Analysis Classification Model

Classification Function

Wilks’s Univariate Significance
Coefficients

Variable Lambda F Ratio (p) Pass CDL Fail CDL

Basic operation 0.98 0.40 .53 21.88 22.058
Driving techniques 1.00 0.11 .74 6.22 6.329
Vehicle systems 1.00 0.01 .94 10.69 10.820
Operations skills 0.85 4.57 .04 42.52 42.220
Professional driver 0.85 4.27 .05 –82.59 –83.110
Driver development 0.97 0.72 .40 2178.44 2173.080
Skill development 0.95 1.40 .25 –23.23 –23.310
Range skills and 1.00 0.10 .75 37.85 37.970

pretrip inspection
Road skills 0.86 4.11 .05 –18.59 –18.840
Attendance 1.00 0.08 .78 42.68 42.800
Constant N/A N/A N/A –110 275.05 –110 760.340

TABLE 4: Descriptive Characteristics of Logistic Regression Model 1

Standard Wald Significance
Variable β Error χ2 (p) Exp(β)

Basic operation –1.64– 1.65 1.00 .32 0.19
Driving techniques –0.60– 0.79 0.58 .45 0.55
Vehicle systems 0.21 0.30 0.50 .48 1.24
Operations skills 0.24 0.41 0.36 .55 1.28
Professional driver 2.77 2.88 0.92 .34 15.940
Driver development –28.640– 107.1800 0.07 .79 0.00
Skill development 0.92 1.07 0.73 .39 2.50
Range skills/pretrip –1.41– 1.26 1.25 .26 0.24
Road skills 1.14 0.76 2.21 .13 3.11
Attendance 0.07 0.29 0.06 .80 1.08
Constant 02701.630000 10692.740000 0.06 .80 N/A

TABLE 5: Descriptive Characteristics of Logistic Regression Model 2

Standard Wald Significance
Variable β Error χ2 (p) Exp(β)

Basic operation –0.30– 0.24 1.61 .20 0.74
Driving techniques –0.54– 0.47 1.33 .25 0.58
Vehicle systems 0.40 0.39 1.02 .31 1.49
Operations skills 0.71 0.43 2.66 .10 2.02
Professional driver 0.25 0.33 0.63 .43 1.29
Driver development –1.36– 0.80 2.90 .09 0.26
Skill development –0.19– 0.39 0.24 .63 0.83
Range skills/pretrip –0.54– 0.50 1.18 .28 0.58
Road skills 1.42 1.01 2.00 .16 4.14
Attendance 0.26 0.29 0.75 .39 1.29
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shown in Figure 2. As shown in Figure 2, the
decision tree made its prediction of passing 
or failing the CDL examination based on the
trainees’ scores in the following curriculum
areas: professional driver, operations skills, skill
development, vehicle systems, basic operation,
and road skills. These variables constituted the
decision nodes of the tree. The decision tree
depicted in Figure 2 identified four scenarios
associated with trainees who failed the CDL

examination on their first attempt: (a) their pro-
fessional driving scores were at or below 92%;
(b) their operational skill scores were at or be-
low 87%; (c) their skill development scores
were at or below 74%; or (d) their vehicle sys-
tems scores were between 97% and 86% and
their basic truck operations and road skills ex-
amination scores were greater than 97% and
92%, respectively. If a trainee’s performance did
not fit any of these four scenarios, the decision

Figure 2. Decision tree for predicting passing or failing the CDL examination accompanied by its translation
into pseudo computer code.
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tree would predict that he or she would pass the
CDL examination.

Genetic Programming

Across generations within each run, the
genetic programming algorithm was successful
in discovering computer programs that were
increasingly accurate in classifying cases from
the training data set, as Figure 3 illustrates. As
shown in Figure 3, when the stages of selection,
crossover, mutation, and replacement are itera-
tively applied from generation to generation,
the percentage of cases correctly classified by the
most accurate classifier in the population in-
creases. Across the 10 runs, the computer pro-
gram that was most accurate in classifying both
the training and test data set cases made use of
only 6 of the 10 input variables available: basic
operation, driver technique, vehicle systems, op-
erations skills, professional driver, and road skills.
A depiction of the program’s parse tree, and its
corresponding translation into pseudo code, is
shown in Figure 4.

Review of the parse tree and corresponding
pseudo code in Figure 4 revealed that the com-
puter program made use of two separate classi-

fication rules for predicting whether or not a
trainee would pass the CDL examination on the
first attempt. From the parse tree’s root node
(ITE), Branch 1 represents the conditions that
the program used to decide which classification
rule to employ. These two classification rules
are represented by Branches 2 and 3 in the parse
tree. Using Branches 1 and 2, the program pre-
dicted that trainees whose road skill score was
greater than their professional driving score, or
whose vehicle systems score was greater than
their operations skills score, would pass the CDL
examination if they achieved a road skill score
greater than 93.5. It should be noted that the
constant (93.5) utilized by the computer program
and displayed in Figure 4 was not established a
priori but was discovered as a consequence of
the evolutionary search steps employed by the
genetic programming algorithm.

For trainees whose road skill score was less
than or equal to their professional driver score
and whose vehicle systems score was less than
or equal to their operations skill score, the pro-
gram would use the classification rule described
by Branch 3 in the parse tree to predict their per-
formance on the CDL examination. Using this

Figure 3. The maximum fitness among computer programs as a function of generation.
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branch/rule, the program would predict that
trainees would pass the CDL examination on the
first attempt if their performance in the training
curriculum met any of the following criteria:
(a) their professional driver score was greater
than their driving techniques score; (b) their op-
eration skills score was greater than their profes-
sional driver score; (c) their operations skill score
was greater than their basic operations score. If
a trainee’s curriculum performance met none of
these three criteria, the branch/rule would pre-

dict that he or she would fail the CDL exami-
nation.

Comparisons between Statistical and
Machine Learning Classification Models

All four models were compared based on
their classification performance on the 10 cases
within the test data set. The results of this com-
parison are summarized in Table 6. As shown in
Table 6, all five models performed reasonably
well in terms of classifying the cases of the

Figure 4. A parse tree that predicts success or failure on the CDL examination accompanied by its translation
into pseudo computer code.
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training data set. However, when called upon
to generalize (i.e., predict) the outcome of cases
that were not used in model development, the
models developed using machine learning clear-
ly outperformed those based on discriminant
analysis and logistic regression. This advantage
is especially evident in terms of specificity (i.e.,
the model’s ability to identify trainees who failed
the CDL examination on their first attempt).
Comparisons between machine learning tech-
niques revealed that the genetic programming
and decision tree induction approaches were
comparable, with only a single case separating
their performances on both the training and
test data sets.

The predictive capabilities of the classification
models differed in terms of true positives, true
negatives, false positives, and false negatives.
These differences are illustrated in Figure 5. As
shown in Figure 5, in terms of sensitivity (i.e.,
true positives), performance was weakest for
discriminant analysis and for logistic regres-
sion Model 1. These models had the highest
percentages of false negatives of all the classifi-
cation models and were able to identify only
three of the five test cases (60%) in which the
student driver passed the CDL exam. The genet-
ic program model possessed the strongest sensi-
tivity: It correctly identified all five test cases in
which the student passed. In terms of specificity

TABLE 6: Performance Comparison of Classification Models

Classification Logistic Regression Model
Performance Discriminant Genetic C4.5
Criteria Analysis 1 2 Program Algorithm

Training set accuracy .88.9 .92.6 .92.6 .96.3 100
Test set accuracy 50 40 50 90 80
Test set sensitivity 60 60 80 1000 80
Test set specificity 40 20 20 80 80
Test set validity 0 –20– 0 80 60

Note. Criterion values given in percentages.

Figure 5. Predictive capability of classification models in terms of true positives (true+), true negatives
(true–), false positives (false+), and false negatives (false–).
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(i.e., true negatives), performance was weakest
for both logistic regression models. These mod-
els had the highest percentages of false positives
and were able to identify only one of the five
test cases (20%) in which the student driver
failed the CDL exam. Specificity performance
was highest for the machine learning models
(genetic program and C4.5 algorithm). These
models were able to correctly classify four of
the five test cases (80%) in which the student
failed the CDL exam.

DISCUSSION

Results from the current study suggest that
the machine learning approaches of the genetic
programming algorithm and the C4.5 algo-
rithm were more accurate at classifying driver
performance on the CDL examination than
were discriminant analysis and logistic regres-
sion. Overall, the traditional statistical models
tended to make false positive identifications,
predicting that those drivers who failed the
CDL exam would pass. The classification mod-
els based on machine learning, however, did not
demonstrate this error tendency. In this exam-
ple, the machine learning methods employed
were able to identify relationships between the
independent and dependent variables that were
consistent across different data sets, whereas
discriminant analysis and logistic regression
were not. Unlike discriminant analysis and logis-
tic regression, the machine learning approaches
were not constrained by predetermined models
based on a linear summation of independent
variables.

The decision tree, discovered by the C4.5
algorithm, relied on a linked series of fixed
threshold values for the curriculum area scores
when making its prediction of CDL examina-
tion outcome. The parse tree, discovered using
genetic programming, made use of a threshold
value and a series of relative comparisons be-
tween curriculum area scores in order to make
its prediction. The decision and parse trees’ cor-
responding computer programs made their deci-
sions by assessing the trainees’ curriculum area
scores and, based on this assessment, deter-
mined which classification rules to use in the
prediction of CDL examination outcome. This
ability to switch between rules afforded the

decision tree and genetic program a level of flex-
ibility not possessed by the traditional statistical
approaches used in this study. These findings,
albeit limited in nature, support the notion that
machine learning techniques, such as genetic
programming and decision tree induction, could
be used as a viable alternative to traditional sta-
tistical approaches in human-factors-related
research.

Although successful in its scope, the current
study has limitations that should be noted. First,
the size of the data set used to develop and com-
pare the classification models was limited to the
performances of 36 men and only 1 woman.
Given this limitation, it is unknown whether or
not these models would be applicable to the
driving performances of female truck drivers.
Second, the outputs of all models developed and
tested were binary (pass or fail CDL examina-
tion) in nature. These models did not provide
insight into what aspects of the CDL exam a
driver might fail, given his or her performance
in the training curriculum. This specific infor-
mation could prove to be valuable to instructors
by allowing them to more effectively address
the trainee’s educational needs. Third, in their
current form, these classification models can
only identify trainees who may have considerable
difficulty on their CDL examination. They do
not suggest or prescribe specific interventions
that an instructor can use to improve the trainees’
performance on the examination.

Fourth, the performance comparison of these
approaches was based on a single data source.
One would expect classification performance
differences between these approaches to vary
depending on the data used for model develop-
ment and validation. For example, Carnahan
and Redfern (1998b) found that their classifica-
tion model, discovered using genetic program-
ming, outperformed logistic regression when
predicting low-back injury risk for a set of occu-
pational lifting tasks. Sohn and Shin (2001),
however, found no difference in the accuracy
of logistic regression and the C4.5 algorithm in
classifying automotive accidents in terms of
their severity outcomes. Further research is nec-
essary to fully assess the potential advantages
machine learning classifiers would have over
their traditional statistical counterparts in the
human factors area.
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In order to address these limitations, future
research will make use of larger training data
sets and test data sets from more diverse popula-
tions. This will allow for statistical repeatability
in training and testing various models. Future
research will also focus on the expansion of the
classification models beyond simple binary out-
comes into multicategory classification. With
this type of approach, one could attempt to pre-
dict what specific elements of the CDL exami-
nation would prove most difficult for certain
trainee drivers. Finally, future research will focus
on applying these (and other) machine learning
techniques to other classification problems in
the fields of safety, ergonomics, human factors,
and human performance.

REFERENCES

Al-Ghamdi, A. S. (2002). Using logistic regression to estimate the
influence of accident factors on accident severity. Accident
Analysis and Prevention, 34, 729–741.

Avolio, B. J., Kroeck, K. G., & Panek, P. E. (1985). Individual dif-
ferences in information-processing ability as a predictor of
motor vehicle accidents. Human Factors, 27, 577–587.

Babski-Reeves, K. L., & Crumpton-Young, L. L. (2002). Com-
parisons of measures for quantifying repetition in predicting
carpal tunnel syndrome. International Journal of Industrial
Ergonomics, 30, 1–6.

Byrnes, M., & Fox, D. (Eds). (1999). Bumper-to-bumper: The com-
plete guide to tractor-trailer operations (3rd ed.). Corpus Christi,
TX: Byrnes & Associates.

Carnahan, B. J., Norman, B., & Redfern, M. S. (2001). Incor-
porating physical demand criteria into assembly line balancing.
IIE Transactions, 33, 875–887.

Carnahan, B. J., & Redfern, M. S. (1998a). Application of genetic
algorithms to the design of lifting tasks. International Journal
of Industrial Ergonomics, 21, 145–158.

Carnahan, B. J., & Redfern, M. S. (1998b). Building a low back in-
jury risk classifier using evolutionary computation. In Proceed-
ings of the Human Factors and Ergonomics Society 42nd
Annual Meeting (pp. 881–885). Santa Monica, CA: Human
Factors and Ergonomics Society.

Carnahan, B. J., Redfern, M. S., & Norman, B. (2000). Designing
safe job rotation schedules using optimization and heuristic
search. Ergonomics, 43, 543–560.

Clancy, E. A. (1997). Factors influencing the resubstitution accura-
cy in multivariate classification analysis. Ergonomics, 40,
417–427.

Clarke, D. D., Forsyth, R., & Wright, R. (1998a). Behavioural fac-
tors in accidents at road junctions: The use of a genetic algo-
rithm to extract descriptive rules from police case files.
Accident Analysis and Prevention, 30, 223–234.

Clarke, D. D., Forsyth, R., & Wright, R. (1998b). Machine learn-
ing in road accident research: Decision trees describing road
accidents during cross-flow turns. Ergonomics, 41, 1060–1079.

Deery, H. A., & Fildes, B. N. (1999). Young novice driver sub-
types: Relationship to high-risk behavior, traffic accident
record, and simulator driving performance. Human Factors,
41, 628–643.

French, D. J., West, R. J., Elander, J., & Wilding, J. M. (1993).
Decision-making style, driving style, and self-reported involve-
ment in road traffic accidents. Ergonomics, 36, 627–644.

Goldberg, D. E. (1989). Genetic algorithms in search, optimiza-
tion, and machine learning. New York: Addison Wesley.

Hanson, J. P., Redfern, M. S., & Mazumdar, H. (1999). Predicting
slips and falls considering required and available friction,
Ergonomics, 42, 1619–1633.

Hennekens, C. H., & Buring, J. E. (1987). Epidemiology in medi-
cine. Boston: Little, Brown.

Huberty, C. J., & Lowman, L. L. (1997). Discriminant analysis via
statistical packages. Educational and Psychological Measure-
ment, 57, 759–784.

Kishore, J. K., Patnaik, L. M., Mani, V., & Agrawal, V. K. (2000).
Application of genetic programming for multicategory pattern
classification. IEEE Transactions on Evolutionary Computa-
tion, 4, 242–258.

Koza, J. R. (1992). Genetic programming: On the programming of
computers by means of natural selection. Cambridge, MA:
MIT Press.

Koza, J. R. (1994). Genetic programming II: Automatic discovery
of reusable programs. Cambridge, MA: MIT Press.

Koza, J. R., Bennett, F. H., Andre, D., & Keane, M. A. (1999).
Genetic programming III: Darwinian invention and problem
solving. San Francisco: Morgan Kaufmann.

Lubin, B., Fielder, E. R., & Van Whitlock, R. (1999). Predicting
discharge from airforce basic training by battery of affect.
Journal of Clinical Psychology, 55, 71–78.

Mackieh, A., & Cilingir, C. (1998). Effects of performance shaping
factors on human error. International Journal of Industrial
Ergonomics, 22, 285–292.

Marras, W. S., Lavender, S. A., Leurgans, S., Sudhakar, L. R.,
Allread, W. G., Fathallah, F., & Ferguson, S. (1993). The role
of dynamic three dimensional trunk motion in occupationally
related low back disorders. Spine, 18, 617–628.

Matias, A. C., Salvendy, G., & Kuczez, T. (1998). Predictive mod-
els of carpal tunnel syndrome causation among VDT operators.
Ergonomics, 41, 213–226.

McFadden, M. (1997). Predicting pilot-error incidents of U.S. air-
line pilots using logistic regression. Applied Ergonomics, 28,
209–212.

Meadows, M. L., Stradling, S. G., & Lawson, S. (1998). The role
of social deviance and violations in predicting road traffic acci-
dents in a sample of young offenders. British Journal of
Psychology, 89, 417–431.

Montana, D. J. (1995). Strongly typed genetic programming.
Evolutionary Computation, 3, 199–230.

Myers, R. H. (1990). Traditional and modern regression with
applications (2nd ed.). Belmont, CA: Duxbury.

Myers, R. S., Ball, K. K., Kalina, T. D., Roth, D. L., & Goode, K.
T. (2000). Relation of useful field of view and other screening
tests to on-road driving performance. Perceptual and Motor
Skills, 91, 279–290.

Pham, D. T., & Onder, H. H. (1992). A knowledge-based system
for optimizing workplace layouts using a genetic algorithm.
Ergonomics, 35, 1479–1487.

Porter, B. E., & England, K. J. (2000). Predicting red-light running
behavior: A traffic safety study in three urban settings. Journal
of Safety Research, 31, 1–8.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learn-
ing, 1, 81–106.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San
Mateo, CA: Morgan Kaufmann.

Rayson, M., Holliman, D., & Belyavin, A. (2000). Development of
physical selection procedures for the British Army Phase 2:
Relationship between physical performance test and criterion
tasks. Ergonomics, 43, 73–105.

Reason, J., Manstead, A., Stradling, S., Baxter, J., & Campbell, K.
(1990). Errors and violations on the roads: A real distinction?
Ergonomics, 33, 1315–1332.

Sebald, A. V., & Fogel, L. J. (Eds.). (1994). Proceedings of the 3rd
Conference on Evolutionary Computation. Princeton, NJ:
World Scientific.

Simon, F., & Corbett, C. (1996). Road traffic offending, stress, age,
and accident history among male and female drivers. Ergo-
nomics, 39, 757–780.

Sohn, S., & Shin, S. (2001). Pattern recognition for road traffic
accident severity in Korea. Ergonomics, 44, 107–117.

Vergara, M., & Page, A. (2002). Relationship between comfort and
back posture and mobility in sitting posture. Applied Ergo-
nomics, 33, 1–8.

Verwey, W. B., & Zaidel, D. M. (2000). Predicting drowsiness acci-
dents from personal attributes, eye blinks, and ongoing behavior.
Personality and Individual Differences, 28, 123–142.



MACHINE LEARNING IN HUMAN FACTORS RESEARCH 423

Brian J. Carnahan is an assistant professor in the De-
partment of Industrial and Systems Engineering at
Auburn University. He received his Ph.D. in industrial
engineering in 1999 at the University of Pittsburgh.

Gérard Meyer is president of Chez Gérard Consulting,
Pittsburgh, Pennsylvania. He received his doctoral de-
gree in ergonomic physiology in 1973 at the Conserva-
toire National des Arts et Métiers (Paris), France.

Lois-Ann Kuntz is an assistant professor in the Divi-
sion of Education and Behavioral Sciences at the
University of Maine at Machias. She received her
Ph.D. in sensory processes and cognitive psychology
in 1996 at the University of Florida.

Date received: October 31, 2001
Date accepted: February 24, 2003


